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P300 Auditory Event-Related Potentials (P3AERPs) were recorded in nine school-age children with auditory processing disorders
and nine age- and gender-matched controls in response to tone burst stimuli presented at varying rates (1/second or 3/second)
under varying levels of competing noise (0 dB, 40 dB, or 60 dB SPL). Neural network modeling results indicated that speed of
information processing and task-related demands significantly influenced P3AERP latency in children with auditory processing

disorders. Competing noise and rapid stimulus rates influenced P3AERP amplitude in both groups.

1. Introduction

Auditory processing is the ability of the central auditory ner-
vous system (CANS) to use and process auditory information
received peripherally by the two ears. Auditory processing
disorders (APD) are typically seen in individuals with normal
hearing sensitivity and are characterized by an inability of the
central auditory neurons to mediate higher-order auditory
processing skills (e.g., speech in noise, binaural processing,
temporal processing, and closure). Individuals with APD
manifest listening difficulties in challenging listening con-
ditions, show deficits in spatial location (localization) of
sounds, and face difficulties in decoding rapid rate stimuli [1].
The effects of APD can be devastating because as an input
disorder, it has the potential to impair the abilities for spoken
language comprehension, learning, and cognition in school-
age children.

One of the main problems in identification of APD is that
this disorder often coexists with other comorbid conditions
in school-age children such as attention deficit disorders,
language learning disorders, and learning disabilities [2].
This makes differential diagnosis of APD difficult. Also
audiologists routinely use primarily language-based auditory
processing measures for diagnosis of APD even though it
is not clear whether deficits on linguistic (verbal) tasks are
more likely to be associated with APD than nonlinguistic

(e.g., tonal) tasks. In a study by Rosen et al. [3], it has
been shown that school-age children with suspected APD
exhibited poorer performance on auditory tests in both
verbal (Consonant Cluster Minimal Pairs) and tonal (Tallal
Discrimination Task) conditions, relative to age-matched
controls. There is also dispute regarding formulation of the
appropriate test battery for evaluation of APD (e.g., [4, 5]).
Cacace and McFarland [4, 5] contend that, for a diagnosis of
APD, testing should address the primary deficit in processing
of acoustic information in the auditory modality and deficits
should be shown to be absent or reduced in other (e.g., visual)
modalities. While this notion is disputed by other studies
[6, 7], there is consensus on the need for valid tools that
challenge listening in the auditory modality for school-age
children with APD.

P300 Auditory Event-Related Potentials (P3AERPs) have
received increasing attention in the assessment of APD [8-
11]. P3AERPs are scalp-recorded positive potentials with a
latency approximating 300 msec from stimulus onset and
are widely recognized as physiological measures of cognitive
processing [12-14]. P3AERPs are acquired using an oddball
paradigm. Subject responses to frequent stimuli (ignored by
listener) are averaged separately from responses to the rare
or infrequent stimuli (attended to by listener). P3AERPs are
typically considered to be endogenous potentials that are
influenced more by internal (subject-related) factors than



external (stimulus-related) factors [8, 15]. However, several
studies have also shown that stimulus-related factors (e.g.,
frequency and intensity) can significantly influence latency
and amplitude of P3AERPs [16-19].

P3AERPs provide a good index of brain activity related
to the mental representation of incoming stimuli [20].
Initially, sensory processing occurs and is followed by an
attention-drive comparison process that evaluates the initial
sensory impression with a change in stimulus (novelty on
mismatch) and results in cortex-updating P300 generation
[21]. P3AERPs appear to have promise in evaluation of
the functional status of the CANS and can add valuable
information to behavioral tests currently in use for evaluation
of APD. The P3AERP represents a positive potential thought
to be generated from the frontal lobe, polarity event-related
[22, 23]. The P3AERP reflects a response that is based on task
relevance assigned to a specific stimulus [24]. However, there
is currently limited clinical use of P3AERPs in the evaluation
of APD, primarily due to factors such as high cost, lack of
training, and need for specialized software. A recent survey
showed that only 14/130 (11%) of participating clinicians used
cortical event-related potentials as part of their test battery
[25]. In this survey, respondents disagreed with use of a
minimum test battery proposed at the Bruton Conference
Statement [2].

Latency of P3AERPs is believed to index stimulus classi-
fication speed and is proportional for the time taken to detect
and evaluate a larger novel stimulus in the context of other
frequently prescribed stimuli [21]. Latency of P3AERPs can
be a useful measure of the speed of information processing
in the central auditory nervous system (CANS); that is, the
faster the information processing, the shorter the P3AERP
latency [13, 14]. The typical latency of the scalp-recorded
vertex-positive PAAERPs in normal listeners is approximately
300 milliseconds (msec) from stimulus onset at slow stim-
ulus rates [13, 26]. Longer P3AERP latencies have been
reported in individuals with lesions and disorders of the
CANS [10, 11]. Jirsa and Clontz [27] investigated PBAERPs in
children and found that children with APD showed longer
P3AERP latencies than age-matched controls without APD.
P3AERP latencies were compared in adults with APD and
control adults (without APD) in binaural and competing
noise conditions [28]. Adults with APD showed significantly
longer P3AERP latencies than control adults without APD
in competing noise conditions where competing noise was
presented along with the frequent and infrequent stimuli
on the P3AERP task [28]. Hence, P3AERPs appear to have
promise in evaluation of the functional status of the CANS
and can add considerable value in the assessment of APD.

P3AERP amplitude measures can provide indices of the
amount of neurological substrate available for information
processing [29]. The typical amplitude of P3AERPs in nor-
mal listeners is approximately 12-15uV [13, 26]. P3AERP
amplitude is inversely related to stimulus probability: the less
frequently a stimulus is presented, the larger the amplitude is
and vice versa [30, 31]. PAAERP amplitudes were found to be
significantly larger in control subjects (with no CANS lesions)
than in patients with known CANS lesions [29]. Significantly
larger P3AERP amplitudes were also reported in children
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without APD than in children with APD in an investigation
by Jirsa and Clontz [27].

The effects of less favorable listening conditions (e.g.,
rapid rates and competing noise) on P3AERP latency and
amplitude have received limited attention in individuals
with APD. Many of the P3AERP studies in children have
been typically conducted under favorable (e.g., binaural tone
bursts and no competing noise) listening conditions (e.g., [27,
32]). However, current behavioral tests in clinical use for APD
are designed on the basis that children with APD will typically
show a breakdown in auditory processing only under adverse
listening conditions where extrinsic redundancy is reduced,
such as spectral filtering, competing noise, or rapid stimuli
[33]. Hence, there is a strong need to study P3AERPs under
similar adverse listening situations in children with and
without APD prior to clinical use of P3AERPs as a tool for
evaluation of APD [34].

Neural networks are adaptive statistical models based
on analogies with human brain structure that can learn to
estimate and iteratively change values of the parameters of
some population using specific input and output variables
[35]. An artificial neural network (ANN), often just called a
“neural network” (NN), is a mathematical model or compu-
tational model based on biological neural networks. Artificial
neural networks can be used to model complex relationships
between input and output variables and explain patterns
of data. The construction of the neural network typically
involves three different layers with feed-forward architecture.
This is the most popular network architecture in use today.
The input layer of this network is a set of input units, neurons
that are fully connected to the hidden layer with the hidden
units that are in turn fully connected to an output layer.
The output layer supplies the response of neural network
to the activation pattern applied to the input layer. Neural
network modeling has been used in healthcare research to
characterize and predict a wide variety of health-related
issues such as infant mortality [36], brain surgery decisions
[37], pharmacokinetic parameters of antibiotics in severely ill
patients [38], and auditory dysfunction in Alzheimer’s disease
[39].

Neural networks can be used to model cognitive pro-
cesses by a feed-forward, backward propagation algorithm
called multilayer perceptrons (MLPs). These networks usu-
ally organize their units into several layers. The information
to be analyzed is fed to the first layer called the input layer,
followed by intermediate hidden layers, finally leading to
the output layer for processing [35]. Unlike multiple linear
regression models used to predict performance from known
variables, artificial neural networks need no prior knowledge
or assumptions because they can learn and generalize from
data that are even noisy or imperfect [40].

The current study was conducted to probe if reducing
extrinsic redundancy in the P3AERP task compromises audi-
tory processing in school-age children with and without APD.
Extrinsic redundancy can be reduced in several ways, but,
for the purposes of this study, two stimulus-related variables
(competing noise and rapid rates) were used. The rationale
for reducing the extrinsic redundancy was that competing
noise would limit spectral processing abilities needed to
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TABLE 1: Screening results for children with APD.

# Age Fisher’s checklist SCAN ABR latency (msec)

W AFG CW Composite I 11T \Y%
1 9y9m 48% " 3 8 5 69’ 15 35 5.5
2 8y2m 16%" 14 6 4 69’ 17 3.7 5.3
3 8y5m 36% 6 7 5 68’ 16 3.6 5.6
4 9y5m 36% 14 6 4 69’ 16 3.8 5.6
5 12y2m 40%" U 4 r 37" 17 3.7 5.7
6 13y 48%" 1 2 I 33 1.8 3.8 5.5
7 12y2m 48%" 6 6 6 65 17 3.4 57
8 1ly7m 36% 7 7 3 62" 16 35 5.6
9 12y9m 48%" 3 4 5 58’ 17 37 5.7
;2 SD below mean norms.

Below age norms or grade norms.
TABLE 2: Screening results for children without APD.

# Age Fisher’s checklist SCAN ABR latency (msec)

FW AFG CwW Composite 1 III \Y%
1 9y5m 80% 7 9 88 1.5 3.5 5.5
2 8y 88% 8 6 81 1.7 3.7 53
3 8y5m 76% 9 8 92 1.6 3.6 5.6
4 9y5m 76% 12 9 8 97 1.6 3.8 5.6
5 12y1lm 72% 11 8 8 77 1.7 3.7 5.7
6 13y 72% 11 9 7 98 1.8 3.8 5.5
7 1ly7m 96% 14 8 6 84 1.7 3.4 5.7
8 12y 76% 7 10 9 81 1.6 35 5.6
9 12y10 m 96% 13 8 11 106 1.7 3.7 5.7

discriminate frequent and infrequent stimuli on the P3AERP
task while rapid presentation rates would stress the temporal
processing capabilities of the auditory system and these
would have particular influence on P3AERP latency and
amplitude measures in those children with reduced intrinsic
redundancy (children with APD). Neural network modeling
was performed statistically to discover hidden and nonlinear
associations between input (stimulus rate and competing
noise) and output variables (P3AERP latency and amplitude).

2. Methods

2.1. Subjects. A total of eighteen subjects were categorized
into two groups: (1) 9 children with APD (mean age: 10 years
and 9 months; age range: 8 years and 5 months to 13 years)
and (2) 9 age-matched and gender-matched children without
APD (mean age: 10 years and 9 months; age range: 8 years to 13
years). Age matching for children with and without APD was
done to ensure a difference not exceeding 6 months between
matched subjects. Children with APD were selected from the
patient files of the Auburn University Speech and Hearing
Clinic. Age- and gender-matched children without APD were
recruited from the local school system. Parents of all subjects
had to sign informed consent in accordance with Institutional
Review Board Guidelines prior to participation. Each subject

received a $30 payment towards travel and participation in
the study.

Screening protocols were completed first for all partic-
ipating subjects in the study. Otoscopy was followed by a
complete audiological evaluation in both ears performed on
a two-channel Madsen OB 822 audiometer [41]. In order
to be included in the study, subjects from both groups
had to show normal hearing sensitivity (hearing threshold
< 25dB at frequencies 500 Hz-8000 Hz). All subjects were
tested in an audiometric booth within the Auditory Research
Lab in the Auburn University Speech and Hearing Clinic
with ambient noise below recommended levels [42]. Fisher’s
auditory checklist [43] was used to screen for poor listening
skills (below grade norms) in school-age children (see results
in Tables 1 and 2). Children who exhibited severe language
and/or reading problems during the Fisher’s checklist com-
pletion were excluded to reduce possible comorbid effects.
Subjects were then screened to ensure normal middle ear
function (Jerger type “A” tympanograms bilaterally) on a
Madsen ZO 33 immittance meter. Normal brainstem func-
tion was ensured on the ABR test (see latencies in Tables 1
and 2) prior to participation in the P3AERP experimental
protocol for all subjects.

All subjects were first screened for central auditory
function (see results in Tables 1 and 2) using the SCAN or
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TABLE 3: Behavioral test results for children with APD.
. Age * PPT * DPT
Norms Right ear Left ear Norms Right ear Left ear

1 9y9m >/=65% 48%" 62% " >/=65% 27%" 32%"
2 8y2m >/=40% 38%" 21%" >/=40% 28% 30%
3 8y5m >/=40% 37% 42% >/=40% 38% 38%"
4 9y5m >/=65% 85% 62% " >/=65% 60%" 73%

5 12y2m >/=75% 50% 48%" >/=75% 76% 44%"
6 13y >/=75% 84% 60%" >/=75% 56% 52%
7 12y2m >/=75% 52% 56% >/=75% 44%" 24%"
8 1ly7m >/=75% 70% " 78% >/=75% 78% 60%
9 12y9m >/=75% 72% 64% >/=75% 36% 36%
;From Bellis [52].

Below norms.
TABLE 4: Behavioral test results for children without APD.
. Age * PPT » DPT
Norms Right ear Left ear Norms Right ear Left ear

1 9y5m >/=65% 75% 68% >/=65% 84% 90%
2 8y >/=40% 68% 72% >/=40% 40% 45%

3 8y5m >/=40% 98% 90% >/=40% 57% 48%
4 9y5m >/=65% 75% 80% >/=65% 65% 65%

5 12y1lm >/=75% 95% 92% >/=75% 81% 83%
6 13y >/=75% 85% 85% >/=75% 78% 78%
7 lly7m >/=75% 78% 78% >/=75% 80% 80%
8 12y >/=75% 80% 80% >/=75% 76% 78%
9 12y10m >/=75% 100% 90% >/=75% 100% 90%

From Bellis [52].

SCAN-A test battery [44, 45]. The subtests in the SCAN
screening battery for children included (a) Filtered Words
(to evaluate auditory closure), (b) Auditory Figure-Ground
(to evaluate speech in noise), and (c) Competing Words
(to evaluate dichotic speech). Screening by these tests pro-
vides consideration of the following factors: (a) monaural
separation/closure, (b) binaural integration, and (c) binaural
separation [46, 47].

The two auditory pattern perception tests used for clinical
assessment of APD were (1) Pitch Patterns Test (PPT) [48]
and (2) Duration Patterns Test (DPT) [49]. Both of these
measures are highly sensitive to lesions in the CANS [48, 50,
51] and performance of children with APD can be compared
to age norms available for school-age children on both of
these tests [10, 52]. These tests were also selected because they
can provide useful measures of auditory pattern recognition
and temporal ordering [46, 47]. Tables 3 and 4 show the
performance of all subjects in behavioral tests.

2.2. Recording Procedures. A four-channel electrode montage
was used to record P3AERPs on a Cadwell Excel Evoked
Potentials System. In accordance with the International
10-20 System, neuroelectrical activity was recorded from
silver cup electrodes placed on the midline at frontal (F,),
central (C,), and parietal (P,) scalp locations, referenced
to linked electrodes on earlobes and a forehead ground

(F,,). Myogenic activity from eye movement was monitored
by electrooculographic (EOG) recording from electrodes
placed below and above the left eye. Trials contaminated
by eye movements or myogenic artifacts were automatically
excluded from the averages. It was ensured that all individual
electrode impedances were below 3000 ohms and the inter-
electrode impedances were below 1000 ohms.

Subjects were seated in a reclining chair and required
to fixate their vision on a target placed in front of them
to minimize visual or movement artifacts. All subjects were
instructed and trained to listen for the rare or infrequent
high-pitched (2000 Hz) tones and ignore the lower pitched
frequent (1000 Hz) tones. All subjects were required to keep
count of the number of infrequent stimuli for report to the
investigator after the respective trial. This ensured selective
attention required for the P3AERP task. Practice trials were
provided for all subjects prior to the experiment. The entire
procedure took approximately two hours for each subject and
rest was provided between some experimental conditions in
children to reduce fatigue.

2.3. Stimuli. Rarefaction tone bursts with intensity of 70 dB,
duration of 20 milliseconds (msec), and rise-fall time of
10 msec were used. An oddball paradigm was selected to
assess auditory discrimination of the frequent and infrequent
stimuli. The frequent stimuli (1000 Hz tone bursts) and
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infrequent stimuli (2000 Hz tone bursts) were presented
binaurally in a 4 :1 (frequent : infrequent) ratio in an oddball
paradigm through insert ER3 phones at rates of 1/sec and
3/sec. Stimuli (frequent and infrequent tone bursts) were
presented along with competing noise presented in both ears.
The stimuli were presented at 70 dB HL while the level of
competing noise was varied (0 dB, 40 dB, and 60 dB).

2.4. Conditions. Each subject was evaluated in six P3AERP
conditions: (1) 1/sec rate, 0 dB noise, (2) 1/sec rate, 40 dB
noise, (3) 1/sec rate, 60 dB noise, (4) 3/sec rate, 0 dB noise,
(5) 3/sec, 40 dB noise, and (6) 3/sec, 60 dB noise. The order
of conditions was counterbalanced across subjects to reduce
any order effects.

2.5. Data Analysis. P3AERPs were identified and latencies
and amplitudes were determined for P3AERP waves iden-
tified on the basis of a comparison between the frequent
and infrequent waveforms. Two runs of each condition were
required for repeatability and reliability purposes. For single-
peaked replicable waveforms, the P3AERP component was
identified as the large positive peak following the N200
component and present between 250 and 700ms in the
infrequent waveform but absent or of reduced amplitude in
the frequent waveform [32, 53]. The N200 component was
defined as the largest negative trough following P200 in a
latency range between 150 and 250 ms. For multiple-peaked
or broad-peaked waveforms, an intersect method was used
[53, 54]. Intersection of extrapolated lines from the ascending
and descending slopes of the multiple-peaked or broad-
peaked positive PSAERP components following N200 in the
infrequent waveform was used to determine the P3AERP
component.

Latencies were measured to the highest peak of the
P3AERP wave for single-peaked waveforms described above
or by the slope-intersect for multiple-peaked waveforms
described above. Amplitudes were measured from the N200
trough to the P3AERP peak (for single-peaked waveforms)
or from the N200 trough to the slope-intersect (for multiple-
peaked waveforms). For waveforms to be accepted for analy-
sisand interpretation, identification of the PAAERP peak by at
least two of three independent experienced raters with good
confidence ratings of 3 or higher on a 5-point rating scale was
required [55].

There was excellent agreement between recordings
obtained from the frontal (F,), central (C,), and parietal
(P,) scalp locations across all subjects (r = 0.96). Data
recorded from central (C,) locations were used for analysis
because C, scalp locations provide good topography for
amplitude/latency correlations that reflect neurocognitive
operations underlying fundamental discrimination processes
required in the P3AERP oddball paradigm [56]. P3AERP
latency and amplitude measures were averaged over two
complete trials and the data were subjected to factorial
analyses of variance to investigate effects of groups (APD
versus non-APD), stimulus rate (I1/sec versus 3/sec), and
competing noise (no noise versus 40 dB noise versus 60 dB
noise). Figures 1 and 2 show typical P3AERP recordings
from C,, P,, and F, locations along with electrooculographic
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FIGURE 1: Representative P300 waveforms for a child with APD.
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FIGURE 2: Representative P300 waveforms for a child without APD.

(EOQ) recordings in a child with APD and a control child,
respectively. Please note that in Figures 1 and 2, the higher-
amplitude wave marked “P300” was found for recordings
associated with the infrequent stimuli in all electrode (C,, P,
and F,) locations.
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2.6. Neural Network Modeling. P3AERP latency and ampli-
tude data were subjected to neural network algorithms to
find possible hidden associations between input (group- and
stimulus-related) and output (P3AERP) variables. The multi-
layer perceptron architecture used in the analysis is popular
to approximate any multivariate relationship between input
and output variables [35]. A hidden layer collects information
from the units of the input layer and looks for weighted con-
nections called synapses. These synaptic weights influence
(enhance or decrease) the input information to produce the
resultant outcome seen in the output layer. A positive synaptic
weight (>0) is considered excitatory while a negative weight
(<0) is considered inhibitory. In our study, the input layer
of the neural network analysis included stimulus parameters
and output patterns included P3AERP latency and amplitude.



2.6.1. Neural Network Modeling

(1) Software. All the neural network modeling was completed
in IBM SPSS Version 20 software. In IBM SPSS Modeler,
the neural networks used are feed-forward neural networks,
also known as multilayer perceptrons. The neurons in such
networks (sometimes called units) are arranged in layers.
Typically, there is one layer for input neurons, one or more
internal processing hidden layers, and one output layer. Each
layer is connected to every neuron in the hidden layer, and
each neuron in the hidden layer is connected to every neuron
in the output layer.

The connections between neurons have weights associ-
ated with them, which determine the strength of influence
one neuron has on another. Information flows from the
input layer via the processing layer to the output layer to
generate predictions. By adjusting the connection weights
during training to match predictions, the network “learns” to
generate better and better predictions.

The training of a multilayer perceptron uses a method
called back propagation of error, based on the generalized
delta rule [57]. For each record presented to the network to
generate a prediction from the output layer, this prediction
is compared to the recorded output value for the training
record, and the difference between the predicted and actual
output(s) is propagated backward through the network to
adjust the connection weights to improve the prediction for
similar patterns.

(2) Architecture. The IBM SPSS Modeler uses the multi-
layer perceptron (MLP), a feed-forward, supervised learning
network with up to two hidden layers. The MLP network
is a function of one or more predictors which minimizes
the prediction error of one or more targets. The general
architecture for the MLP modeling consists of an input layer,
hidden layer, and output layer. Expert architecture selection
determines the “best” number of hidden units in a single
hidden layer. All of the data set is used if the number of
records is less than 1000. A random sample is taken from
the entire data set and split into training (70%) and testing
samples (30%). Error back propagation is used to compute
the error function and adjust synaptic weights of the varia-
bles.

(3) Supervised Learning Rule. In neural networks, learning
rules are provided with a set of input-output data (also called
training data) of proper network behavior. As the inputs are
applied to the network, the network outputs are compared to
the target outputs. The learning rule is then used to adjust the
weights and biases of the network in order to move the net-
work outputs closer to the targets. The Widrow-Hoft learning
rule [58] is widely used for supervised training of neural
networks. It is independent of the activation function of the
neurons used since it minimizes the squared error between
the desired output and neuron’s activation value. This rule
can be considered a special case of delta learning rule. For
training purposes, the Widrow-Hoff rule was applied to use
differences between actual inputs and desired outputs as the
error signal for the estimation of units in the output layer. The
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model performance was cross-validated by assigning 70% of
cases for training and 30% of cases for testing.

(4) Feed-Forward, Back-Propagation Algorithm. The feed-
forward back-propagation learning algorithm is a well-
recognized procedure for training neural networks for multi-
layer perceptrons (MLPs). It is based on plotting performance
error as a function of neural network weights. Each iteration
in the algorithm constitutes two sweeps: forward activation
to produce a solution and a backward propagation of the
computed error to modify the weights. The back-propagation
algorithm [57] is used in layered feed-forward ANNs. This
means that the artificial neurons are organized in layers and
send their signals “forward,” and then the errors are prop-
agated backwards. The network receives inputs by neurons
in the input layer, and the output of the network is given by
the neurons on an output layer. There may be one or more
intermediate hidden layers. The back-propagation algorithm
uses supervised learning, which means that we provide the
algorithm with examples of the inputs and outputs we want
the network to compute, and then the error (difference
between actual and expected results) is calculated. The idea
of the back-propagation algorithm is to reduce this error,
until the ANN learns the training data. The training begins
with random weights, and the network begins to adjust
them so that the error will be minimal. The neural network
paradigm used in this study utilized the back-propagation
neural networks with a single hidden layer that have been
shown to be capable of providing an accurate approximation
of any continuous function provided that there are sufficient
hidden neurons.

(5) Hidden Layers. The SPSS algorithm used a single hidden
layer in our study because it has been shown that an MLP
with one hidden layer has the capacity to approximate any
function with an acceptable degree of accuracy if there are
enough hidden nodes.

3. Results

3.1. Response Reliability. There were no significant (P > 0.05)
differences in the numbers of infrequent stimuli counted
between the two groups of children (with and without APD).
Intragroup comparisons showed that all individual subjects
were within +10% of the target count. Interjudge reliability
on P3AERP analyses across judges was good (r = 0.90).
P3AERPs were obtained in six conditions: (1) 1/sec rate, 0 dB
noise, (2) 1/sec rate, 40 dB noise, (3) 1/sec rate, 60 dB noise,
(4) 3/sec rate, 0 dB noise, (5) 3/sec, 40 dB noise, and (6) 3/sec,
60 dB noise.

3.2. Analyses of Variance Results

3.2.1. P3AERP Latencies. Analyses of variance (ANOVA)
results (see Table5) showed significant differences in
P3AERP latency between the groups of children with and
without APD (F(1,96) = 13.55; P < 0.01). Post hoc (Fisher’s
LSD) means comparisons showed significantly (P < 0.01)
greater mean latencies for children with APD (344.08 msec)
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TABLE 5: ANOVA results for P300 latencies.
Effect dF MS effect MS error F P
Groups 1 9357.66 690.30 13.55 <0.01"
Rate 1 9383.75 690.30 13.59 <0.01"
Noise 2 440.48 690.30 0.64 0.53
Groups X rate 1 22.87 690.30 0.03 0.86
Groups X noise 2 937.95 690.30 1.36 0.26
Rate X noise 2 1053.88 690.30 1.52 0.22
Groups X rate X noise 2 509.34 690.30 0.74 0.48
*Statistically significant difference (P < 0.05).
TABLE 6: ANOVA results for P300 amplitudes.
Effect dF MS effect MS error F p
Groups 1 30.04 12.28 2.45 0.12
Rate 1 250.49 12.28 20.39 <0.01"
Noise 2 11.91 12.28 0.96 0.38
Groups X rate 1 10.94 12.28 0.89 0.35
Groups X noise 2 23.74 12.28 1.93 0.15
Rate X noise 2 18.27 12.28 1.48 0.23
Groups X rate X noise 2 16.81 12.28 1.37 0.26
"Statistically significant difference (P < 0.05).
TABLE 7: Descriptive statistics for P300 latencies.
Rate = 1/sec Rate = 3/sec

No noise 30 dB noise 60 dB noise No noise 30 dB noise 60 dB noise
APD group 324.22 (18.14) 334.42 (17.76) 344.28 (15.84) 345.5 (29.95) 356.78 (37.18) 359.33 (35.72)
Non-APD group  310.05 (18.48) 314.55 (22.22) 325.22 (20.22) 344.94 (28.14) 333.22 (33.03) 323.83 (26.54)

TABLE 8: Descriptive statistics for P300 amplitudes.
Rate = 1/sec Rate = 3/sec
No noise 30 dB noise 60 dB noise No noise 30 dB noise 60 dB noise

APD group Sl\l/[) - i'2035 745 (3.96) 5.89 (3.39) 410 (2.76) 4.69 (1.95) 5.54 (2.88)
Non-APD group 8.77 (3.18) 702 (3.17) 10.85 (5.35) 3.53 (1.26) 5.64 (3.46) 6.42 (3.62)

than mean latencies of children without APD (325.47 msec),
indicating differences in speeds of information processing
between children with and without APD. Main effects
of stimulus rate were also significant (F(1,96) = 13.59;
P < 0.01) and post hoc means comparisons using
Fisher’s LSD indicated significantly longer mean latencies
(344.11 msec) for the 3/sec condition than mean latencies for
the 1/sec condition (325.45 msec), indicating that increasing
stimulus rate increases P3AERP latency. The main effects
of competing noise were not significant (F(2,96) = 0.63;
P > 0.05). Descriptive statistics of P3AERP latencies are
shown in Table 7.

3.2.2. P3AERP Amplitudes. Analyses of variance (ANOVA)
results (see Table 6) showed no significant (P > 0.05)
differences in P3AERP amplitude between the groups of

children with and without APD (F(1,96) = 2.45; P = 0.12).
Main effects of stimulus rate were significant (F(1,96) =
20.39; P < 0.01). Post hoc means comparisons using
Fisher’s least significant difference (LSD) showed significantly
(P < 0.01) greater mean amplitudes (8.03 V) for the 1/sec
condition than for the 3/sec condition (4.99 4V). Main effects
of competing noise were not significant (F(2,96) = 0.97;
P > 0.05). Descriptive statistics of PAAERP amplitudes are
shown in Table 8.

3.3. Neural Network Modeling

3.3.1. Context Updating Model [21]. Polich [21] has provided
an updating theory for P300 generation and has proposed
three factors: (1) processing capacity, (2) attention allocation,
and (3) task demands. According to Polich [21], the initial



Advances in Artificial Neural Systems

Rate = 1.00

Rate = 2.00

Noise = 1.00

Noise = 2.00

Noise = 3.00

Group 1: children with APD; group 2: control children without APD

Rate 1: 1/second; rate 2: 3/second

Noise 1: 0 dB noise; noise 2: 30 dB noise; noise 3: 60 dB noise

Synaptic weights
Hidden node H(1:1) with group 1 = —0.22; group 2 = 0.01
Hidden node H(1:2) with group 1 = —0.32; group 2 = —-0.05
Hidden node H(1:3) with group 1 = 0.69; group 2 = —0.09

Hidden node H(1:1) with rate 1 = —0.41; rate 2 = 0.32
Hidden node H(1:2) with rate 1 = 0.14; rate 2 = —0.46
Hidden node H(1:3) with rate 1 = —0.29; rate 2 = 0.39

Hidden node H(1:1) with noise 1 = —0.14; noise 2 = —0.07; noise 3 = 0.43
Hidden node H(1:2) with noise 1 = 0.22; noise 2 = —0.15; noise 3 = 0.04
Hidden node H(1:3) with noise 1 = 0.27; noise 2 = —0.05; noise 3 = —0.08

Synaptic weight = 0.12

Latency

Synaptic weight = —0.56

Synaptic weights

FIGURE 3

sensory processing for the P300 task is fundamental for
stimulus classification and the processing capacity factor can
limit this processing. The second factor, “attention allocation,”
reflects an attention driven process that evaluates stimulus
classification (target or novel versus frequent), by evaluating
the comparison in working memory. P3AERP latency and
amplitude are strongly influenced by this attention allocation
factor and active attention increases PAAERP amplitude while
decreasing P3AERP latency. The third factor, “task demands,”
postulates that task requiring greater amounts of attentional
resources will increase P3AERP amplitude and/or increase
P3AERP latency.

3.4. Latency Results for PZAERP. The results of neural net-
work analyses for P3AERP latency results are shown in
Figure 3. For the three factors (groups, rate, and noise), there
were a total of seven units comprised of two units for groups,
two units for rate, and three units for noise. These were linked
to a single hidden layer comprised of three units before final
estimation by the output layer. For purposes of our model, we

postulated these three units in the hidden layer as follows: (1)
synaptic connectivity or neural synchrony between neurons
via node H(1:1) that reflects the “processing capacity” factor
of Polich context updating model, (2) speed of stimulus
classification via node H(1:2) that reflects the “attention
allocation” factor of Polich’s updating model, and (3) resource
allocation demands via node H(1:3) of “resource allocation”
that reflects the “task demand” of Polich’s model. As shown
in Figure 3, the strongest synaptic weight was found between
node H(1:3) of resource allocation and P3AERP latency.
Competing levels of noise had primarily an inhibitory effect
on resource allocation, possibly reflecting the competition of
neural resources engaged in P300 generation versus neural
resources occupied by competing noise. The trend for longer
latencies associated with increasing levels of competing noise
reflected the mean data shown in Table 7.

3.4.1. Amplitude Results for P3AERP. The results of neural
network analyses for PBAERP amplitude results are shown
in Figure 4. For the three factors (groups, rate, and noise),



Advances in Artificial Neural Systems

B

Rate = 1.00

Group 1: children with APD; group 2: control children without APD

Rate 1: 1/second; rate 2: 3/second
Noise 1: 0 dB noise; noise 2: 30 dB noise; noise 3: 60 dB noise
Synaptic weights
Hidden node H(1:1) with group 1 = —0.21; group 2 = —0.40
Hidden node H(1:2) with group 2 = —0.04; group 1 = —0.09
Hidden node H(1:3) with group 1 = 0.39; group 2 = —0.26

‘ Rate = 2.00 I H(1:2)
)% Synaptic weight = 0.77
Noise = 1.00 H(1:3)
Synaptic weights
Noise = 2.00 Hidden node H(1:1) with rate 1 = 0.35; rate 2 = 0.67
Hidden node H(1:2) with rate 1 = 0.66; rate 2 = —0.27
Hidden node H(1:3) with rate 1 = 1.02; rate 2 = —0.36
Hidden node H(1:1) with noise 1 = 0.29; noise 2 = 0.11; noise 3 = —0.06
Noise = 3.00

Hidden node H(1:2) with noise 1 = —0.43; noise 2 = —0.23; noise 3 = —0.13
Hidden node H(1:3) with noise 1 = —0.69; noise 2 = —0.13; noise 3 = 0.48

Amplitude

Synaptic weight = 0.36

FIGURE 4

there were a total of seven units comprised of two units for
groups, two units for rate, and three units for noise. These
were linked to a single hidden layer comprised of three units
before final estimation by the output layer. For purposes
of our model, we postulated these two units in the hidden
layer as follows: (1) strength of neural firing via node H(1:1),
(2) attentional allocation via node H(1:2), and (3) resource
allocation via node H(1:3). According to Polich [21], at least
three factors (processing capacity, attention allocation, and
task-related demands) control the neural generation of the
P300 component. Based on this updating theory of the P300,
we selected three nodes in the hidden layer for use in our
study. The first node H(1:1), that is, neural firing, was selected
based on processing capacity. The second node H(1:2) of
stimulus classification was based on attention allocation,
and the third node H(1:3), that is, resource allocation, was
proposed based on task demands.

As shown in Figure 4, the strongest synaptic weight was
observed between H(1:3) node of resource allocation and

P3AERP amplitude. Competing levels of noise had primarily
inhibitory influences on node H(1:3), that is, resource allo-
cation. Hence, it appears that, for both groups of children,
competing noise decreased P3AERP amplitudes, possibly
because of the associated reduction in neural resources
available.

4. Discussion

4.1. P3AERP Latency Effects. The results of the current study
indicate significantly longer P3AERP latencies for children
with APD than for children without APD. Neural network
analyses shown in Figure 3 indicated a strong association
between speed of information processing and stimulus-
related factors in children with APD. These results appear
to indicate that, for children with APD, P300 latency is
significantly influenced by two factors (speed of information
processing and task-related demands imposed by the rapid
rates and competing noise).
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The longer P3AERP latencies in children with APD
(relative to children without APD) found in our study have
previously been attributed to slower speeds of information
processing in children with APD. Studies by Jirsa [32] and
Jirsa and Clontz [27] have shown differences in such funda-
mental auditory processing mechanisms across children with
and without central auditory processing disorders. Children
with APD showed significantly longer PZAERP latencies and
smaller amplitudes than control children without APD on a
binaural listening task [27]. Significant decreases in P3AERP
latency and increase in PSAERP amplitudes have been shown
in children with APD following therapeutic intervention [32].

Neural network modeling results of the current study
suggest that reduction in allocation of neural resources can
significantly inhibit P300 processing in children. P3AERP
latency is considered to be an index of stimulus classification
speed and is proportional to the time taken to detect and
evaluate a target stimulus that is embedded in a stream of
irrelevant stimuli [21].

4.2. P3AERP Amplitude Effects. There were no significant
(P > 0.05) differences in P3AERP amplitude between
groups (children with and without APD) but both groups
showed significantly greater mean P3AERP amplitudes for
the 1/sec condition than for the 3/sec condition, indicating
that increasing the stimulus rate decreased neural processing
resources at rapid rates. Neural network results shown in
Figure 4 indicated a strong association between resource allo-
cation and P3AERP amplitude. The relationship of P3AERP
amplitudes with resource allocation in both groups can be
explained by the triarchic model for PRAERP amplitude [30,
59, 60]. According to this model, three variables may make
significant contributions to P3AERP amplitude: subjective
probability of stimulus (P), stimulus meaning (M), and
proportion of information transferred to subject (T). It is
possible that increasing stimulus rate in the current study
influenced the subjective probability (P) of the stimuli by
increasing the temporal frequency of the target stimulus
(hence reducing the novelty of the target stimulus) and
reducing the P3AERP amplitude.

Neural network modeling results of our study indicate
that, for both groups of school-age children, reduction in
neural allocation of attention by competing noise was asso-
ciated with smaller PSAERP amplitudes. PZAERP amplitude
is believed to reflex the attentional resources needed for
stimulus classification of target versus frequent stimuli [26].
Discriminating target or novel stimuli from frequent stimuli
produce robust P300 responses that increase in amplitude as
the probability of the target stimuli increases [21].

4.3. Stimulus-Related Effects. Analyses of variance results of
this study (Tables 5 and 6) showed significant main effects
of stimulus rate on P3AERP latency. Results of this study
showed significantly greater mean P3AERP amplitudes for
the 1/sec condition than for the 3/sec condition, indicating
that increasing the stimulus rate decreased information
processing resources at rapid rates. Neural network analyses
in Figure 3 indicated that, for both groups, there was an
inhibitory influence of competing noise on neural resource
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allocation, thereby increasing P3AERP latency and decreas-
ing P3AERP amplitude.

Neural network modeling results in Figures 3 and 4
indicated that competing noise can limit resource allocation
in school-age children with and without APD. The significant
effects of stimulus rate on P3AERP latency and P3AERP
amplitude in this study support findings of previous studies
that showed significant effects of stimulus-related factors
on P3AERP latency [14, 28, 61, 62]. Kilpeldinen et al. [61]
showed significantly longer latencies and reduced amplitudes
of P3AERP components for normally hearing children, when
excessively long intervals occurred between target stimuli.
Such effects on latency and amplitude were not seen in
normally hearing adult listeners, suggesting differences in
neural resources and processing for P3AERP generation
between children and adults. Krishnamurti [28] measured
P3AERP latencies in adults with APD and control adults
without APD for tone burst stimuli presented in two condi-
tions: (1) binaurally and (2) in conjunction with contralateral
competing noise. Longer P3AERP latencies were found in
adults with APD (compared to controls without APD) on
both binaural and competing noise conditions. Also adults
with APD showed longer P3AERP latencies on the con-
tralateral competing noise than the binaural condition while
control adults without APD showed no significant differences
between P3AERP latencies in the binaural and competing
conditions. McPherson and Salamat [14] studied the effects
of varying ISI (1 sec, 2 sec, and 4 sec) on P3AERP latency in 11
subjects with ADHD and 20 adult controls without ADHD.
Subjects were required to respond by pushing a button for
common stimuli presented and ignoring the rare stimuli. Sig-
nificant differences between groups were found for each of the
three ISIs. The control group showed significant differences
in P3AERP latency across ISIs and the authors proposed that
the longer P3AERP latencies with increasing ISI may be due
to longer processing times needed to discriminate stimuli.
In contrast, the group with ADHD showed no significant
differences in P3AERP latency across ISIs, indicating reduced
attention across all ISIs. Salamat and McPherson [62] studied
the effects of varying interstimulus intervals (1sec, 2 sec,
4 sec) on P3AERPs in 20 normally hearing adult listeners.
P3AERP latencies were found to increase with increasing
interstimulus interval (ISI) and the authors hypothesized
that the longer P3AERP latencies may reflect the decline
in attention and cognitive processing associated with longer
ISIs.

The significant effects of stimulus rate on P3AERP latency
and P3AERP amplitude in this study also question the
“endogenous” nature of P3AERPs. By definition, P3AERPs
are typically considered to be endogenous potentials that are
influenced more by internal (subject-related) factors than
external (stimulus-related) factors [8, 15, 63-65]. However,
several studies have also shown that stimulus-related factors
(e.g., frequency and intensity) can significantly influence
latency and amplitude of P3AERPs [16, 18]. Increasing
stimulus intensity will result in an increase in P3AERP
amplitude and decrease P3AERP latency [18]. Polich et al.
[18] showed that, above 75dB SPL, the amplitude of the
P3AERP does not significantly increase, indicating that the
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exogenous component is maximized. If P3AERP truly repre-
sents an endogenous potential, the PZAERP amplitudes and
latencies should be similar at suprathreshold and threshold
levels. P3AERP waveforms have been shown to be larger
in amplitude and shorter in latency at suprathreshold levels
(75 dB SPL) compared to threshold levels [16]. In the current
study, P3AERP amplitudes were found to be reduced with
competing noise, reflecting that there may be more than just
an endogenous aspect to components of the P3AERPs.

5. Conclusions

Results of the current study offer promise for use of PAERPs
in evaluation of auditory processing disorders in school-age
children. More research is needed, however, before the use
of P3AERPs in a standard APD battery can be advocated for
school-age children. The utility of other physiological mea-
sures of brainstem processing has already been demonstrated
in investigating auditory training (plasticity) effects [66, 67].
More research on neural correlates of cortical processing
by measures such as P3AERPs will provide insight into the
listening skills of school-age children.
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