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Currently, the research for reversible watermarking focuses on the decreasing of image distortion. Aiming at this issue, this paper
presents an improvement method to lower the embedding distortion based on the prediction-error expansion (PE) technique.
Firstly, the extreme learning machine (ELM) with good generalization ability is utilized to enhance the prediction accuracy
for image pixel value during the watermarking embedding, and the lower prediction error results in the reduction of image
distortion.Moreover, an optimization operation for strengthening the performance of ELM is taken to further lessen the embedding
distortion.With two popular predictors, that is, median edge detector (MED) predictor and gradient-adjusted predictor (GAP), the
experimental results for the classical images and Kodak image set indicate that the proposed scheme achieves improvement for the
lowering of image distortion compared with the classical PE scheme proposed by Thodi et al. and outperforms the improvement
method presented by Coltuc and other existing approaches.

1. Introduction

Digital watermarking has been extensively applied to the
fields of digital library, fingerprinting, and secret commu-
nication. The conventional watermarking algorithms [1–3]
can introduce irreversible distortion of digital works, which
do not apply to military and medical domains. However,
the reversible watermarking, known as lossless technology,
can restore the original signal and has become a hot area of
research since the last ten years.

Currently, the reversible watermarking schemes mainly
focus on the spatial domain and are divided into three
categories including difference expansion-based method [4–
7], histogram shifting-based method [8–12], and prediction
error-based method [13–17]. The difference expansion-based
method was firstly proposed by Tian [4], which used the
difference and average values of neighbor pixels to embed
watermarking bits. Alattar [5] embedded the watermarking
information by calculating the difference expansion of the
integer transformation. Chen and Tsai [6] presented an
adaptive block sized reversible image watermarking scheme
with difference expansion, which had higher capacity than

conventional fixed block sized method. Gu and Gao [7]
used chaotic logistic map to randomly select the position for
watermarking embedding and also to search the threshold
space of reversibility.The proposedmethod achieved balance
between the reversibility and the robustness with the help of
chaotic system.

In [8], a breakthrough idea for histogram shifting was
proposed by Ni et al. The watermarking bits were embedded
by the shifting of zero-peak pairs of the image histogram.
Ni’s method is nonblind, requiring the encoder to transmit
the extra side information to the decoder. To solve this
issue, some blind watermarking schemes based on histogram
shifting are presented. Wang et al. [9] presented a multilevel
embeddingmethod using histogram shifting without the side
information, in which the synchronization mechanism is
adopted to ensure the selection of optimal zero-peak pairs
in each level. Coatrieux et al. [10] contributed a modulation
method of dynamic histogram shifting, adaptively taking
care of the local specificities of the image content and
inserting data in textured areas. Moreover, some reversible
watermarking algorithms, combining histogram shiftingwith
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prediction technique, are presented to satisfy both high
embedding capacity and good visual quality [11, 12].

The prediction-error expansion (PE) algorithm was
developed by Thodi and Rodŕıguez [13, 14], which is essen-
tially a particular form of difference expansion. Thodi and
Rodŕıguez employed a pixel’s three-neighbor context to
predict the pixel value and used the expansion of prediction-
error between the original pixel value and the estimated one
to embed message. The PE algorithm achieved a maximal
embedding rate of 1 bit per pixel (bpp). Aiming at reducing
the embedding distortion in the PE algorithm, Coltuc [15]
proposed an improvement scheme. Instead of embedding
the entire expanded difference into the current pixel, the
expanded difference is split between the current pixel and
its prediction context with global optimization, and Coltuc’s
scheme achieved the improvement with popular predictors.
Sachnev et al. firstly proposed to utilize the rhombus-context
predictor (RCP) to predict the centered pixel [16], and the
rhombus-context is composed of the four horizontal/vertical
close neighbors. Later, some improvement schemes based on
RCP are proposed by Ou et al. [17], Dragoi and Coltuc [18],
and Li et al. [19].

Recently, some reversible watermarking schemes on fre-
quency domain are presented [20–22]. Lei et al. [20] applied
two-level wavelet transform to each subblock of an image
and then performed singular value decomposition (SVD)
on the low frequency wavelet coefficients of each block
to generate the singular values. The watermark bits were
embedded by quantizing the first singular values using the
recursive dither modulation (RDM) approach. In [21], an
intelligent reversible watermarking approachGA-RevWM for
medical images is proposed. GA-RevWM adopted block-
based embedding strategy using integer wavelet transform
(IWT), and an intelligent method for threshold selection
with genetic algorithm (GA) was applied to increase the
imperceptibility of the marked image.

In order to improve the performance of reversible
watermarking, this paper proposes a scheme to lower the
embedding distortion based on PE. The main idea of the
presented method is to enhance the accuracy of prediction
value of image pixel by the extreme learning machine (ELM)
[23, 24] with good generalization ability. Moreover, an opti-
mized method of ELM is utilized to further diminish the
prediction error. In this paper, the improved PE scheme is
tested using two popular predictors, that is, median edge
detector (MED) predictor [25] and gradient-adjusted predic-
tor (GAP) [26]. The experimental results demonstrate that
the proposed scheme achieves improvement for the image
distortion compared with the classical PE scheme proposed
by Thodi and Rodŕıguez [13, 14]. In addition, through the
experimental contrast and theoretical analysis between the
proposed approach and the noted improvement embedding
scheme proposed by Coltuc [15], it is observed that the
proposed approach outperforms Coltuc’s one.

The outline of the paper is organized as follows. The
basic principle of PE scheme is presented in Section 2.
Section 3 describes the improvement method of PE-based
reversible watermarking using the optimized ELM. The
improvement schemes with MED and GAP predictors are

given in Section 4, respectively. Experimental results and
analyses are shown in Section 5. Finally, Section 6 draws the
conclusion.

2. Basic Principle of PE

In the PE algorithm [13], the prediction-error between the
original image pixel value and the estimated value is utilized
to embed the watermarking. The concrete procedure of
embedding watermarking of the PE algorithm is shown as
follows.

Step 1. Scan the image according to certain sequence; then
starting with the first pixel of the image, the prediction value
𝑥 of pixel 𝑥 is computed with 𝑁

𝑥, a neighborhood of 𝑥, by a
mathematical equation (e.g., (14) of Section 4).

Step 2. With the prediction error 𝑝

𝑒
(𝑝
𝑒

= 𝑥 − 𝑥), the
prediction-error expansion is defined as follows:

𝑝

󸀠

𝑒
= 2𝑝
𝑒
+ 𝑏, (1)

where 𝑏 is watermarking bit, 𝑏 ∈ {0, 1}, and then the
watermarked pixel 𝑥󸀠 is given by

𝑥

󸀠

= 𝑥+𝑝

𝑒
+ 𝑏. (2)

If 𝑥󸀠 ∈ [0, 255], then the pixel 𝑥 is considered as extensible
one.

Step 3. Select a threshold𝑇; if the prediction error 𝑝
𝑒
satisfies

𝑝

𝑒
< 𝑇 and the pixel is extensible, thenwemark the pixel with

“1”; otherwise, we mark it with “0.” Thus a matrix called the
location map (LM) is composed of a set of “0” and “1,” which
has same sizewith the original image.ThenLM is compressed
by arithmetic encoding (AE) or run-length encoding (RLE),
generating a bit stream 𝑆 with a length of 𝑆

𝐿
.

Step 4. The least significant bits (LSBs) of first 𝑆

𝐿
pixels of

the image form a sequence noted as 𝑅, which is utilized
for the lossless image restoration, and then in terms of (2),
we embed the watermarking information and 𝑅 into the
extensible image pixels except for first 𝑆

𝐿
ones.

Step 5. Embed 𝑆 into the LSBs of first 𝑆
𝐿
pixels, and generate

the final watermarked image.

The watermarking extracting procedure of PE algorithm
is shown as follows.

Step 1. Scan the image according to same sequence as the
embedding procedure; then extract the LSBs of first 𝑆

𝐿
pixels,

decompressed by AE or RLE to obtain LM.

Step 2. Start with final pixel of LM; if the pixel value is “1,”
then the prediction error is calculated by 𝑝

󸀠

𝑒
= 𝑥

󸀠

−𝑥, and the
watermarking information and 𝑅 are extracted by

𝑏 = 𝑝

󸀠

𝑒
− 2⌊

𝑝

󸀠

𝑒

2
⌋ . (3)
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Figure 1: Network training model of ELM.

Step 3. The LSBs of first 𝑆
𝐿
pixels of the image are replaced

with 𝑅.

Step 4. Compute 𝑝

𝑒
using 𝑝

𝑒
= ⌊𝑝

󸀠

𝑒
/2⌋, and generate the

restored pixel value 𝑥 by

𝑥 = 𝑥

󸀠

−𝑝

𝑒
− 𝑏. (4)

3. Proposed Scheme

In this section, the basic principle of ELM is firstly intro-
duced. Then the optimized ELM is provided with bet-
ter prediction performance than ELM. Finally, a PE-based
improvement scheme using optimized ELM is presented.

3.1. Extreme Learning Machine. The extreme learning
machine (ELM) is proposed by Huang et al. [23, 24] in
terms of the generalized inverse theory, by which the output
weight of the learning network can be achieved only with
a step calculation. Compared with neural network (NN)
[27, 28] and support vector machine (SVM) [29–31], ELM
greatly improves the generalization ability and learning
speed of the network [23]. The network training model of
ELM uses the structure of a single layer feed-forward neural
network, shown in Figure 1, where 𝑚, 𝑀, and 𝑛 are the node
number of network input layer, hidden layer, and output
layer, respectively. 𝑔(𝑥) is the activation function, and 𝑐

𝑖
is the

hidden node threshold. (𝑥
𝑖
, 𝑡

𝑖
) is the training sample, where

𝑥

𝑖
= [𝑥

𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝑚
]

𝑇

∈ 𝑅

𝑚 and 𝑡

𝑖
= [𝑡

𝑖1
, 𝑡

𝑖2
, . . . , 𝑡

𝑖𝑛
]

𝑇

∈ 𝑅

𝑛,
1 ≤ 𝑖 ≤ 𝑁.

The math expression of ELM network model is given by

𝑀

∑

𝑖=1
𝛽

𝑖
𝑔 (𝑤

𝑖
⋅ 𝑥

𝑖
+ 𝑐

𝑖
) = 𝑜

𝑗
, 𝑗 = 1, 2, . . . , 𝑁, (5)

where 𝑤

𝑖
= [𝑤1𝑖, 𝑤2𝑖, . . . , 𝑤𝑚𝑖] denotes the input weight

vector connecting input layer nodes to the 𝑖th hidden layer
node, 𝛽

𝑖
= [𝛽

𝑖1, 𝛽𝑖2, . . . , 𝛽𝑖𝑛]
𝑇 is the output weight vector

connecting the 𝑖th hidden layer node to output layer nodes,
and 𝑜

𝑗
= [𝑜

𝑗1, 𝑜𝑗2, . . . , 𝑜𝑗𝑛]
𝑇 represents the network output

vector.
The cost function of ELM is defined by

𝐸 (𝑆) =

𝑁

∑

𝑗=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑜

𝑗
− 𝑡

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

, (6)

where 𝑆 = (𝑤

𝑖
, 𝑐

𝑖
, 𝑖 = 1, 2, . . . ,𝑀). Huang et al. [23] indicate

that seeking for optimal 𝑆 is the training object of ELM, and
with the optimal 𝑆, the smallest error marked as min(𝐸(𝑆))
between the network output value and the corresponding real
value is achieved. min(𝐸(𝑆)) can be written further as follows:

min𝐸 (𝑆)

= min
𝑤𝑖 ,𝑐𝑖 ,𝛽

󵄩

󵄩

󵄩

󵄩

𝐻 (𝑤1, . . . , 𝑤𝑀, 𝑐1, . . . , 𝑐𝑀, 𝑥1, . . . , 𝑥𝑁) 𝛽

−𝑇

󵄩

󵄩

󵄩

󵄩

,

(7)

where 𝐻, 𝛽, and 𝑇 are the output matrix of hidden layer, the
output weight matrix, and the objective matrix for training
sample set, respectively.

When the activation function of network hidden layer
is infinitely differentiable, the network input weight and the
threshold of hidden layer nodes can be randomly assigned,
and the matrix 𝐻 is a constant one. The learning process of
ELM is equivalent to calculating the least squares solution
̂

𝛽 of minimum norm of the linear system 𝐻𝛽 = 𝑇, and the
calculation formula for ̂

𝛽 is shown by

̂

𝛽 = 𝐻

†

𝑇, (8)

where 𝐻

† is the Moore-Penrose generalized inverse of 𝐻.
After ̂

𝛽 is solved, the network training process of ELM ends
[23].

3.2. Optimized ELM. Due to the random selection of input
weight and hidden node threshold, it easily results in the fact
that the generalization ability and the stability of the ELM
regression model are not ideal. Aiming at solving this issue,
the optimized ELM (OELM) is developed through the search
and adjusting of mutative scale chaos [32]. Then the optimal
input weight and hidden node threshold are achieved with
OELM.

In OELM, (7) can be simply written as

min𝐸 (𝑆) = min
𝑁

∑

𝑗=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑜

𝑗
− 𝑡

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

, (9)

where 𝑆 = (𝑤

𝑖
, 𝑐

𝑖
, 𝑖 = 1, 2, . . . ,𝑀), 𝑤

𝑖
, 𝑐

𝑖
correspond

to the input weight and hidden node threshold of OELM,
respectively, and 𝑎

𝑖
≤ 𝑤

𝑖
, 𝑐

𝑖
≤ 𝑏

𝑖
. For the convenience

of description, 𝑆 = (𝑤

𝑖
, 𝑐

𝑖
, 𝑖 = 1, 2, . . . ,𝑀) is simply

written as 𝑆 = (𝑧

𝑖
, 𝑖 = 1, 2, . . . , 𝐿), where 𝑎

𝑖
≤ 𝑧

𝑖
≤

𝑏

𝑖
. The optimization object of ELM is to seek the optimal

input weights and hidden node thresholds, by which min𝐸

can be achieved. However, for the training effect of neural
network, it is not appropriate to only use fitting as unique
measurement standard. A training network with relatively
lesser fitting error does not always have lesser error for the test
dataset [33]. Bartlett [34] pointed out that when two networks
have close fitting, one with lesser output weight has a better
generalization performance. Therefore, we add the output
weight paradigm, ‖𝛽‖, as the auxiliary standard of network
selection. When the fitting errors of adjacent two trainings



4 Mathematical Problems in Engineering

are very close during the ELM optimization, we select 𝐸 with
lesser ‖𝛽‖.

The concrete steps of OELM scheme are described as
follows.

Step 1. Some variables are initialized. Let 𝑘 = 0, 𝑟 = 0, 𝑥𝑘
𝑖
=

𝑥

𝑖
(0), 𝑥∗

𝑖
= 𝑥

𝑖
(0), 𝑎𝑟
𝑖

= 𝑎

𝑖
, and 𝑏

𝑟

𝑖
= 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝐿. The

optimal objective function value 𝐸

∗ and the optimal output
weight 𝛽∗ are initialized to large positives. Here, 𝑥

𝑖
(0) is the

initial value of a chaotic system 𝐹(𝑥).

Step 2. 𝑥

𝑘

𝑖
are mapped into the definition domains of 𝑧

𝑖
and

denoted by 𝑧

𝑘

𝑖
; that is,

𝑧

𝑘

𝑖
= 𝑎

𝑟

𝑖
+ (𝑏

𝑟

𝑖
− 𝑎

𝑟

𝑖
) 𝑥

𝑘

𝑖
. (10)

Step 3. For a given training set, 𝛽
𝑧𝑖
can be solved by (8), and

𝐸(𝑧

𝑘

𝑖
) is obtained using (5) and (9). 𝐸∗ and 𝛽

∗ are assigned
according to (11), where 𝜀 is a predefined threshold, that is, a
small positive:

𝐸

∗

= 𝐸 (𝑧

𝑘

𝑖
) ,

𝛽

∗

= 𝛽

𝑧𝑖
,

𝑥

∗

𝑖
= 𝑥

𝑘

𝑖
;

if 𝐸∗ − 𝐸 (𝑧

𝑘

𝑖
) > 𝜀,

𝐸

∗

= 𝐸 (𝑧

𝑘

𝑖
) ,

𝛽

∗

= 𝛽

𝑧𝑖
,

𝑥

∗

𝑖
= 𝑥

𝑘

𝑖
;

if 󵄨

󵄨

󵄨

󵄨

󵄨

𝐸

∗

− 𝐸 (𝑧

𝑘

𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

< 𝜀,

󵄩

󵄩

󵄩

󵄩

󵄩

𝛽

𝑧𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

<

󵄩

󵄩

󵄩

󵄩

𝛽

∗󵄩
󵄩

󵄩

󵄩

,

𝐸

∗

= 𝐸

∗

,

𝛽

∗

= 𝛽

∗

;

else.

(11)

Step 4. Consider 𝑘 = 𝑘 + 1, 𝑥𝑘
𝑖
= 𝐹(𝑥

𝑘−1
𝑖

).

Step 5. Repeat Steps 2–4 until 𝐸∗ remains invariable for 𝑁

loops, and then go to Step 6.

Step 6. The searching regions of 𝑧
𝑖
are reduced; that is,

𝑎

𝑟+1
𝑖

= 𝑧

∗

𝑖
− Γ (𝑏

𝑟

𝑖
− 𝑎

𝑟

𝑖
) ,

𝑏

𝑟+1
𝑖

= 𝑧

∗

𝑖
+ Γ (𝑏

𝑟

𝑖
− 𝑎

𝑟

𝑖
) ,

(12)

where Γ ∈ (0, 0.5), 𝑧∗
𝑖
= 𝑎

𝑟

𝑖
+𝑥

∗

𝑖
(𝑏

𝑟

𝑖
−𝑎

𝑟

𝑖
), and 𝑧

∗

𝑖
are the current

optimal solution.

Step 7. 𝑥

∗

𝑖
and 𝑥

𝑘

𝑖
are assigned again by

𝑥

∗

𝑖
=

(𝑧

∗

𝑖
− 𝑎

𝑟+1
𝑖

)

(𝑏

𝑟+1
𝑖

− 𝑎

𝑟+1
𝑖

)

,

𝑥

𝑘

𝑖
= (1−𝛼) 𝑥

∗

𝑖
+𝛼𝑥

𝑘

𝑖
,

(13)

where 𝛼 is a small positive, for example, 0.1.

Step 8. Consider 𝑟 = 𝑟 + 1; if 𝑟 > 𝑃 or 𝐸

∗

≤ 𝑄, then
end the optimization process and the network with min𝐸 is
generated; else, 𝛼 = 𝛼 − 0.01, and go to Step 2 to continue.
Here, 𝑃 is the appointed maximum value of 𝑟, and 𝑄 is the
acceptable value of 𝐸.

3.3. Improvement Method Using OELM. For the PE-based
reversible watermarking algorithm, the reducing of the
embedding distortion can be realized through decreasing
prediction error. In our improvement method, OELM is
adopted to generate the more precise prediction value for
image pixel; thereby, the prediction error is maintained
within a small scope. The detailed procedure of the improve-
ment scheme is shown as follows.

Step 1. According to the scanning sequence from top to
bottom and left to right, the preassigned neighbor pixels of all
image pixels𝑥𝑠 are collected as the input part of training set of
OELM, and the corresponding image pixels 𝑥𝑠 are considered
as the output part of training set of OELM.

Step 2. The data of training set are normalized; that is,
they are transformed into the domain of [−1, 1]. After the
training and learning processes of OELM end, the final
OELM regression model is generated.

Step 3. The input part of training set is imported into the
OELM model, and then the corresponding prediction value
𝑥 of image pixel 𝑥 is achieved by the output of OELMmodel.
The final prediction value 𝑥 is generated by transforming 𝑥

into the domain of [0, 255] and rounding operation.

Step 4. The rest of the improvement scheme is referred
to Steps 2–5 of watermarking embedding procedure of PE
algorithm listed at Section 2.

Step 5. At the detection side, the watermarking extracting
and image restoration are achieved by Steps 1–4 of water-
marking extracting procedure of PE algorithm shown at
Section 2, and it should be noted in Step 2 that the prediction
value 𝑥 of pixel 𝑥 is generated by OELM model obtained
through a secure channel.

4. Improvement Scheme with
Popular Predictors

4.1. Improvement Scheme with MED Predictor. Any predic-
tors can be applied to the PE algorithm of Section 2. As a
kind of high-performance predictor, MED has been utilized
in some reversible watermarking schemes [13–15] and also in
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x a

b c

Figure 2: The template for MED predictor.

JPEG-LS standard [25]. Through MED, the prediction value
𝑥 of pixel𝑥 can be achieved using (14) in terms of the template
shown in Figure 2:

𝑥 =

{

{

{

{

{

{

{

{

{

max (𝑎, 𝑏) if 𝑐 ≤ min (𝑎, 𝑏)

min (𝑎, 𝑏) if 𝑐 ≥ max (𝑎, 𝑏)

𝑎 + 𝑏 − 𝑐 otherwise,

(14)

where 𝑎, 𝑏, and 𝑐 are the neighbors of pixel 𝑥, noted as 𝑁

𝑥.
Actually, the MED predictor is a combination of the two
interpretations [15, 25].

The proposed improvement scheme with OELM using
MED predictor (noted as OELM-MED) is basically similar
to that shown in Section 3.3, and it is noted that the neighbor
pixels 𝑎𝑠, 𝑏𝑠, and 𝑐𝑠 of all image pixels 𝑥𝑠 are collected as the
input of training set of OELM in Step 1 of Section 3.3.

4.2. Improvement Scheme with GAP Predictor. As a major
part of context-based, adaptive, lossless image coding
(CALIC) algorithm [26], the GAP predictor has a more com-
plex feature than the MED one, and the prediction context of
GAP is enlarged to 7 pixels (Figure 3). The prediction result
is based on the vertical and horizontal gradients given by

Δ

𝑉
= |𝑎 − 𝑐| +
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,

Δ

𝐻
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(15)

Let Δ be

Δ = Δ

𝑉
−Δ

𝐻
. (16)

Then the prediction value of pixel 𝑥 is computed by
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1
4
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(17)

where 𝑧 is defined by

𝑧 =

1
2
(𝑎 + 𝑏) +

1
4
(𝑑 − 𝑐) . (18)
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Figure 3: The template for GAP predictor.

It is noted that𝑥 in (17) should be rounded to integer value
so as to be applied to the PE-based reversible watermarking
algorithm. Since GAP has a better estimation performance
than MED, the reversible watermarking methods with GAP
outperform the ones using MED [35, 36].

The proposed improvement scheme with OELM using
GAP predictor (noted as OELM-GAP) is basically similar to
that shown in Section 3.3, and it is noted that the preassigned
seven neighbor pixels of all image pixels 𝑥𝑠 are collected as
the input of training set of OELM in Step 1 of Section 3.3.

4.3. An Example for Prediction Error Improvement. As an
example, the randomly selected 8 × 8 block data of Lena
image is used to explain the prediction error improvement
produced by OELM. Figure 4(a) shows original block data,
and Figures 4(b) and 4(c) give the corresponding versions
predicted by MED and OELM-MED, respectively. It is
observed that OELM-MED provides lower prediction error
compared with MED. For whole Lena image, the average
absolute prediction error produced byMED is 3.105 per pixel,
the corresponding one byOELM-MED is 2.908 per pixel, and
the prediction improvement rate is 6.34%. We also give the
statistical data of GAP for Lena image, the average absolute
prediction error by GAP is 2.957 per pixel, the corresponding
one by OELM-GAP is 2.619 per pixel, and the prediction
improvement rate is 11.43%. Compared with OELM-MED, a
higher improvement rate produced by OELM-GAP is due to
the fact that the prediction context of GAP is more than that
of MED, which is conducive to learning and prediction of
OELM.

5. Experimental Results and Analyses

In our experiments, the indicator of measuring the embed-
ding capacity adopts the pure hiding rate, that is, the rate
between the embedded watermarking bits (not including
the overhead) and the amount of image pixels. The location
map for the overflow/underflow pixels is compressed by
arithmetic encoding (AE).

5.1. Test Images. Our scheme and Coltuc’s one are all the
improvement methods based on the PE proposed by Thodi
andRodŕıguez. For achieving comparisons conveniently with
Coltuc’s improvement scheme, the experiments use the same
two image sets as those adopted inColtuc’s scheme [15].Three
classical gray-level images, Lena, Jet, andMandrill (Figure 5),
with distinct statistic features, are considered as the first
set. Specifically, Mandrill includes large texture, in Jet, a big
consistent region exists, and Lena bonds consistent region
with texture.
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216 210 217 226 223 225 229 226

218 208 213 223 224 226 231 228

223 208 209 219 220 222 226 223

213 213 213 214 216 220 223 226

211 211 211 213 216 220 224 227

208 208 210 212 215 220 224 226

208 208 209 211 214 217 220 222

209 210 210 211 212 214 215 216

(a) Original 8 × 8 image data

218 212 216 223 224 226 229 228

223 212 213 223 224 227 228 220

208 209 218 218 218 223 223 236

213 213 212 213 216 220 224 224

211 209 211 213 215 220 225 226

208 209 210 212 217 221 224 223

208 209 210 213 215 219 221 219

210 209 211 211 214 214 216 218

(b) Predicted 8 × 8 image data by MED

216 211 217 222 224 226 229 227
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212 212 212 213 217 220 224 225

209 209 211 213 216 221 225 225

208 208 210 212 216 220 222 224

208 209 210 212 214 217 218 220

209 209 210 210 212 213 214 217

(c) Predicted 8 × 8 image data by OELM-MED

Figure 4: Prediction diagram of 8 × 8 image data.

Figure 5: Three classical gray-level images: Lena, Jet, andMandrill.

The second set consists of 24 true-color images with the
size of 512 × 768, called Kodak test set. These images have
a better visual quality than the classical ones used usually in
some reversible watermarking algorithms. At http://www.r0k
.us/graphics/kodak/, the portable network graphics (PNG)
format of Kodak test set can be downloaded. The gray-level
versions of the color images are given by

𝐿 (𝑖, 𝑗) = 0.2989𝑅 (𝑖, 𝑗) + 0.5870𝐺 (𝑖, 𝑗)

+ 0.1140𝐵 (𝑖, 𝑗) ,

(19)

where 𝑅(𝑖, 𝑗), 𝐺(𝑖, 𝑗), and 𝐵(𝑖, 𝑗) are the red, green, and
blue components of the pixel located at coordinates (𝑖, 𝑗),
respectively. Figure 6 shows the gray-level versions of Kodak
test set.

5.2. Experiments for the Embedding Threshold and Reversibil-
ity. The embedding threshold is an important factor influ-
encing embedding capacity and marked image’s visual qual-
ity. The larger the embedding threshold is, the more the
embedded bits are and the smaller the PSNR is, which are
observed easily through Figures 7 and 8. Moreover, with
the increasing of embedding threshold, the rising trend of
pure hiding rate slows down.When the embedding threshold
increases to a certain value, the pure hiding rate does not rise.
The maximum pure hiding rates of different images are not
the same, such that those of Lena, Jet, andMandrill are 0.953,
0.954, and 0.935, respectively, and the corresponding thresh-
olds are 70, 80, and 93, respectively. If more payloads need
to be embedded, we can achieve embedding more payloads
through multiple runs of watermarking embedding process.
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Figure 6: Gray-level versions of Kodak test set.
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Figure 7: Pure hiding rate with respect to the embedding threshold
on Lena for MED.
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Figure 8: PSNR with respect to the embedding threshold on Lena
for MED.

Figure 9 describes the reversible capability of proposed
scheme. The original and watermarked images are listed at
the columns (a) and (b) in Figure 9, respectively. Column
(c) shows the difference between the original and marked
images, which is not perceptive for human eyes; thus an
enhancement measure is adopted to make the difference
visible through the Matlab function imadjust. The original
image content, shown in column (d), is restored after the
embedded bits are extracted at the receiving side. Column
(e) shows the differences between original and restored
images, which are black regions and demonstrate that the
restored images are totally the same as original ones. Then
we compute the SSIM (structure similarity measure index)
between original and restored images and get SSIM = 1,
demonstrating that the proposed scheme is fully reversible.

5.3. Comparison with Congeneric Algorithms. First, the
experiments are made on three classical images. The average
absolute prediction errors with original MED proposed by
Thodi and Rodŕıguez are 3.105 per pixel for Lena, 3.647 per
pixel for Jet, and 12.251 per pixel for Mandrill, respectively.
The corresponding ones with proposed improvement version
(OELM-MED) are 2.908 per pixel for Lena, 3.360 per pixel
for Jet, and 11.416 per pixel for Mandrill, respectively. Also,
the average absolute prediction errors with original GAP
are 2.957 per pixel for Lena, 3.497 per pixel for Jet, and
11.661 per pixel forMandrill, respectively. The corresponding
ones by OELM-GAP are 2.619 per pixel for Lena, 3.247 per
pixel for Jet, and 11.142 per pixel for Mandrill, respectively.
Figures 10 and 11 show the comparison results for prediction
errors, from which it is observed that the average absolute
prediction errors with proposed scheme are lower than ones
with original scheme and the prediction performance of GAP
outperforms that of MED.
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(a) (b) (c) (d) (e)

Figure 9:The total process of images. Column (a) lists original images. Column (b) lists watermarked images. Column (c) lists the difference
between the original and watermarked images (difference of (a) and (b)). Column (d) lists the restored images. Column (e) lists the difference
between the original and restored images (SSIM = 1, difference of (a) and (d)).

In terms of PSNR with respect to the pure hiding rate,
the comparisons between original MED and OELM-MED
are presented in Figure 12, from which it is observed that
the proposed scheme achieves a performance boost over
the one proposed by Thodi and Rodŕıguez. The average
improvements, that is, the average values of all improvements
under all kinds of pure hiding rates, are 0.47 dB for Lena,
0.41 dB for Jet, and 0.61 dB for Mandrill, respectively. Also,
for OELM-GAP, the average improvements are 0.45 dB for

Lena, 0.28 dB for Jet, and 0.30 dB for Mandrill, respectively.
The comparisons between original GAP andOELM-GAP are
shown in Figure 13.

In addition, from Figures 12 and 13, it is further observed
that the improvements in the cases of small hiding rates are
less than those in the cases of large hiding rates, which is due
to the fact that small hiding rate means that small embedding
threshold 𝑇 is adopted, introducing small prediction error
and small image distortion; thus the improvement achieved
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Figure 10: Comparisons of average absolute prediction errors
between MED and OELM-MED.
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Figure 11: Comparisons of average absolute prediction errors
between GAP and OELM-GAP.

is relatively small compared with one with large hiding rate.
Also, we find that the improvement on Jet is less than those
on Lena andMandrill; this is due to the fact that Jet has large
consistent regions, which can give rise to small prediction
error in original PE scheme with MED/GAP, and, in other
words, the proposed scheme can achieve better improvement
effect for the images with large texture.

Next, the comparison experiments between Coltuc’s
improvement scheme and proposed one are implemented.
Coltuc’s scheme is designed to decrease the embedding
distortion, of which the basic idea is to share the expanded
difference between the current pixel and its prediction
context. The marked images have better visual quality than
those in which the expanded difference is simply embedded
into the current pixel. Meanwhile, the modification on the
current pixel’s context may enlarge the distortion induced
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Figure 12: PSNR with respect to pure hiding rate on Lena, Jet, and
Mandrill for MED.
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Figure 13: PSNR with respect to pure hiding rate on Lena, Jet, and
Mandrill for GAP.

Table 1: Comparison between Coltuc’s and proposed schemes for
three classical images.

Method Image Average improvement (dB)
Coltuc’s Proposed

MED
Lena 0.39 0.47
Jet 0.67 0.41

Mandrill 0.55 0.61

GAP
Lena 0.15 0.45
Jet 0.22 0.28

Mandrill 0.15 0.30

by the prediction of its successors. To solve this problem,
Coltuc’s scheme also realizes the optimization of the global
embedding error by varying a parameter 𝛼 and global search.
Through Table 1, it is inferred that, for three classical images,
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Table 2: Comparison between Coltuc’s and proposed schemes for Kodak test images.

Method Average improvement (dB) Maximum improvement (dB)
Coltuc’s Proposed Coltuc’s Proposed

MED 0.54 0.67 1.10 1.15
GAP 0.09 0.21 0.43 0.68

Coltuc’s scheme and proposed onewithMEDorGAP predic-
tor all make improvements compared with Thodi’s scheme,
and the proposed scheme overall outperforms Coltuc’s one.
Table 2 lists the experimental results of Coltuc’s and proposed
schemes on Kodak test images. With MED, Coltuc’s scheme
achieves the average improvement of 0.54 dB for 24 test
images and the best average improvement of 1.10 dB for image
5; the proposed scheme achieves the average improvement of
0.67 dB for 24 test images and the maximum average result
of 1.15 dB for image 1. With GAP, the corresponding data of
Coltuc’s scheme are 0.09 and 0.43, respectively, and ones of
proposed scheme are 0.21 and 0.68, respectively. Therefore,
for the high quality images, the proposed improvement
scheme also outperforms Coltuc’s one.

Moreover, for Coltuc’s scheme, at the same time of
achieving improvement for embedding distortion, the mod-
ification on the current pixel’s context may lead to incorrect
location map of overflow/underflow pixels, which influences
the stability of algorithm. On the contrary, the proposed
method decreases the embedding distortion by only reducing
the prediction error of current pixel using the optimized ELM
without modifying the context; thus the generated location
map is stable and exact. For the computational complexity,
Coltuc’s scheme is similar to proposed one, and both make
use of the global search method. In real-world applications, it
is better to employ parallel process to lower the running time.
Also, through further analysis on Figures 12 and 13 and Tables
1 and 2, it is observed that the improvements withMED from
two schemes are larger than ones with GAP, indicating that
GAP has a better estimation performance than MED on the
other hand.

5.4. Expanded Experiments with Rhombus-Context. Actually,
any context can be used together with OELM in the PE-based
schemes. Here, some expanded experiments are provided
using thewell-known rhombus-context composed of the four
horizontal/vertical close neighbors. The rhombus-context
predictor (RCP) proposed by Sachnev et al. is designed
to predict the centered pixel by the average value of four
horizontal/vertical close neighbors [16]. The prediction per-
formance of RCP is superior to those ofMEDandGAP,which
can be embodied by the prediction error improvement. The
average absolute prediction errors achieved by RCP are 2.303
per pixel for Lena, 2.938 per pixel for Jet, and 11.640 per pixel
forMandrill, respectively.Then,we useOELMwith rhombus-
context (noted as OELM-RCP), substituting RCP, to predict
the centered pixel. The average absolute prediction errors
achieved by OELM-RCP are 1.939 per pixel for Lena, 2.460
per pixel for Jet, and 10.231 per pixel forMandrill, respectively.

Figure 14 shows intuitively the average absolute predic-
tion errors achieved by RCP and OELM-RCP, from which it
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Figure 14: Comparisons of average absolute prediction errors
between RCP and OELM-RCP.
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Figure 15: Performance comparisons between RCP and OELM-
RCP.

is observed that OELM-RCP has lower prediction errors than
RCP. Also, from Figures 10, 11, and 14, it is observed that the
prediction performance of OELM-RCP is better than those
of OELM-MED and OELM-GAP.

For PSNR with respect to the pure hiding rate, the exper-
imental comparisons between original embedding scheme
with RCP proposed by Sachnev et al. and the same embed-
ding scheme with OELM-RCP are presented in Figure 15,
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Figure 16: Performance comparisons with other non-PE based
schemes for Lena image.

from which it is observed that, compared with the PSNR
achieved by RCP under the same pure hiding rate, the
PSNR achieved by OELM-RCP is enhanced. In addition, the
improvement schemes proposed by Ou et al. [17], Dragoi
and Coltuc [18], and Li et al. [19] are all based on the
same RCP; thus it is easily known that similar performance
enhancements can be achieved when OELM-RCP is applied
to these schemes instead of RCP.

5.5. Comparison with Other Non-PE Based Schemes.
Figure 16 shows the performance comparisons between
proposed scheme and other non-PE based schemes
[21, 22, 37] in terms of the pure hiding rate and PSNR for
Lena image. It is observed that the proposed method is better
than these non-PE based schemes; particularly, as the pure
hiding rate is larger than 0.3, proposed method is obviously
prior to other schemes.

6. Conclusion

The reversible watermarking has become an active research
area due to its ability for recovering the watermarked dig-
ital works to original status, and the focus of reversible
watermarking mainly is the reduction of embedding distor-
tion under keeping certain embedding capacity. The noted
improvement embedding approach developed by Coltuc
splits the expanded difference between the current pixel
and its prediction context, and the scheme obtains a low
distortion than the simple embedding of the expanded differ-
ence into the current pixel. But the changing for prediction
context may cause inexact location map. In this paper,
the proposed improvement scheme generates the prediction
value of current pixel using an optimized ELM, meanwhile
makes no changes on its context, and obtains the better
performance for distortion reduction than Coltuc’s approach
which is profited from the generalization ability of optimized
ELM.
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