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This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection
modelwith transaction costs, inwhich the future returns of risky security are characterized by possibility distributions.Theobjective
of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the
first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem
is derived. As a result, the proposed two-stagemodel is equivalent to a single-stagemodel, and the analytical optimal solution of the
two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments
are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed
model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal
invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return
increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the
proposed two-stage model are larger than those provided by the single-stage model.

1. Introduction

In financial theory, portfolio selection finds a satisfying
portfolio which allocates a certain amount of wealth among
different securities. The first mathematical formulation of
the portfolio selection problem is Markowitz’s famous mean-
variance model [1], which is based on probability theory.
Markowitz’s mean-variance theory is the foundation of
modern portfolio analysis. In the mean-variance model,
the returns of individual securities are taken as random
variables and the expected value and variance of the return
are taken as the investment return and risk, respectively.
In two cases, the mean-variance model provides analytical
solutions. One is the case that an investor maximizes his/her
expected wealth without exceeding a predetermined risk
level. Another case is that an investor minimizes his/her risk
when ensuring predetermined wealth. The mean-variance
model is a parametric optimization model to describe the
single-period portfolio selection problem. In some cases, the
investors may adjust their wealth allocation strategies during

the investment horizon. Correspondingly, the investment
horizon can be taken as several periods of time. So many
researchers have studied the multiperiod portfolio selection
problem in the framework of Markowitz’s mean-variance
theory, for example, Mossin [2], Dantzig and Infanger [3],
Li and Ng [4], Çelikyurt and Özekici [5], Bertsimas and
Pachamanova [6], and Cui et al. [7]. These researchers
have formulated portfolio selection problems as stochastic
programming models, where the returns of securities have
been characterized by random variables.

When the returns of some securities can be estimated
via subjective judgment in the decision-making stage, the
investor may take experts’ knowledge into account. For
instance, the available (historical) data of the new securi-
ties which are listed in the stock market are incomplete;
the returns of the new securities need to be estimated by
experts or investors. In this case, decision makers can not
get the exact probability distribution. But they are usually
provided with information which is characterized by vague
linguistic descriptions such as high risk, low profit, and high
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interest rate. Consequently, the portfolio selection problems
are depicted as fuzzy optimization problems. On the basis
of fuzzy theory [8–12], some researchers applied various
fuzzy optimization methods to portfolio selection problem.
Inuiguchi and Tanino [13] dealt with a portfolio selection
problem with independently estimated possibilistic return
rates and obtained a distributive investment. Bilbao-Terol
et al. [14] formulated a fuzzy compromise programming
problem to solve a portfolio selection problem by using
Sharpe’s single index model. Wu and Liu [15] took the
spread as a new risk criterion in fuzzy decision systems,
combined it with the expectation of fuzzy variable, and
developed three classes of fuzzy expectation-spread models
for portfolio optimization problems. Huang [16] proposed
an entropy method for diversified fuzzy portfolio selection.
The author introduced proportion entropy and proposed
credibilistic mean-variance and mean-semivariance diversi-
fication models for fuzzy portfolio selection. Mehlawat and
Gupta [17] addressed fuzzy portfolio selection problem from
a perspective of chance constrained multiobjective program-
ming. Deng and Li [18] proposed a biobjective nonlinear
portfolio selection model, which aimed to maximize the
future expected return andminimize the future expected risk.
They also proposed a gradually tolerant constraint method
to solve this model. Qian and Yin [19] proposed two new
mathematical models by expressing divergence as distance,
investment return as expected value, and risk as variance and
semivariance, respectively. Li et al. [20] developed a fuzzy
portfolio selection model with background risk.

In real financial market, transaction costs play a crucial
role in the trading process. Since the transaction costs
decrease the portfolio return, investors can not trade fre-
quently. Therefore, the transaction costs affect the investor to
make the investment policies. Ignoring the transaction costs,
investorsmay fail to obtain the satisfying portfolio. Consider-
ing the transaction costs in portfolio adjusting process, Chen
et al. [21] discussed a fuzzy portfolio adjusting problem. In
the proposed model, the authors took the first possibilistic
moment about zero of a portfolio as the investment return
and the second possibilistic moment about the possibilistic
mean value of the portfolio as the investment risk. Gupta et al.
[22] proposed multicriteria credibilistic framework for fuzzy
portfolio rebalancing problem by considering return, risk
and liquidity as key financial criteria. Zhang et al. [23] dealt
with a multiperiod portfolio selection problem with fuzzy
returns and proposed a possibilistic mean-semivariance-
entropy model. However, only a few researchers investigated
multiperiod fuzzy portfolio selection problem. Thus far, to
the best of our knowledge, there is no research on mul-
tiperiod fuzzy portfolio selection problem with two-stage
fuzzy optimization methods. Two-stage fuzzy programming
was introduced in 2005—it is an appropriate tool to study
decision-making problems involving multiple stages.

Compared with the literature, the main contributions
of this paper consist of the following four aspects. Firstly,
this paper uses two-stage fuzzy optimization methods to
formulate a novel class of two-period portfolio selection
problems. The adopted optimization method distinguishes
this research from other fuzzy portfolio selection models.

The first-stage decision is made when an investor enters
the market; that is, the first-stage decision is made before
the return is known. The investor can adjust the investment
policy at the beginning of the second period. The adjust-
ment amounts form the second-stage decision vector. For
multiperiod fuzzy portfolio selection problem, there is no
research in the literature to divide the investment horizon in
this way. This division approach is more realistic and gives
the investor an option to take recourse action (adjust the
investment policy) at the second period. Secondly, consid-
ering the transaction costs in portfolio adjusting process,
the proposed two-stage model is a more practical model for
the investor. Solving the proposed two-stage model is a key
issue. To overcome this crux, the proposed two-stagemodel is
translated into an equivalent single-stage model by analyzing
the second-stage programming problem. Then this paper
provides the analytical optimal solution of the proposed
model. The analytical optimal solution is the third one of
this paper’s main contributions. It provides a convenience to
analyze different parameters’ different effects on the optimal
investment decision. Finally, the computational results of
numerical experiments support the theoretical analysis. The
proposed two-stage model provides higher utilities in most
instances than the single-stage model.

The rest of the paper is organized as follows. Section 2
depicts a two-period portfolio selection problem. Section 3
proposes a two-stage fuzzy portfolio selection model with
transaction costs. For the proposed two-stage model, Sec-
tion 4 derives the analytical optimal decision vector. This
section also discusses the properties of the optimal solution.
Some numerical experiments are performed to demonstrate
the new modeling idea and the effectiveness in Section 5.
Section 6 concludes the paper.

2. Problem Description

An investor enters the market at time 0 with initial wealth
𝑊 and wants to allocate his/her wealth among one risky
security and one risk-free security.The risky security is taken
as security 1, and the risk-free security is taken as security
0. The investment horizon is divided into two periods. After
the first period, observing the revenue performance of the
risky security at the first period, the investor can adjust the
investment policy at time 1. At time 2, the second period
ends and the investor exits the market. The investor aims to
maximize the final wealth utility.

It is well known that the investor will decide the invest-
ment amount in the 𝑖th security according to the return of
the 𝑖th security. But the investor can not know the returns
well in the decision-making stage. Sometimes the returns of
the risky security need to be estimated by experts or investors.
They are characterized by vague linguistic descriptions such
as high risk, low profit, and high interest rate. Consequently,
this paper adopts possibility distributions to characterize the
returns.

To optimize the portfolio selection problem, two-stage
fuzzy optimization method is employed to model the invest-
ment decision-making. In the first-stage, the investor decides
an original investment policy. In the second-stage, in order to
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obtain a better investment policy for the second period, the
investor can take a recourse action.

The following assumptions are made to build the two-
stage fuzzy portfolio selection model:

(A1) All available wealth is invested.
(A2) Short sales are not permitted.
(A3) The whole investment process is self-financing; that

is, the investor does not invest the additional wealth
and also does not withdraw wealth in the whole
investment process.

(A4) In thewhole investment process, risk-free security has
fixed return.

(A5) For the risky security, the returns in two different
periods are independent of each other.

(A6) The investor is rational.
(A7) Transaction costs exist in the market but do not exist

when trading the risk-free security.

3. Formulation of Two-Stage
Portfolio Selection Model

In order to describe the two-stage fuzzy portfolio selection
model conveniently, some notations are introduced in Nota-
tions.

3.1. The Second-Stage Model. Let the portfolio at the first
period be x = (𝑥

0
, 𝑥
1
). Then, at the end of the first period, the

invested wealth corresponding to 𝑥
0
is 𝑟
0
𝑥
0
, and the invested

wealth corresponding to 𝑥
1
is 𝑟
1
𝑥
1
.

At the second period, after observing the return 𝑟
1
(𝜃)

at the first period, but before knowing the return 𝑟
2
at the

second period, the investor adjusts the investment policy
for each security by increasing or decreasing the invested
wealth amount. The adjustment can be regarded as a type of
recourse action for x. Since short sales are not permitted, the
adjustment amount 𝑦

𝑖
of the 𝑖th security is such that

𝑟
0
𝑥
0
+ 𝑦
0
≥ 0,

𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
≥ 0.

(1)

The portfolio at the second period is (𝑟
0
𝑥
0
+𝑦
0
, 𝑟
1
(𝜃)𝑥
1
+𝑦
1
).

The whole transaction costs of all adjustment amounts are
𝐶|𝑦
1
|. As the whole investment process is self-financing, it is

easy to see that all adjustment amounts are such that

𝑦
0
+ 𝑦
1
+ 𝐶

𝑦1
 = 0. (2)

Therefore, for fixed x and 𝑟
1
(𝜃), when the investor exits the

market at time 2, the final expected wealth is

(1 − 𝐶) 𝐸 [𝑟
2
(𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
)] + 𝑟
0
(𝑟
0
𝑥
0
+ 𝑦
0
) . (3)

In the investment process, since the market is affected
by many factors, the returns are changing all the time. The
investment decision-making can not wait for the realization
of fuzzy returns. In other words, the portfolio x = (𝑥

0
, 𝑥
1
),

called the first-stage decision, must be made before knowing

the realization of the fuzzy variable 𝑟
1
, while the other

decision, (𝑦
0
, 𝑦
1
), called the second-stage decision, can be

made after the realization of the fuzzy variable 𝑟
1
is known.

In this representation, the first-stage and second-stage are
differentiated distinctly. The first-stage refers to the period of
time before the fuzzy variable 𝑟

1
is known. Correspondingly,

the second-stage refers to the period of time after the fuzzy
variable 𝑟

1
is known. In the second-stage, the decrease on

the risk-free security must not be more than 𝑟
0
𝑥
0
at the first

period. In the same way, the decrease on the risky security
must not be more than 𝑟

1
𝑥
1
.

As a consequence, when the first-stage decision vector
x is given, and a realization 𝑟

1
(𝜃) of the fuzzy vector 𝑟

1

is known, the second-stage programming of the portfolio
selection model reads

maximize (1 − 𝐶) 𝐸 [𝑟
2
(𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
)]

+ 𝑟
0
(𝑟
0
𝑥
0
+ 𝑦
0
)

subject to 𝑦
0
+ 𝑦
1
+ 𝐶

𝑦1
 = 0

𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
≥ 0

𝑟
0
𝑥
0
+ 𝑦
0
≥ 0.

(4)

The objective of second-stage programming (4) is to
maximize the expected wealth at the end of the second
period for the fixed x and 𝑟

1
(𝜃). In the following of this

paper, 𝑄(x, 𝑟
1
(𝜃)) denotes the optimal value of second-stage

programming (4).

3.2. The First-Stage Model. The objective of the investor is to
maximize the final expected wealth over the whole invest-
ment horizon, while minimizing the risk corresponding to
the final expected wealth as far as possible. So the investment
policies are made to maximize the following utility function

𝐸
𝑟
1

[𝑄 (x, 𝑟
1
(𝜃))] − 𝜆𝐷

𝑟
1

[𝑄 (x, 𝑟
1
(𝜃))] , (5)

where 𝜆 is the risk aversion coefficient, 𝐸 is the expected
value operator of a fuzzy variable [11], and 𝐷 is the variance
operator of a fuzzy variable [11]. 𝐸

𝑟
1

[𝑄(x, 𝑟
1
(𝜃))] is taken as

the final expected wealth, and𝐷
𝑟
1

[𝑄(x, 𝑟
1
(𝜃))] is taken as the

corresponding risk. Here the utility function is a recourse
function. The larger 𝜆 implies that the investor is more risk-
averse.

In the first-stage, since the transaction costs donot exist in
the trade of risk-free security, all available wealth is invested
and short sales are not permitted; the portfolio x = (𝑥

0
, 𝑥
1
) at

the first period satisfies the following conditions:

𝑥
0
+ (1 + 𝐶) 𝑥

1
= 𝑊, 𝑥

𝑖
≥ 0, 𝑖 = 0, 1. (6)
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Using the notations above, the first-stage programming of
the portfolio selection model is

maximize 𝐸
𝑟
1

[𝑄 (x, 𝑟
1
(𝜃))] − 𝜆𝐷

𝑟
1

[𝑄 (x, 𝑟
1
(𝜃))]

subject to 𝑥
0
+ (1 + 𝐶) 𝑥

1
= 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1.

(7)

Remark 1. According to B. Liu and Y.-K. Liu [11], the
expected value of a fuzzy variable is defined via Choquet
integral, which is a scalar value. It is also applicable to a
function of a fuzzy variable. Let 𝜉 be a fuzzy variable with
a possibility distribution function 𝜇. Then the credibility
of fuzzy event {𝜉 ≤ 𝑝} is defined by Cr{𝜉 ≤ 𝑝} =

(1/2)(sup
𝑡∈𝑅
𝜇(𝑡) + sup

𝑡≤𝑝
𝜇(𝑡) − sup

𝑡>𝑝
𝜇(𝑡)), 𝑝 ∈ 𝑅. And

Cr{𝜉 ≥ 𝑝} = (1/2)(sup
𝑡∈𝑅
𝜇(𝑡) + sup

𝑡≥𝑝
𝜇(𝑡) − sup

𝑡<𝑝
𝜇(𝑡)), 𝑝 ∈

𝑅. The expected value of fuzzy variable 𝜉 is defined as
𝐸[𝜉] = ∫

∞

0
Cr{𝜉 ≥ 𝑝}d𝑝 − ∫0

−∞
Cr{𝜉 ≤ 𝑝}d𝑝 provided that at

least one of the two integrals is finite. Fuzzy variable (𝜉−𝐸[𝜉])2
is a function of 𝜉. Its possibility distribution function can be
obtained by Extension Principle of Zadeh. If 𝐸[𝜉] is finite,
the variance of fuzzy variable 𝜉 is defined as the expected
value of (𝜉 − 𝐸[𝜉])2; that is,𝐷[𝜉] = 𝐸[(𝜉 − 𝐸[𝜉])2].

3.3. A New Two-Stage Portfolio Selection Model. Combining
models (4) and (7), a two-stage fuzzy portfolio selection
model is formally built as follows:

maximize 𝐸
𝑟
1

[𝑄 (x, 𝑟
1 (𝜃))] − 𝜆𝐷𝑟

1

[𝑄 (x, 𝑟
1 (𝜃))]

subject to 𝑥
0
+ (1 + 𝐶) 𝑥1 = 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1,

(8)

where

𝑄 (x, 𝑟
1 (𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟2 (𝑟1 (𝜃) 𝑥1 + 𝑦1)] + 𝑟0 (𝑟0𝑥0 + 𝑦0)

subject to 𝑦
0
+ 𝑦
1
+ 𝐶

𝑦1
 = 0

𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
≥ 0

𝑟
0
𝑥
0
+ 𝑦
0
≥ 0.

(9)

From the practical standpoint, for any x that satisfy
deterministic constraints (6), second-stage programming (4)
has feasible solutions.

Since the returns of risky security in two periods are
independent of each other, it is easy to see that model (8) is
equivalent to the following model:

maximize 𝐸
𝑟
1

[𝑄 (x, 𝑟
1 (𝜃))] − 𝜆𝐷𝑟

1

[𝑄 (x, 𝑟
1 (𝜃))]

subject to 𝑥
0
+ (1 + 𝐶) 𝑥

1
= 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1,

(10)

where

𝑄 (x, 𝑟
1
(𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟

2
] (𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
) + 𝑟
0
(𝑟
0
𝑥
0
+ 𝑦
0
)

subject to 𝑦
0
+ 𝑦
1
+ 𝐶

𝑦1
 = 0

𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
≥ 0

𝑟
0
𝑥
0
+ 𝑦
0
≥ 0.

(11)

Remark 2. Since financial market is complex and affected
by many factors including economic, social, political, and
people’s psychological factors, inmany cases the future return
of risky security can not be accurately predicted by its
historical data. For instance, the available (historical) data
of the new securities which are listed in the stock market
are incomplete; the returns of the new securities need to be
estimated by experts or investors. In this case, the returns
are usually provided with information which is characterized
by vague linguistic descriptions such as high risk, low profit,

and high interest rate. A fuzzy variable is an appropriate tool
to characterize the vague linguistic description. In two-stage
model (10) and (11), the uncertain returns are characterized as
two fuzzy variables with the known possibility distributions.
The possibility distribution are given on the basis of the
available historical data and the advice of experts. Thus the
possibility distribution is practical. Two-stage model (10) and
(11) gives the investor an option to take recourse action. So
the proposed two-stage fuzzy portfolio selection model is
superior to the conventional model.
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4. Model Analysis

Firstly the second-stage programming is solved for the given
first-stage decision vector x and known realization 𝑟

1
(𝜃).

Then the optimal first-stage decision vector is deduced.

4.1. The Optimal Value of the Second-Stage Model. According
to the objective function expression of model (11), if (1 −
𝐶)𝐸[𝑟

2
] > 𝑟
0
, then 𝑦

1
≥ 0 and 𝑦

0
≤ 0. Hence model (11) is

equivalent to

𝑄 (x, 𝑟
1
(𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟

2
] (𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
) + 𝑟
0
(𝑟
0
𝑥
0
+ 𝑦
0
)

subject to 𝑦
0
+ (1 + 𝐶) 𝑦

1
= 0

−𝑟
0
𝑥
0
≤ 𝑦
0
≤ 0.

(12)

Furthermore, model (12) is equivalent to

𝑄 (x, 𝑟
1
(𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟

2
] 𝑟
1
(𝜃) 𝑥
1
+ 𝑟
2

0
𝑥
0
+ (𝑟
0
−
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
]) 𝑦
0

subject to −𝑟
0
𝑥
0
≤ 𝑦
0
≤ 0.

(13)

So

𝑄 (x, 𝑟
1 (𝜃)) =

{{{

{{{

{

(1 − 𝐶) 𝐸 [𝑟
2
] 𝑟
1
(𝜃) 𝑥
1
+
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑥
0
, if 𝑟

0
<
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
]

(1 − 𝐶) 𝐸 [𝑟2] 𝑟1 (𝜃) 𝑥1 + 𝑟
2

0
𝑥
0
, if 𝑟

0
≥
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] .

(14)

If (1 − 𝐶)𝐸[𝑟
2
] ≤ 𝑟
0
, then 𝑦

1
≤ 0 and 𝑦

0
≥ 0. It follows

that model (11) is equivalent to

𝑄 (x, 𝑟
1
(𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟

2
] (𝑟
1
(𝜃) 𝑥
1
+ 𝑦
1
) + 𝑟
0
(𝑟
0
𝑥
0
+ 𝑦
0
)

subject to 𝑦
0
+ (1 − 𝐶) 𝑦1 = 0

−𝑟
1
(𝜃) 𝑥
1
≤ 𝑦
1
≤ 0.

(15)

Furthermore, model (15) is equivalent to

𝑄 (x, 𝑟
1 (𝜃)) = maximize (1 − 𝐶) 𝐸 [𝑟2] 𝑟1 (𝜃) 𝑥1 + 𝑟

2

0
𝑥
0
+ (1 − 𝐶) (𝐸 [𝑟2] − 𝑟0) 𝑦1

subject to −𝑟
1
(𝜃) 𝑥
1
≤ 𝑦
1
≤ 0.

(16)

As a consequence,
𝑄 (x, 𝑟

1
(𝜃))

=
{

{

{

(1 − 𝐶) 𝑟
0
𝑟
1
(𝜃) 𝑥
1
+ 𝑟
2

0
𝑥
0
, if 𝑟

0
≥ 𝐸 [𝑟

2
]

(1 − 𝐶) 𝐸 [𝑟
2
] 𝑟
1
(𝜃) 𝑥
1
+ 𝑟
2

0
𝑥
0
, if 𝑟

0
≤ 𝐸 [𝑟

2
] .

(17)

The following theorem summarizes the results obtained
above.

Theorem 3. For model (11), the following assertions about the
optimal value are valid:

(i) If 0 < 𝑟
0
< ((1 − 𝐶)/(1 + 𝐶))𝐸[𝑟

2
]—that is, 𝐸[𝑟

2
] >

((1 + 𝐶)/(1 − 𝐶))𝑟
0
—then the optimal value is

𝑄 (x, 𝑟
1 (𝜃)) = (1 − 𝐶) 𝐸 [𝑟2] 𝑟1 (𝜃) 𝑥1

+
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑥
0
.

(18)
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(ii) If ((1 − 𝐶)/(1 + 𝐶))𝐸[𝑟
2
] ≤ 𝑟
0
≤ 𝐸[𝑟

2
]—that is, 𝑟

0
≤

𝐸[𝑟
2
] ≤ ((1 + 𝐶)/(1 − 𝐶))𝑟

0
—then the optimal value is

𝑄 (x, 𝑟
1 (𝜃)) = (1 − 𝐶) 𝐸 [𝑟2] 𝑟1 (𝜃) 𝑥1 + 𝑟

2

0
𝑥
0
. (19)

(iii) If 𝑟
0
> 𝐸[𝑟
2
], then the optimal value is

𝑄 (x, 𝑟
1
(𝜃)) = (1 − 𝐶) 𝑟

0
𝑟
1
(𝜃) 𝑥
1
+ 𝑟
2

0
𝑥
0
. (20)

4.2. The Optimal Solution of the Two-Stage Model. Substitut-
ing the optimal value of model (11) into model (10), the two-
stagemodel (10) and (11) is equivalent to a single-stagemodel.
Then model (10) can be solved by dividing the equivalent
single-stage model into three submodels.

Case 1 (𝐸[𝑟
2
] > ((1 +𝐶)/(1 −𝐶))𝑟

0
). According to B. Liu and

Y.-K. Liu [11] and (18) model (10) can be written as
maximize (1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] 𝑥
1

+
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑥
0

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] 𝑥
2

1

subject to 𝑥
0
+ (1 + 𝐶) 𝑥1 = 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1.

(21)

It is equivalent to the following model:
maximize 𝑈 (𝑥

1
)

=
1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑊

+ (1 − 𝐶) 𝐸 [𝑟2] (𝐸 [𝑟1] − 𝑟0) 𝑥1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] 𝑥
2

1

subject to 0 ≤ 𝑥
1
≤
𝑊

1 + 𝐶
.

(22)

The objective function𝑈(𝑥
1
) gets its maximum value at 𝑥

1
=

(𝐸[𝑟
1
] − 𝑟
0
)/2𝜆(1 −𝐶)𝐸[𝑟

2
]𝐷[𝑟
1
]. Considering the constraint

condition, the optimal solution 𝑥∗
1
= 0 when 𝑥

1
≤ 0, and

𝑥
∗

1
= 𝑊/(1 + 𝐶) when 𝑥

1
≥ 𝑊/(1 + 𝐶).

Therefore, Theorem 4 is obtained as follows.

Theorem 4. For model (10), the following assertions about the
optimal solution are valid:

(i) If𝐸[𝑟
2
] > ((1+𝐶)/(1−𝐶))𝑟

0
and (𝐸[𝑟

1
]−𝑟
0
)𝐸[𝑟
2
] ≤ 0,

then the optimal solution is
𝑥
∗

0
= 𝑊,

𝑥
∗

1
= 0.

(23)

(ii) If 𝐸[𝑟
2
] > ((1 + 𝐶)/(1 − 𝐶))𝑟

0
and (𝐸[𝑟

1
] − 𝑟
0
)/2𝜆(1 −

𝐶)𝐸[𝑟
2
]𝐷[𝑟
1
] ≥ 𝑊/(1 + 𝐶), then the optimal solution

is
𝑥
∗

0
= 0,

𝑥
∗

1
=
𝑊

1 + 𝐶
.

(24)

(iii) If𝐸[𝑟
2
] > ((1+𝐶)/(1−𝐶))𝑟

0
and 0 < (𝐸[𝑟

1
]−𝑟
0
)/2𝜆(1−

𝐶)𝐸[𝑟
2
]𝐷[𝑟
1
] < 𝑊/(1 + 𝐶), then the optimal solution

is

𝑥
∗

0
= 𝑊 −

(1 + 𝐶) (𝐸 [𝑟1] − 𝑟0)

2𝜆 (1 − 𝐶) 𝐸 [𝑟
2
]𝐷 [𝑟
1
]
,

𝑥
∗

1
=

𝐸 [𝑟
1
] − 𝑟
0

2𝜆 (1 − 𝐶) 𝐸 [𝑟2]𝐷 [𝑟1]
.

(25)

Case 2 (𝑟
0
≤ 𝐸[𝑟

2
] ≤ ((1 + 𝐶)/(1 − 𝐶))𝑟

0
). In this case,

according to B. Liu and Y.-K. Liu [11] and (19), model (10) can
be written as

maximize (1 − 𝐶) 𝐸 [𝑟
2
] 𝐸 [𝑟
1
] 𝑥
1
+ 𝑟
2

0
𝑥
0

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] 𝑥
2

1

subject to 𝑥
0
+ (1 + 𝐶) 𝑥1 = 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1.

(26)

Its equivalent form is as follows:

maximize 𝑈 (𝑥
1
)

= 𝑟
2

0
𝑊+ (1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] 𝑥
1

− 𝑟
2

0
(1 + 𝐶) 𝑥1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] 𝑥
2

1

subject to 0 ≤ 𝑥
1
≤
𝑊

1 + 𝐶
.

(27)

It is easy to know that 𝑈(𝑥
1
) gets its maximum value at 𝑥

1
=

((1 − 𝐶)𝐸[𝑟
2
]𝐸[𝑟
1
] − 𝑟
2

0
(1 + 𝐶))/2𝜆(1 − 𝐶)

2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
]. From

the constraint condition, the optimal solution 𝑥∗
1
= 0 when

𝑥


1
≤ 0, and 𝑥∗

1
= 𝑊/(1 +𝐶) when 𝑥

1
≥ 𝑊/(1 +𝐶). These are

summarized inTheorem 5.

Theorem 5. For model (10), the following assertions about the
optimal solution are valid:

(i) If 𝑟
0
≤ 𝐸[𝑟

2
] ≤ ((1 + 𝐶)/(1 − 𝐶))𝑟

0
and ((1 − 𝐶)/(1 +

𝐶))𝐸[𝑟
2
]𝐸[𝑟
1
] ≤ 𝑟
2

0
, then the optimal solution is

𝑥
∗

0
= 𝑊,

𝑥
∗

1
= 0.

(28)

(ii) If 𝑟
0
≤ 𝐸[𝑟

2
] ≤ ((1 + 𝐶)/(1 − 𝐶))𝑟

0
and ((1 −

𝐶)𝐸[𝑟
2
]𝐸[𝑟
1
] − 𝑟
2

0
(1 + 𝐶))/2𝜆(1 − 𝐶)

2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
] ≥

𝑊/(1 + 𝐶), then the optimal solution is

𝑥
∗

0
= 0,

𝑥
∗

1
=
𝑊

1 + 𝐶
.

(29)
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(iii) If 𝑟
0
≤ 𝐸[𝑟

2
] ≤ ((1 + 𝐶)/(1 − 𝐶))𝑟

0
and 0 ≤ ((1 −

𝐶)𝐸[𝑟
2
]𝐸[𝑟
1
] − 𝑟
2

0
(1 + 𝐶))/2𝜆(1 − 𝐶)

2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
] ≤

𝑊/(1 + 𝐶), then the optimal solution is

𝑥
∗

0
= 𝑊 −

(1 − 𝐶
2
) 𝐸 [𝑟
2
] 𝐸 [𝑟
1
] − 𝑟
2

0
(1 + 𝐶)

2

2𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
]

,

𝑥
∗

1
=
(1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] − 𝑟
2

0
(1 + 𝐶)

2𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
]

.

(30)

Case 3 (𝐸[𝑟
2
] < 𝑟
0
). According to B. Liu and Y.-K. Liu [11]

and (20) model (10) can be written as

maximize (1 − 𝐶) 𝑟
0
𝐸 [𝑟
1
] 𝑥
1
+ 𝑟
2

0
𝑥
0

− 𝜆 (1 − 𝐶)
2
𝑟
2

0
𝐷[𝑟
1
] 𝑥
2

1

subject to 𝑥
0
+ (1 + 𝐶) 𝑥

1
= 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1.

(31)

It is equivalent to the following model:

maximize 𝑈 (𝑥
1
)

= 𝑟
2

0
𝑊

+ ((1 − 𝐶) 𝐸 [𝑟1] − (1 + 𝐶) 𝑟0) 𝑟0𝑥1

− 𝜆 (1 − 𝐶)
2
𝑟
2

0
𝐷[𝑟
1
] 𝑥
2

1

subject to 0 ≤ 𝑥
1
≤
𝑊

1 + 𝐶
.

(32)

The objective function𝑈(𝑥
1
) gets its maximum value at 𝑥

1
=

((1 − 𝐶)𝐸[𝑟
1
] − (1 + 𝐶)𝑟

0
)/2𝜆(1 − 𝐶)

2
𝑟
0
𝐷[𝑟
1
]. Considering

the constraint condition, the optimal solution 𝑥∗
1
= 0 when

𝑥


1
≤ 0, and 𝑥∗

1
= 𝑊/(1 +𝐶) when 𝑥

1
≥ 𝑊/(1 +𝐶). These are

summarized inTheorem 6.

Theorem 6. For model (10), the following assertions about the
optimal solution are valid:

(i) If 𝐸[𝑟
2
] < 𝑟
0
and ((1 − 𝐶)/(1 + 𝐶))𝐸[𝑟

1
] ≤ 𝑟
0
, then the

optimal solution is

𝑥
∗

0
= 𝑊,

𝑥
∗

1
= 0.

(33)

(ii) If 𝐸[𝑟
2
] < 𝑟
0
and ((1 − 𝐶)𝐸[𝑟

1
] − (1 + 𝐶)𝑟

0
)/2𝜆(1 −

𝐶)
2
𝑟
0
𝐷[𝑟
1
] ≥ 𝑊/(1 + 𝐶), then the optimal solution is

𝑥
∗

0
= 0,

𝑥
∗

1
=
𝑊

1 + 𝐶
.

(34)

(iii) If 𝐸[𝑟
2
] < 𝑟
0
and 0 < ((1−𝐶)𝐸[𝑟

1
]− (1+𝐶)𝑟

0
)/2𝜆(1−

𝐶)
2
𝑟
0
𝐷[𝑟
1
] < 𝑊/(1 + 𝐶), then the optimal solution is

𝑥
∗

0
= 𝑊 −

(1 − 𝐶
2
) 𝐸 [𝑟
1
] − (1 + 𝐶)

2
𝑟
0

2𝜆 (1 − 𝐶)
2
𝑟
0
𝐷[𝑟
1
]

,

𝑥
∗

1
=
(1 − 𝐶) 𝐸 [𝑟

1
] − (1 + 𝐶) 𝑟

0

2𝜆 (1 − 𝐶)
2
𝑟
0
𝐷[𝑟
1
]

.

(35)

Remark 7. For the optimal solution of model (10), the
following assertions are valid:

(i) 𝑥∗
1
is increasing with respect to 𝐸[𝑟

1
].

(ii) 𝑥∗
1
is decreasing with respect to 𝜆.

(iii) 𝑥∗
1
is decreasing with respect to 𝑟

0
.

(iv) 𝑥∗
1
is decreasing with respect to𝐷[𝑟

1
].

Remark 8. If 𝐸[𝑟
2
] > ((1 + 𝐶)/(1 − 𝐶))𝑟

0
and 0 <

(𝐸[𝑟
1
] − 𝑟
0
)/2𝜆(1 − 𝐶)𝐸[𝑟

2
]𝐷[𝑟
1
] < 𝑊/(1 + 𝐶), then the

optimal solution of model (10)—𝑥∗
1
= (𝐸[𝑟

1
] − 𝑟
0
)/2𝜆(1 −

𝐶)𝐸[𝑟
2
]𝐷[𝑟
1
]—is decreasing with respect to 𝐸[𝑟

2
].

When the returns are characterized by triangular fuzzy
variables, trapezoid fuzzy variables, and normal fuzzy vari-
ables, their expected value and variance can be computed
with formulas accurately [11]. In the next section, the returns
are characterized by triangular fuzzy variables. Let 𝑟 =

(𝑎, 𝑏, 𝑐) be a triangular fuzzy variable.Then its expected value
is 𝐸[𝑟] = (𝑎 + 2𝑏 + 𝑐)/4. If 𝑏 − 𝑎 ≥ 𝑐 − 𝑏, the variance is
𝐷[𝑟] = (33(𝑏 − 𝑎)

3
+ 11(𝑏 − 𝑎)(𝑐 − 𝑏)

2
+ 21(𝑏 − 𝑎)

2
(𝑐 − 𝑏) −

(𝑐 − 𝑏)
3
)/384(𝑏 − 𝑎). Otherwise, 𝐷[𝑟] = (33(𝑐 − 𝑏)3 + 11(𝑏 −

𝑎)
2
(𝑐 − 𝑏) + 21(𝑏 − 𝑎)(𝑐 − 𝑏)

2
− (𝑏 − 𝑎)

3
)/384(𝑐 − 𝑏).

5. Numerical Experiments and
Comparison Study

5.1. Statement of Problem. In this section, a two-period port-
folio selection problem is considered. Here let assumptions
(A1)–(A7) in Section 2 stand. One period refers to 35 days.
One day an investor enters the stock market with initial
wealth𝑊 = 100.The investor wants to allocate his/her wealth
between one stock of Chinese Shanghai A-shares market and
one risk-free security. After the first period, the investor can
adjust the investment policy. At the end of the second period,
the investment process ends. The investor aims to maximize
the final wealth utility. The investor’s securities account is in
China Development Bank Securities. The transaction costs
mainly include stamp tax, commission, and transfer fee.
Stamp tax is 1 per thousand of turnovers and is charged
only when selling stock. Commission is 1–3 per thousand
of turnovers, and the lowest single transaction commission
is 5 RMB. Transfer fee is 0.6 RMB per thousand of the
traded shares; the lowest transfer fee is 1 RMB. According
to these rules, the transaction costs rate is assumed to be
𝐶 = 0.003. The transaction costs rate takes different values
only in the experiments which illustrate the influence of the
transaction costs on the optimal utility. In the literature [23],
the transaction costs rate took the value 0.003.
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Table 1: Triangular possibility distributions of fuzzy returns of 10 stocks.

Case 𝑟
1

𝑟
2

𝐸[𝑟
1
] 𝐷[𝑟

1
] 𝐸[𝑟

2
] 𝐷[𝑟

2
]

(1) (0.995, 1.025, 1.035) (0.884, 1.008, 1.017) 1.02 0.00010 0.97925 0.00138
(2) (0.88, 1.04, 1.11) (0.884, 1.036, 1.117) 1.0175 0.00295 1.01825 0.00284
(3) (0.895, 1.024, 1.082) (0.885, 1.036, 1.115) 1.00625 0.00193 1.018 0.00278
(4) (0.91, 1.012, 1.076) (0.894, 1.03, 1.1) 1.0025 0.00136 1.0135 0.00224
(5) (0.877, 1.04, 1.1) (0.89, 1.022, 1.1) 1.01425 0.00292 1.0085 0.00223
(6) (0.879, 1.04, 1.1) (0.89, 1.003, 1.01) 1.01475 0.00286 0.9765 0.00114
(7) (0.906, 1.014, 1.08) (0.892, 1.03, 1.085) 1.0035 0.00151 1.00925 0.00214
(8) (0.973, 1.04, 1.12) (0.887, 1.015, 1.113) 1.04325 0.00096 1.0075 0.00235
(9) (0.882, 1.039, 1.11) (0.902, 1.026, 1.09) 1.0175 0.00287 1.011 0.00187
(10) (0.904, 1.025, 1.09) (0.882, 1.038, 1.117) 1.011 0.00180 1.01875 0.00294

The investor selects 10 stocks of Chinese Shanghai A-
shares market (600004, 600007, 600018, 600023, 600059,
600081, 600115, 600139, 600158, and 600173). The 10 stocks
are also denoted by 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The
investor has collected the stocks’ historical data, which
include the open prices, the highest prices, the lowest prices,
and the close prices of some historical trading days (from
March 2014 to February 2015). Based on these data, now
the returns are characterized by triangular possibility dis-
tributions (𝑎

𝑖,1
, 𝑏
𝑖,1
, 𝑐
𝑖,1
), (𝑎
𝑖,2
, 𝑏
𝑖,2
, 𝑐
𝑖,2
), 𝑖 = 1, 2, . . . , 10, where

subscript 1 denotes the first period and subscript 2 denotes
the second period. This way of fitting data can be seen
in the literature [19, 24, 25]. Simple triangular possibility
distributions work well and are most frequently used in
most practical applications. A theoretical explanation for why
triangular functionsworkwell was provided in [26]. Based on
the ideas of the estimation methods in [19, 24, 25], now the
method of estimating the parameters of triangular possibility
distributions is proposed as follows. For stock 𝑖, based on the
historical data in March 2014, the ratio of the lowest price of
the month to the open price on the first trading day can be
obtained. In the same way, based on the historical data from
April 2014 to February 2015, 11 ratios are obtained monthly
in turn. These 12 ratios are ranked monthly. Parameter 𝑎

𝑖,1

is estimated according to the mean of the first 6 ratios, and
parameter 𝑎

𝑖,2
is estimated according to the mean of the last

6 ratios. In the same way, 𝑏
𝑖,1
and 𝑏
𝑖,2
are estimated according

to the 12 ratios of the close price on the last trading day to
the open price on the first trading day, which are obtained
monthly. Parameters 𝑐

𝑖,1
and 𝑐
𝑖,2

are estimated according to
the 12 ratios of the monthly highest price to the open price
on the first trading day of the month. In practice, the future
returns of the securities, that is, the open price, the highest
price, the lowest price, and the close price of a specific day,
can not be exactly reflected by the historical data since they
will be affected by many factors. Here the future returns are
estimated based on the real historical data and the estimated
values of stock experts. Table 1 lists these triangular possibility
distributions and their expected values and variances. Let 𝑥

1

be the wealth amount invested in the stock.

5.2. Computational Results with the Two-Stage Model. The
risk-free security is a principal-protected financial product

with holding period of 35 days. Its annualized return rate
is 0.0365; that is, 𝑟

0
= 1.0035. As an example, we consider

the case that the returns of the stock 600004 are 𝑟
1
=

(0.995, 1.025, 1.035) and 𝑟
2
= (0.884, 1.008, 1.017). The

returns are mutually independent and shown in Table 1 as
“case (1).” The investor wants to invest in this stock. Let 𝜆 =
0.1. Then 𝐸[𝑟

2
] = 0.97925 < 𝑟

0
, and ((1 − 𝐶)𝐸[𝑟

1
] − (1 +

𝐶)𝑟
0
)/2𝜆(1 − 𝐶)

2
𝑟
0
𝐷[𝑟
1
] = 555.0055 > 𝑊/(1 + 𝐶) ≈ 99.7. By

Theorem 6,

𝑥
∗

1
=
𝑊

1 + 𝐶
= 99.7. (36)

According to the definition of utility and its expression in
model (32), the final utility is

𝑈(𝑥
∗

1
) = 𝑟
2

0
𝑊+ ((1 − 𝐶) 𝐸 [𝑟

1
] − (1 + 𝐶) 𝑟

0
) 𝑟
0
𝑥
∗

1

− 𝜆 (1 − 𝐶)
2
𝑟
2

0
𝐷[𝑟
1
] (𝑥
∗

1
)
2
= 101.6486.

(37)

We next consider the case that the investor
selects the stock 600018 to invest in. The returns
𝑟
1
= (0.895, 1.024, 1.082) and 𝑟

2
= (0.885, 1.036, 1.115) are

mutually independent and shown in Table 1 as “case (3).” Let
𝜆 = 0.1. By calculating, 𝑟

0
< ((1−𝐶)/(1+𝐶))𝐸[𝑟

2
] = 1.01191,

and (𝐸[𝑟
1
]−𝑟
0
)/2𝜆(1−𝐶)𝐸[𝑟

2
]𝐷[𝑟
1
] = 7.0133 < 𝑊/(1+𝐶) ≈

99.7. On the basis of Theorem 4,

𝑥
∗

1
=

𝐸 [𝑟
1
] − 𝑟
0

2𝜆 (1 − 𝐶) 𝐸 [𝑟
2
]𝐷 [𝑟
1
]
= 7.0133. (38)

According to the definition of utility and its expression in
model (22), the final utility is

𝑈(𝑥
∗

1
) =

1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑊

+ (1 − 𝐶) 𝐸 [𝑟
2
] (𝐸 [𝑟

1
] − 𝑟
0
) 𝑥
∗

1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] (𝑥
∗

1
)
2

= 101.555.

(39)

Let 𝜆 = 0.1. The returns 𝑟
1
= (0.91, 1.012, 1.076) and

𝑟
2
= (0.894, 1.03, 1.1) of the stock 600023, which the investor
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Table 2: The optimal decisions 𝑥∗
1
with various values of 𝜆.

Case 𝜆 = 5 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.01

(1) 11.1001 55.5006 99.7 99.7 99.7
(2) 0.4679 2.3395 4.6790 23.3952 99.7
(3) 0.1403 0.7013 1.4027 7.0133 70.1332
(4) 0 0 0 0 0
(5) 0.3312 1.6559 3.3118 16.5590 99.7
(6) 0.1874 0.9372 1.8744 9.3720 93.7199
(7) 0 0 0 0 0
(8) 3.9037 19.5186 39.0372 99.7 99.7
(9) 0.4846 2.4228 4.8457 24.2283 99.7
(10) 0.4094 2.0472 4.0944 20.4722 99.7

Table 3: The optimal utilities with various values of 𝜆.

Case 𝜆 = 5 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.01

(1) 100.7579 100.9845 101.2645 101.6486 101.7351
(2) 101.5735 101.5868 101.6034 101.7364 102.6852
(3) 101.5454 101.5462 101.5472 101.555 101.6431
(4) 101.0963 101.0963 101.0963 101.0963 101.0963
(5) 100.7028 100.7093 100.7174 100.7821 101.382
(6) 100.7017 100.7036 100.706 100.725 100.9388
(7) 100.7012 100.7012 100.7012 100.7012 100.7012
(8) 100.7752 101.071 101.4407 103.5139 104.3822
(9) 100.8504 100.864 100.8811 101.0179 101.9644
(10) 101.6216 101.6278 101.6356 101.698 102.1946

wants to invest in, are mutually independent. The data are
shown in Table 1 as “case (4).” Since 𝑟

0
< ((1 − 𝐶)/(1 +

𝐶))𝐸[𝑟
2
] = 1.00744 and (𝐸[𝑟

1
] − 𝑟
0
)/2𝜆(1 − 𝐶)𝐸[𝑟

2
]𝐷[𝑟
1
] =

−3.6338 < 0, by Theorem 4, 𝑥∗
1
= 0. According to the

definition of utility and its expression in model (22), the final
utility is

𝑈 (𝑥
∗

1
) =

1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑊 = 101.0963. (40)

Let 𝜆 = 0.1. For the remaining 7 stocks, the values of 𝑥∗
1

and the final utilities can be calculated in the same way. The
values of 𝑥∗

1
are listed in the 5th column of Table 2, and the

final utilities are listed in the 5th column of Table 3.
Let 𝜆 = 5, 1, 0.5, and 0.01, respectively. For the 10 stocks,

Table 2 provides the values of 𝑥∗
1
. Correspondingly the final

utilities are shown in Table 3.
FromTables 2 and 3, in any case, the larger𝜆 is, the smaller

𝑥
∗

1
is and the lower the final utility is. This is consistent with

the fact that the larger 𝜆, the more risk-averse the investor.
So the investor invests more wealth in the risk-free security
when 𝜆 is larger.

In order to illustrate the influence of the risk-
free security on the optimal investment policy,
some experiments are conducted. Here the returns
𝑟
1
= (0.973, 1.04, 1.12) and 𝑟

2
= (0.887, 1.015, 1.113) of

the selected stock 600139, which are shown in Table 1
as “case (8),” are mutually independent. Let 𝜆 = 1, and
𝑟
0
= 1.0055, 1.005, 1.0045, 1.004, 1.0035, 1.003, 1.0025, 1.002,

Table 4: The optimal decisions 𝑥∗
1
with various values of 𝑟

0
when

𝜆 = 1.

𝑟
0

𝑥
∗

1
𝑈(𝑥
∗

1
)

1.0055 17.4424 101.3983
1.005 17.9619 101.3156
1.0045 18.4810 101.2335
1.004 18.9999 101.1520
1.0035 19.5186 101.0710
1.003 20.0370 100.9906
1.0025 20.5551 100.9107
1.002 21.0730 100.8314

respectively. By calculating, (1 + 𝐶)/(1 − 𝐶) × 1.002 =

1.00803 > 𝐸[𝑟
2
] = 1.0075 > 𝑟

0
, and 0 < ((1 − 𝐶)𝐸[𝑟

2
]𝐸[𝑟
1
] −

𝑟
2

0
(1 + 𝐶))/2𝜆(1 − 𝐶)

2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
] < 𝑊/(1 + 𝐶) ≈ 99.7. By

Theorem 5,

𝑥
∗

1
=
(1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] − 𝑟
2

0
(1 + 𝐶)

2𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
]

. (41)

According to the definition of utility and its expression in
model (27), the final utilities are calculated as follows:

𝑈 (𝑥
∗

1
) = 𝑟
2

0
𝑊+ (1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] 𝑥
∗

1

− 𝑟
2

0
(1 + 𝐶) 𝑥

∗

1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] (𝑥
∗

1
)
2
.

(42)

The computational results are listed in Table 4. According to
the data in Table 4, 𝑥∗

1
increases as 𝑟

0
decreases. The main

reasons are as follows.
Let 𝑟
0
−1 be the interest rate. When interest rate rises, the

discount rate also rises.The investor evaluates the stock value
according to the discount rate, so the stock value will decline.
As a consequence, the stock price drops correspondingly.
Conversely, when interest rate falls, the stock price will rise;
when interest rate rises, a part of thewealthwill go to the bank
from the stockmarket.Thereby, the market demand for stock
will be reduced and the stock price will fall. Conversely, when
interest rate falls, the profit ability of savings will be reduced
and a part of the wealth will go back to the market. Thereby
the demand for the stock will be expanded and the stock price
will rise.

In order to illustrate the influence of the transaction costs
on the optimal utility, some experiments are provided. The
returns 𝑟

1
= (0.973, 1.04, 1.12) and 𝑟

2
= (0.887, 1.015, 1.113)

of the selected stock 600139 are mutually independent. These
data are shown in Table 1 as “case (8).” Let 𝜆 = 1, and
𝐶 = 0.0213, 0.0214, 0.021, 0.02, 0.01, 0.005, respectively.Then
(1 + 𝐶)/(1 − 𝐶) × 𝑟

0
> 𝐸[𝑟

2
] = 1.0075 > 𝑟

0
, and 0 <

((1 − 𝐶)𝐸[𝑟
2
]𝐸[𝑟
1
] − 𝑟
2

0
(1 + 𝐶))/2𝜆(1 − 𝐶)

2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
] <

𝑊/(1 + 𝐶) ≈ 99.7. By Theorem 5,

𝑥
∗

1
=
(1 − 𝐶) 𝐸 [𝑟

2
] 𝐸 [𝑟
1
] − 𝑟
2

0
(1 + 𝐶)

2𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
]

. (43)
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Table 5: The optimal decisions 𝑥∗
1
with various values of 𝐶 when

𝜆 = 1.

𝐶 𝑥
∗

1
𝑈(𝑥
∗

1
)

0.0001 20.5099 101.4931
0.001 20.5284 101.3113
0.005 17.4681 100.9962
0.01 12.2684 100.8453
0.02 1.5465 100.7035
0.021 0.4500 100.7014
0.0213 0.1202 100.7012
0.0214 0.0102 100.7012
0.0215 0 100.7012

According to the definition of utility and its expression in
(27), the final utilities are calculated as follows:

𝑈(𝑥
∗

1
) = 𝑟
2

0
𝑊+ (1 − 𝐶) 𝐸 [𝑟2] 𝐸 [𝑟1] 𝑥

∗

1

− 𝑟
2

0
(1 + 𝐶) 𝑥

∗

1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] (𝑥
∗

1
)
2
.

(44)

The computational results are listed in Table 5. When 𝐶 =
0.0215, by calculating, (1 + 𝐶)/(1 − 𝐶) × 𝑟

0
> 𝐸[𝑟

2
] =

1.0075 > 𝑟
0
, and ((1 − 𝐶)𝐸[𝑟

2
]𝐸[𝑟
1
] − 𝑟
2

0
(1 + 𝐶))/2𝜆(1 −

𝐶)
2
𝐸[𝑟
2
]
2
𝐷[𝑟
1
] = −0.0999 < 0. It is concluded that 𝑥∗

1
= 0 by

usingTheorem 5. According to the definition of utility and its
expression in model (27), the final utility is 𝑈(𝑥∗

1
) = 𝑟
2

0
𝑊 =

100.7012. The computational results are listed in Table 5. Let
𝐶 = 0.001, 0.0001, respectively. Then (1 + 𝐶)/(1 − 𝐶) × 𝑟

0
<

𝐸[𝑟
2
] = 1.0075, and 0 < (𝐸[𝑟

1
] − 𝑟
0
)/2𝜆(1 − 𝐶)𝐸[𝑟

2
]𝐷[𝑟
1
] <

𝑊/(1 + 𝐶) ≈ 0.997. Hence,

𝑥
∗

1
=

𝐸 [𝑟
1
] − 𝑟
0

2𝜆 (1 − 𝐶) 𝐸 [𝑟
2
]𝐷 [𝑟
1
]

(45)

by Theorem 4. According to the definition of utility and its
expression in model (22), the final utilities are calculated as
follows:

𝑈 (𝑥
∗

1
) =

1 − 𝐶

1 + 𝐶
𝐸 [𝑟
2
] 𝑟
0
𝑊

+ (1 − 𝐶) 𝐸 [𝑟2] (𝐸 [𝑟1] − 𝑟0) 𝑥
∗

1

− 𝜆 (1 − 𝐶)
2
𝐸 [𝑟
2
]
2
𝐷[𝑟
1
] (𝑥
∗

1
)
2
.

(46)

The computational results are listed in Table 5. From the data
in Table 5, 𝑈(𝑥

1
) increases as the transaction costs rate 𝐶

decreases.

5.3. Computational Results with the Single-Stage Model. The
investor takes 70 days as one period and makes a one-
off decision at the beginning of the period. The investor
wants to allocate the wealth between one stock and one
principal-protected financial product with holding period of
70 days. The annualized return rate of the financial product
is 0.0417; that is, the return 𝑟

0
= 1.008. The investor wants

to maximize the final wealth utility. This is a single-period
portfolio selection problem.

The returns are characterized by triangular possibility
distributions, which are shown in the 3rd column of Table 1.
Let 𝑥

𝑖
be the decision variable which shows the wealth

amount invested in the 𝑖th security. The final wealth is𝑊 =
(1−𝐶)𝑟

2
𝑥
1
+𝑟


0
𝑥
0
.Thefinal wealth utility is 𝐸[𝑊]−𝜆𝐷[𝑊].

The single-stage portfolio selection model can be written as

maximize 𝑈

(𝑥
0
, 𝑥
1
)

= (1 − 𝐶) 𝐸 [𝑟
2
] 𝑥
1
+ 𝑟


0
𝑥
0

− 𝜆 (1 − 𝐶)
2
𝐷[𝑟
2
] 𝑥
2

1

subject to 𝑥
0
+ (1 + 𝐶) 𝑥

1
= 𝑊

𝑥
𝑖
≥ 0, 𝑖 = 0, 1.

(47)

The optimal solution 𝑥∗
0
= 𝑊 − (1 + 𝐶)𝑥

∗

1
and

𝑥
∗

1
=

{{{{{{{{{

{{{{{{{{{

{

0, if 1 − 𝐶
1 + 𝐶

𝐸 [𝑟
2
] ≤ 𝑟


0

𝑊

1 + 𝐶
, if

(1 − 𝐶) 𝐸 [𝑟
2
] − 𝑟


0
(1 + 𝐶)

2𝜆 (1 − 𝐶)
2
𝐷[𝑟
2
]

≥
𝑊

1 + 𝐶

(1 − 𝐶) 𝐸 [𝑟2] − 𝑟


0
(1 + 𝐶)

2𝜆 (1 − 𝐶)
2
𝐷[𝑟
2
]

, otherwise.

(48)

In any case, under different values of 𝜆, the calculated optimal
decisions 𝑥∗

1
are shown in Table 6. According to the definition

of utility and its expression inmodel (47), the final utilities are

𝑈

(𝑥
∗

0
, 𝑥
∗

1
) = (1 − 𝐶) 𝐸 [𝑟

2
] 𝑥
∗

1
+ 𝑟


0
𝑥
∗

0

− 𝜆 (1 − 𝐶)
2
𝐷[𝑟
2
] (𝑥
∗

1
)
2
.

(49)

The calculated utilities are listed in Table 7.

5.4. Discussion. From Tables 2 and 6, the investment policies
in Table 2 are more dispersive in the stock than those in
Table 6.The reason for this result is that the investment policy
of the first period can be adjusted at the end of the first period.
When the performance of the stock is better at the first period,
while it is worse at the second period, the decision maker
canmake the invested wealth amount 𝑥∗

1
larger. According to

Tables 3 and 7, the optimal utilities provided by the two-stage
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Table 6: The optimal decisions 𝑥∗
1
with various values of 𝜆.

Case 𝜆 = 5 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.01

(1) 0 0 0 0 0
(2) 0.1479 0.7394 1.4788 7.3941 73.9412
(3) 0.1418 0.7091 1.4182 7.0911 70.9111
(4) 0 0 0 0 0
(5) 0 0 0 0 0
(6) 0 0 0 0 0
(7) 0 0 0 0 0
(8) 0 0 0 0 0
(9) 0 0 0 0 0
(10) 0.1600 0.8001 1.6002 8.0008 80.0080

Table 7: The optimal utilities with various values of 𝜆.

Case 𝜆 = 5 𝜆 = 1 𝜆 = 0.5 𝜆 = 0.1 𝜆 = 0.01

(1) 100.8 100.8 100.8 100.8 100.8
(2) 100.8003 100.8015 100.8031 100.8154 100.9542
(3) 100.8003 100.8014 100.8028 100.8139 100.9391
(4) 100.8 100.8 100.8 100.8 100.8
(5) 100.8 100.8 100.8 100.8 100.8
(6) 100.8 100.8 100.8 100.8 100.8
(7) 100.8 100.8 100.8 100.8 100.8
(8) 100.8 100.8 100.8 100.8 100.8
(9) 100.8 100.8 100.8 100.8 100.8
(10) 100.8004 100.8019 100.8037 100.8187 100.9868

model, which are listed in the bold type, are larger than
those provided by the single-stage model correspondingly.
The optimal utilities provided by the two-stage model, which
are listed in italics, are larger than those obtained by investing
all wealth in the risk-free security. In the only remaining “case
(7),” the optimal utilities provided by the two-stagemodel are
equal to those obtained by investing all wealth in the risk-free
security.

6. Conclusions

This paper studies a two-period portfolio selection problem
in fuzzy decision system and develops the two-stage fuzzy
portfolio selection model with transaction costs. The major
conclusions include the following several aspects:

(i) The optimal value expression of the second-stage
programming problem is derived (Theorem 3). As
a consequence, the proposed two-stage model is
equivalent to a single-stage model.

(ii) The analytical optimal solution of the proposed two-
stagemodel is presented (Theorems 4, 5, and 6). From
the analytical solution, the following observations are
obtained. The optimal first-stage invested amount in
the risky security is increasing with respect to the
expected return of the risky security at the first period,
while it is decreasing with respect to the correspond-
ing variance. The optimal first-stage invested amount

in the risky security is decreasing with respect to the
risk aversion coefficient and the fixed return of risk-
free security.

(iii) The decision provided by the two-stage fuzzy model
is consistent with the fact that the risk-averse investor
will invest more wealth in the risk-free security. This
conclusion is based on the computational results of
the numerical experiments (Table 2). The compu-
tational results also show that the optimal invested
amount in the risky security increases as the risk-free
return decreases, the optimal utility increases as the
risk-free return increases (Table 4), and the optimal
utility increases as the transaction costs decrease
(Table 5).

(iv) The experiments’ results illustrate that the optimal
first-stage investment amounts in risky security given
by the proposed two-stagemodel are larger than those
given by the single-stage model. This conclusion can
be obtained through comparing Table 2 with Table 6.
The reason for this conclusion is that the proposed
two-stage model gives the investor an option to take
recourse action at the second period. Based on Tables
3 and 7, the optimal utilities provided by the two-stage
fuzzy model are higher than those provided by the
single-stage model in most instances.

Notations

𝐶: The fixed transaction costs rate of unit
trading volume

𝑊: Initial wealth
𝑟
0
: The fixed return of risk-free security
𝑟
1
: The fuzzy return of the risky security at
the first period

𝑟
2
: The fuzzy return of the risky security at
the second period

𝑥
𝑖
: The wealth amount invested in the 𝑖th
security in the first-stage, 𝑖 = 0, 1

𝑦
𝑖
: Adjustment amount of the 𝑖th security in
the second-stage, 𝑖 = 0, 1.
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