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Twokinds of second-order nonlinear, ordinary differential equations (ODEs) appearing inmathematical physics are analyzed in this
paper.The first one concerns theThomas-Fermi (TF) equation, while the second concerns the Langmuir-Blodgett (LB) equation in
current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs
are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced
to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and
physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.

The paper is dedicated to the memory of the authors’ Professor in National Technical University of Athens Dr. D. E.
Panayotounakos who contributed a lot to the study of Thomas-Fermi and Langmuir-Blodgett equations

1. Introduction

An equation of considerable interest, called the Langmuir-
Blodgett (LB) equation [1, 2], appeared in connectionwith the
theory of flow of a current from a hot cathode to a positively
charged anode in a high vacuum.The cathode and anode are
long coaxial cylinders. It was proved [2, page 409] that the
LB equation has an analytic expansion in the neighborhood
of a fixed value of the independent variable, which assumes
arbitrarily given values of the dependent variable and its
derivative provided the zero value. However, the above
equation does not admit exact analytic solution in terms of
known tabulated functions [3, 4]. A lot of applications have
been proposed for Langmuir equation. Horváth et al. [5] used
Martin-Synge algorithm or anti-Langmuir in liquid chro-
matography, Shang and Zheng [6] proposed the system of

Zakharov equations which involves the interaction between
Langmuir and ion-acoustic waves in plasma, Graham and
Cairns [7] posed the constraints on the formation and
structure of Langmuir eigenmodes in the solar wind, and so
forth.

On the other hand, the Thomas-Fermi (TF) equation
appears in the problem of determining the effective nuclear
charge in heavy atoms [2, 8, 9]. Numerous applications have
also been proposed for TF equation. Tsurumi and Wadati
[10] applied the TF approximation to obtain the dynamics
of magnetically trapped boson-fermion, Liao [11] proposed
an analytic technique for TF equation, Abbasbandy and
Bervillier [12] used analytic continuation of Taylor series to
confront the TF equation, Ourabah and Tribeche [13] pre-
sented a TFmodel based on thermal nonextensive relativistic
effects, and so forth.
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Both LB and TF equations do not admit exact analytic
solution in terms of known (tabulated) functions. In this
paper using series of admissible functional transformations,
at first both LB and TF nonlinear ODEs are reduced to
equivalent Abel’s equations of the second kind of the normal
form. According to a mathematical methodology recently
developed [14–16], we extract closed-form solution of the
aboveAbel equations in both phase and physical planes under
initial data in accordance with the physical problems.

The mathematical technique introduced in our study is
general and can be applied to a very large class of yet unsolv-
able ODEs in nonlinear mechanics and generally in mathe-
matical physics.Themethod employed is exact in accordance
with the boundary conditions of each problem under con-
sideration and gives us the possibility not to consider the a
priori approximate construction of the solutions in the form
of power series, some coefficient of which must be estimated.
In addition with our analysis the exact value of the first order
derivative of Thomas Fermi equation at 𝑥 = 0 is derived
in a different way from the methods already existing in the
literature [17–21].

2. Preliminaries: Notations

A nonlinear ODE of considerable interest, called the Lang-
muir-Blodgett (LB) equation [1], is the following:

3𝑦𝑦


𝑥𝑥
+ 𝑦
2

𝑥
+ 4𝑦𝑦



𝑥
+ 𝑦
2
− 1 = 0. (1)

Here the notations 𝑦
𝑥
= 𝑑𝑦/𝑑𝑥, 𝑦

𝑥𝑥
= 𝑑
2
𝑦/𝑑𝑥
2
, . . . are used

for the total derivatives.
This equation of constant coefficients appeared in con-

nection with the theory of flow of a current from a hot cath-
ode to a positive charged anode in a high vacuum. The cath-
ode and anode are long coaxial cylinders and the independent
variable 𝑦 is defined by the equation: 𝑦 = 𝑓(𝑟/𝑟

0
), where 𝑟 is

the radius of the anode enclosing a cathode of radius 𝑟
0
. The

independent variable 𝑥 is given by 𝑥 = ln(𝑟/𝑟
0
).

Equation (1) is converted into a somewhat more tractable
form bymeans of the transformation 𝑦 = 𝑒−𝑥/2𝑧(𝑥) proposed
by Davis [2] and thus becomes

3𝑧𝑧


𝑥𝑥
+ 𝑧
2

𝑥
− 𝑒
𝑥
= 0. (2)

Numerical techniques concerning the solution of (1) are
included in [6].

The TF nonlinear ODE

𝑦


𝑥𝑥
= 𝑥
−1/2

𝑦
3/2 (3)

appears in the problem of determining the effective nuclear
charge in heavy atoms [8, 9]. The solution is defined for the
boundary values

𝑦 (0) = 1,

𝑦 (∞) = 0.

(4)

Interesting approximate and numerical integrations
methods have been proposed by Sommerfeld [22], Bush and
Caldwell [17], Kobayashi et al. [20], Feynman et al. [18], and
Coulson and March [19].

The differential equation (3) belongs to equations of
Emden-Fowler type [3, 4]. Taking into account the known
exact parametric solutions of this class of nonlinear ODEs [4,
pages 241–250], the above mentioned equation can not solve
analytically in terms of known functions.

Many investigations have studied the TF equation obey-
ing to the boundary conditions (4) (see [18–21]) and they
carried out the outward numerical integration (𝑥 = 0, 𝑦 →

∞) for a sequence of values of initial slope converging step by
step to that curve which should approach the 𝑥-axis asymp-
totically. Finally for a semianalytical solution methodology
we must refer to Sommerfeld [22].

The Emden-Fowler nonlinear ODE of the normal form is

𝑦


𝑥𝑥
= 𝐴𝑥
𝑛
𝑦
𝑚
, (5)

where 𝐴 and 𝑛, 𝑚 are arbitrary parameters. We note the
following regarding the reduction of (5) (see [4]).

For 𝑚 ̸= 1 and 𝑚 ̸= −2𝑛 − 3 the admissible functional
transformations

𝜉 =

2𝑛 + 𝑚 + 3

𝑚 − 1

𝑥
(𝑛+2)/(𝑚−1)

𝑦;

𝑢 = 𝑥
(𝑛+2)/(𝑚−1)

(𝑥𝑦


𝑥
+

𝑛 + 2

𝑚 − 1

𝑦)

(6)

reduce the nonlinear ODE (5) to the following Abel equation
of the second kind of the normal form

𝑢𝑢


𝜉
− 𝑢 = −

(𝑛 + 2) (𝑛 + 𝑚 + 1)

(2𝑛 + 𝑚 + 3)
2

𝜉

+ 𝐴(

𝑚 − 1

2𝑛 + 𝑚 + 3

)

2

𝜉
𝑚
.

(7)

In what follows, by a series of admissible functional
transformations, we prove that both of (1) and (3) can be
exactly reduced to Abel’s equations of the second kind of the
normal form 𝑦𝑦



𝑥
− 𝑦 = 𝑓(𝑥). According to the following

reduction procedure the exact analytic solutions of the above
Abel equations are constructed, avoiding the approximate
expression of the solutions in power series.

3. The Reduction Procedure

3.1. The LB Equation. The LB equation (1) is a second order
nonlinear ODE of constant coefficients. Thus, by the substi-
tution

𝑦


𝑥
= 𝑝 (𝑦)

⇒ 𝑦


𝑥𝑥
= 𝑝


𝑦
𝑝,

(8)

it can be reduced to the followingAbel equation of the second
kind:

3𝑦𝑝𝑝


𝑦
= −𝑝
2
− 4𝑦𝑝 − 𝑦

2
+ 1. (9)

Furthermore, the well-known transformation [4, page 50]

𝑤 (𝑦) = 𝑝𝑒
∫(1/3𝑦)𝑑𝑦

= 𝑝 exp (ln 

𝑦





1/3

) = 𝑦
1/3
𝑝

⇒ 𝑝 = 𝑦
−1/3

𝑤; 𝑦 ̸= 0,

(10)
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giving the expressions

𝑝


𝑦
= 𝑦
−1/3

𝑤


𝑦
−

1

3

𝑦
−4/3

𝑤,

𝑝𝑝


𝑦
= 𝑦
−2/3

𝑤𝑤


𝑦
−

1

3

𝑦
−5/3

𝑤
2
,

(11)

transforms (9) into the following Abel equation of the second
kind:

𝑤𝑤


𝑦
= −

4

3

𝑦
1/3
𝑤 +

1

3

𝑦
−1/3

−

1

3

𝑦
5/3
. (12)

Finally, the substitution

𝑤 (𝑦) = 𝑛 (𝜉) ,

𝜉 =

4

3

∫𝑦
1/3
𝑑𝑦

⇒ 𝑦 = 𝜉
3/4

(13)

reduces (12) to the followingAbel equation of the second kind
of the normal form:

𝑛𝑛


𝜉
+ 𝑛 =

1

4

𝜉
−1/2

−

1

4

𝜉, (14)

or, setting

𝑛 (𝜉) = −𝑧 (𝜉) , (15)

to the form

𝑧𝑧


𝜉
− 𝑧 =

1

4

𝜉
−1/2

−

1

4

𝜉. (16)

The solution of (16), and thus the solutions of (14), (12),
and (9), constitutes the intermediate integral of the LB equa-
tion (1) in the phase plane. In other words, when obtaining
the solution of the transformed equation (16) in the form
𝑧 = 𝑧(𝜉,

∗

𝐶),
∗

𝐶 = first integration constant, the solution of (14)
becomes 𝑛(𝜉) = −𝑧(𝜉), the solution of (12) is𝑤(𝑦) = −𝑧(𝑦4/3),
and finally the solution of (8) is 𝑝(𝑦) = −𝑦

−1/3
𝑧(𝑦
4/3
). Thus,

the solution to the original Langmuir equation (1) in the
physical plane can be obtained by the integration by parts of
the following equation:

𝑑𝑦

𝑝 (𝑦)

= 𝑑𝑥

⇒ ∫

𝑑𝑦

𝑦
1/3
𝑧 (𝑦
4/3
)

= −𝑥 + 𝐶,

𝐶 = second integration constant.

(17)

Note that the reduced Abel equation (16) does not admit
an exact analytic solution in terms of known (tabulated)
functions [4, pages 29–45].

3.2.TheTFEquation. Equation (3) is a typical Emden-Fowler
nonlinear equation with 𝐴 = 1, 𝑛 = −1/2, and 𝑚 = 3/2.
A thorough examination concerning approximate expansion

solution of (3) is included in [20] as well as all the references
cited there. By now, with the aid of the transformations (6)
one reduces the original TF equation (3) to the followingAbel
equation of the second kind of the normal form:

𝑢𝑢


𝜉
− 𝑢 = −

12

49

𝜉 +

1

49

𝜉
3/2
, (18)

where

𝜉 = 7𝑥
3
𝑦, (19)

𝑢 = 𝑥
3
(𝑥𝑦


𝑥
+ 3𝑦) . (20)

In what follows, based on a mathematical construction
recently developed in [14, 15] concerning the closed-form
analytic solution of an Abel equation of the second kind of
the normal form 𝑦𝑦



𝑥
−𝑦 = 𝑓(𝑥), we provide the closed-form

solutions of the reduced Abel equation (18), that is to say, the
construction of the intermediate integral of the original TF
equation (3) in the phase plane, as well as the final solution
in the physical plane in accordance with the given boundary
conditions.

4. Closed-Form Solutions of the TF Equation
in the Phase Plane-Final Solutions

We consider the reduced Abel equation (18), namely, the
equation

𝑢𝑢


𝜉
− 𝑢 = 𝐴𝜉 + 𝐵𝜉

3/2
; 𝐴 = −

12

49

, 𝐵 =

1

49

, (21)

obeying (as the first of the boundary conditions (4) 𝑦(0) = 1
and the well-known result 𝑦

𝑥
(0) =

∗

𝐵 ̸= 0 [2, 8, 17–20]) the
transformed (19) and (20) equivalent condition:

at 𝜉 = 𝜉
0
= 0 → 𝑢 (0) = 𝑢

0
= 0. (22)

It was recently proved [14, 15] that an Abel equation of
the second kind of the normal form 𝑦𝑦



𝑥
− 𝑦 = 𝑓(𝑥) admits

an exact analytic solution in terms of known (tabulated)
functions. Hence, we perform the solution of (21) which
constitutes the solution of the TF equation in the phase plane
as follows:

𝜉 = ln 

𝜉 + 2

∗

𝐶






,

𝑢 (𝜉) =

1

2

𝜉 [𝑁 (𝜉) +

1

3

] ,

𝑁



𝜉
(𝜉) =

4 [𝐺 (𝜉) + 2 (𝐴𝜉 + 𝜉

3/2

)]

𝜉 [𝑁 (𝜉) + 4/3]

,

(23a)

1

4

[(𝜉 sin 𝜉 + cos 𝜉)
∗

𝐴(𝜉) + cos2𝜉] (2𝜉
∗

𝐴(𝜉) + cos 𝜉)

(𝜉

∗

𝐴(𝜉))

3

𝑒
𝜉

= 4 [𝐺 + 2 (𝐴𝜉 + 𝐵𝜉

3/2

)] ,

(23b)
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where
∗

𝐴 =

∗

𝐴(𝜉) = the cosine integral = ci (𝜉)

= C + ln 𝜉 +
∞

∑

𝑢=1

(−1)
𝑢 𝜉

2𝑢

(2𝑢) (2𝑢)!

;

C = Euler’s number = 0, 5572156649015325 . . . .

(23c)

Here
∗

𝐶 is integration constant, while the function 𝑁(𝜉) is
given implicitly in terms of the subsidiary function 𝐺(𝜉),
which can be determined from (23b), and the knownmember
of (21) as in the following three cases.

Case 1 (𝑄(𝜉) < 0 (𝑝 < 0)). Consider

𝑁

(1)

(𝜉) = 2√−

𝑝

3

cos 𝑎
3

,

𝑁

(2)

(𝜉) = −2√−

𝑝

3

cos𝑎 − 𝜋
3

,

𝑁

(3)

(𝜉) = −2√−

𝑝

3

cos 𝑎 + 𝜋
3

;

cos 𝑎 = −
𝑞

2√− (𝑝/3)
3

; 0 < 𝑎 < 𝜋.

(24)

Case 2 (𝑄(𝜉) > 0). Consider

𝑁(𝜉) =
3

√−

𝑞

2

+ √𝑄 +
3

√−

𝑞

2

− √𝑄. (25)

Case 3 (𝑄(𝜉) = 0). Consider

𝑁

(1)

(𝜉) = 2
3

√−

𝑞

2

,

𝑁

(2)

(𝜉) = 𝑁

(3)

(𝜉) = −
3

√−

𝑞

2

.

(26)

In all these formulae the quantities 𝑄, 𝑝, and 𝑞 are given
by

𝑄(𝜉) =

1

27

𝑝
3
(𝜉) +

1

4

𝑞
2
(𝜉) ;

𝑝 (𝜉) = −

𝑎
2

3

+ 𝑏,

𝑞 (𝜉) =

2

27

𝑎
3
−

1

3

𝑎𝑏 + 𝑐;

𝑎 = −4,

𝑏 =

3 + 4 [𝐺 (𝜉) + (𝐴𝜉 + 𝐵𝜉

3/2

)]

𝜉

,

𝑐 = −

4 [𝐺 (𝜉) + 2 (𝐴𝜉 + 𝐵𝜉

3/2

)]

𝜉

.

(27)

In order to define the type of the function 𝑁

(𝑖)

(𝜉)

(𝑖 = 1, 2, 3) which must be selected among the closed-form
solutions ((23a), (23b), and (23c)) to (26), as well as the value
of the subsidiary function 𝐺(𝜉) at 𝜉 = 0 and the value of
the integration constant

∗

𝐶, we must combine the above Abel
solutions with the boundary data.

We symbolize by 𝜉 = ln |2
∗

𝐶| the substitution while byL
0

any function L(𝜉) at 𝜉
0
= ln |2

∗

𝐶|. Thus functions 𝑢(𝜉) and
(𝑁



𝜉
)(𝜉) given in (23a) perform

𝑢 (𝜉) =

1

2

𝜉 [𝑁

(𝑖)

(𝜉) +

1

3

] ,

𝑁



𝜉

(𝑖)

(𝜉) =

4 [𝐺 (𝜉) + 2 (− (12/49) (𝜉) + (1/49) 𝜉

3/2

)]

𝜉 [𝑁

(𝑖)

(𝜉) + 4/3]

,

(28)

𝑢
0
=

1

2
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2

∗

𝐶









(𝑁

(𝑖)

0
+

1

3

) ,

𝑁

(𝑖)

𝜉
0

(𝜉)

=

4 [𝐺
0
+ 2 (− (12/49) ln 


2

∗

𝐶






+ (1/49) (ln 


2

∗

𝐶






)

3/2

)]

ln 

2

∗

𝐶






[𝑁

(𝑖)

0
+ 4/3]

.

(29)

On the other hand, the Abel nonlinear ODE (21) at 𝜉
0

becomes

1 +

− (12/49) ln 

2

∗

𝐶






+ (1/49) (ln 


2

∗

𝐶






)

3/2

𝑢
0

= 1 +

− (12/49) ln 

2

∗

𝐶






+ (1/49) (ln 


2

∗

𝐶






)

3/2

ln 

2

∗

𝐶






(𝑁

(𝑖)

0
+ 4/3)

=

𝑢


𝜉
0

𝜉



𝜉
0

.

(30)

Combination of the above equations results in the following
quadratic to𝑁

0
equation:

𝑁

(𝑖)

0

2

+ 𝑁

(𝑖)

0
+

4

9

+
[

[

[

1 −

1

∗

𝐶 ln 

2

∗

𝐶







]

]

]

⋅ [−2𝐺
0
+ 2(−

12

49

ln








2

∗

𝐶









+

1

49

(ln








2

∗

𝐶









)

3/2

)]

= 0,

(31)

including the value of 𝐺
0
and the constant on integration

∗

𝐶.
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Similarly, by (23b) one gets

32 {𝐺
0
+ [2(−

12

49

ln








2

∗

𝐶









+

1

49

ln








2

∗

𝐶









3/2

)]}

∗

𝐴

3

0

= {[ln








2

∗

𝐶









sin(ln








2

∗

𝐶









) + cos(ln








2

∗

𝐶









)]

∗

𝐴
0

+ cos2 (ln








2

∗

𝐶









)}(2 ln








2

∗

𝐶









∗

𝐴
0

+ cos(ln








2

∗

𝐶









))

(32)

that constitute a second equation including the value of 𝐺
0

and the constant of integration
∗

𝐶. Also in this equation by
means of (23c) we have

∗

𝐴
0
=

∗

𝐴(ln








2

∗

𝐶









) = ci(ln








2

∗

𝐶









)

= C + ln(ln








2

∗

𝐶









) +

∞

∑

𝑘=1

(−1)
𝑘
ln 

2

∗

𝐶







2𝑘

(2𝑘) (2𝑘)!

;

C = Euler’s number ≈ 0.5572.

(33)

Summarizing, from (19) and (20) one concludes that, since by
the first boundary conditions 𝑦(0) = 1 for 𝑥 → 0 ⇒ 𝑦 → 1

then for 𝑥 → 0 ⇒ 𝑦


𝑥
→ 0 or 𝑦

𝑥
→

∗

𝐵, where
∗

𝐵 is a fixed
value. Thus, combining (23a), (23b), and (23c) together with
the first of (28) and the Abel nonlinear ODE (21), one may
write that, for 𝑥 → 0 ⇒ 𝜉

0
→ 0, 𝑢

0
→ 0, 𝑁

0
→ 0.

Therefore, by making use of the first boundary condition
given in (4) (𝑥 → 0, 𝑦 → 1,) as well as of all the above
observations, the solutions of (31) and (32) perform the values
for 𝐺

0
and 2

∗

𝐶 and they can be written in the following
algebraic forms:

−1 ± √1 − 4F (𝐺
0
,

∗

𝐶)

2

= 0;
(34a)

H(

∗

𝐶) = 𝐺
0
, (34b)

where

F(𝐺
0
,

∗

𝐶) =

4

9

+
[

[

[

1 −

1

∗

𝐶 ln 

2

∗

𝐶







]

]

]

[−2𝐺
0

+ 2(−

12

4
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2

∗

𝐶









+

1

49

(ln








2

∗

𝐶









)

3/2

)] ;

(35a)

H(

∗

𝐶)

=

1

32
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2

∗

𝐶









sin(ln








2

∗

𝐶









) + cos(ln








2

∗

𝐶









)]

⋅

∗

𝐴
00
+ cos2 (ln









2

∗

𝐶









)} [2 ln








2

∗

𝐶









∗

𝐴
0

+ cos(ln








2

∗

𝐶









)] ,

∗

𝐴
0
,

∗

𝐶 as in (33).

(35b)

Thus, we are now able to estimate 𝑝
0
, 𝑞
0
, and 𝑄

0
given by

(27) in terms of the known values
∗

𝐶 and 𝐺
0
. This estimation

furnishes the value of𝑄
0
and therefore the type of the solution

𝑁

(𝑖)

(𝜉) (𝑖 = 1, 2, 3) near the origin 𝜉
0
among the formulae (24)

to (26).
From the above evaluation, it is concluded that the closed

form solutions of the Abel nonlinear ODE (21) given as

𝑢
(𝑖)
(𝜉) =

1

2

𝜉 [𝑁

(𝑖)

(𝜉) +

1

3

] ;

𝜉 = ln








𝜉 + 2

∗

𝐶
1









(𝑖 = 1, 2, 3)

(36)

have been completely determined.
Since we obtained the above closed- form solutions of the

intermediate Abel nonlinear ODE (21) the solutions to the
original TF equation (3) can be determined as follows. By (19)
and (21) we perform

𝑥 =

1

7
1/3

(

𝜉

𝑦

)

1/3

,

𝑦


𝑥
=

1

𝑥
4
𝑢 − 3

𝑦

𝑥

,

(37)

while taking the total differential in (19) we extract

𝑑𝜉 = 21𝑥
2
𝑦𝑑𝑥 + 7𝑥

3
𝑑𝑦

⇐⇒ 𝜉


𝑥
=

𝑑𝜉

𝑑𝑥

= 7𝑥
2
(𝑥𝑦


𝑥
+ 3𝑦) = 7

𝑢

𝑥

,

(38)

where 𝑢 = 𝑢(𝜉 + 2

∗

𝐶
1
) denotes the known solution of the

Abel nonlinear ODE (18). Using (34a), (34b), and (37) one
writes

𝑦


𝜉
=

𝑦


𝑥

𝜉


𝑥

= 7
4/3
(

𝑦

𝜉

) 𝑢
4/3

− 3𝑦7
1/3
(

𝑦

𝜉

)

1/3

=

𝑢 (𝜉)

𝜉

𝑦 −

3

7𝜉
4/3
𝑦
4/3
;

(39)
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that is, the Bernoulli equation

𝑦
1/3

=

exp ((1/𝜉) ∫ (𝑢 (𝜉) /𝜉) 𝑑𝜉)

𝐶 + (1/7) ∫ exp [((1/𝜉) ∫ (𝑢 (𝜉) /𝜉) 𝑑𝜉)] 𝑑𝜉
,

𝑥 =

1

7
1/3

(

𝜉

𝑦

)

1/3

;

𝑥 ≥ 0, 𝑦 ≥ 0, 𝜉 = parameter (𝜉 ≥ 0) ;

𝐶 = second constant of integration.

(40)

The last step of the above analysis concerns the calculation
of the second constant of integration 𝐶. Thus from the first
of the boundary conditions (4) and the parametric solution
(40), one writes

𝑥
1
→ 0,

𝑦
1
→ 1,

𝜉
1
→ 0,

lim
𝜉
1
→0

(𝑦
1/3
)

=

lim
𝜉
1
→0

{exp ((1/𝜉) ∫ (𝑢 (𝜉) /𝜉) 𝑑𝜉)}

lim
𝜉
1
→0

{𝐶 + (1/7) ∫ exp [((1/𝜉) ∫ (𝑢 (𝜉) /𝜉) 𝑑𝜉)] 𝑑𝜉}

(41)

and estimates the constant of integration 𝐶. By the second of
the boundary conditions (4) one writes 𝑥

2
→ +∞, 𝑦

2
→ 0,

and 𝜉 → 𝜉
2
. Again through the parametric solution (40) one

writes

lim
𝜉→𝜉
2

[exp [1
𝜉

∫

𝑢 (𝜉)

𝜉

𝑑𝜉]] (42a)

and evaluates the value of 𝜉
2
. The evaluation of the second

constant of integration can be obtained again through the
boundary condition 1/𝑥

1
→ 0 ⇒ 𝑦

1
→ ∞; that is,

lim
𝜉→𝜉
1

{𝐶 +

1

7

∫ exp [(−1
𝜉

∫

𝑢 (𝜉)

𝜉

𝑑𝜉)

1

𝜉
1/3
𝑑𝜉]}

= 0.

(42b)

Equations (41) and (42a), (42b) complete the solutions of the
problem under consideration that is the construction of a
closed-form parametric solution of the TF equation (3).

It is worthwhile to remark that since the solution is
given in a closed form the mathematical methodology being
developed results in the ad hoc definition of the TF function𝑦
in approximate power series with 𝑦

𝑥
(0) =

∗

𝐵 (
∗

𝐵 = a factor that
must be determined) and with boundary conditions given by
𝑦
0
(0) = 𝑥

0
= 1; 𝑦

1
→ 0 as 𝑥 → ∞. The value 𝑦

𝑥
(0) =

∗

𝐵

can be evaluated by way of the already constructed closed-
form solution. This is a very interesting result in accordance
with previous results presented by Bush and Caldwell [17],
Feynman et al. [18], Coulson and March [19], Kobayashi et
al. [20], and Kobayashi [21].

5. Closed-Form Solutions of the LB
Equation in the Physical Plane

It was already proved (Section 3) that the LB nonlinear ODE
(1) has been reduced to an Abel ODE of the second kind
of the normal form (15). It was also proved that this Abel
equation admits exact analytic solutions given, as in case of
the TF nonlinear ODE, by (24) to (26). Thus, the solution
of the LB equation (1) in the phase plane is given by the
formulae (24) to (26), if instead of the parenthesis (𝐴𝜉 +
𝐵𝜉
3/2
), the quantity (𝜉−1/2/4−𝜉/4) is introduced.The solution

of the original equation (1) in the physical plane is given
through the combination of the above prescribed formulae
in combination with (17). As in case of the TF equation,
the whole problem includes two constants of integration

∗

𝐶

and 𝐶, which are to be determined by using the convenient
boundary data of the problem under consideration. In order
to define simultaneously the type of the function 𝑁

(𝑖)

(𝜉)

(𝑖 = 1, 2, 3) which must be selected in accordance with the
modified previously developed formulae (24) to (26) and
thus define the modified function 𝐺(𝜉) and the constant of
integration

∗

𝐶, wemust combine the aboveAbel solutionswith
the prescribed convenient boundary data.

Based on what was previously developed in Section 3
for the original (LB) equation (1), the following boundary
conditions hold true:

at 𝑥 = 𝑥
0

⇒ 𝑦 = 𝑦
0
= ℓ,

𝑦


𝑥
= 𝑦


𝑥
0

= 𝑚,

(43)

where ℓ and𝑚 are arbitrary given values provided𝑚 ̸= 0.
Based on these boundary conditions, the substitution

(8) furnishes 𝑝(𝑦
0
) = 𝑝

0
= 𝑚, while transformation (10)

furnishes 𝑤(𝑦
0
) = 𝑤

0
= 𝑦
1/3

0
𝑝
0
= ℓ
1/3
𝑚 too. Thus, the sub-

stitutions (13), (15) and the Abel nonlinear ODE (16) perform
the following relations:

𝑤
0
= 𝑛 (𝜉

0
) = 𝑛
0
= ℓ
1/3
𝑚,

𝜉
0
= 𝑦
4/3

0
= ℓ
4/3
;

𝑛
0
= −𝑧 (𝜉

0
) = −𝑧

0

⇒ 𝑧
0
= −ℓ
1/3
𝑚;

𝑧


𝜉
0

= −

(1/4) (ℓ
−2/3

− ℓ
4/3
)

ℓ
1/3
𝑚

+ 1 = 1 −

1

4

ℓ
−1
− ℓ

𝑚

.

(44)

We are now able to evaluate all the before mentioned
quantities. Indeed, (23a) and (23b) for 𝜉

0
= ℓ
4/3, 𝑧
0
= −ℓ
1/3
𝑚,
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𝑧


𝜉
0

= 1 − (ℓ
−1
− ℓ)/4𝑚 furnish the following two equations:

𝑁
0
= −(

2ℓ
1/3
𝑚

ℓ
4/3

+ 4

∗

𝐶

+

1

3

) ;

8𝐺
0
+ 2 (ℓ

4/3
− ℓ
1/3
)P ln |P| [ci (ln |P|) − ln |P| + ln (ln |P|) − ln (ln 


1 − 2

∗

𝐶






) − C]

4 [ci (ln |P|) − ln |P| + ln (ln |P|) − ln (ln 

1 − 2

∗

𝐶






) − C] − cos (ln |P|)

=

1

4

[ci (ln |P|) − ln |P| + ln (ln |P|) − ln (ln 

1 − 2

∗

𝐶






) − C] [ln |P| sin (ln |P|) + cos (ln |P|)]

[ci (ln |P|) − ln |P| + ln (ln |P|) − ln (ln 

1 − 2

∗

𝐶






) − C]

2

(ln |P|)2

+

cos2 (ln |P|)

[ci (ln |P|) − ln |P| + ln (ln |P|) − ln (ln 

1 − 2

∗

𝐶






) − C]

2

(ln |P|)2
;

P = ℓ
4/3

+ 2

∗

𝐶 > 0, 2

∗

𝐶 + 𝑙
4/3

> 0, 2

∗

𝐶 < 1,

(45)

where𝑁
0
and 𝐺

0
are the values of𝑁(𝜉) and 𝐺(𝜉) at 𝜉 = 𝜉

0
=

ℓ
4/3, respectively. On the other hand, the formula for 𝑁

𝜉
in

(23a) at 𝜉 = 𝜉
0
results in

𝑁



𝜉
0

=

1

(𝑁
0
+ 4/3)

4 [𝐺
0
+ (1/2) (ℓ

−2/3
− ℓ
4/3
)]

(ℓ
4/3

+ 4

∗

𝐶)

2
, (46)

while by the first of (23a) and (44) we have

𝑧


𝜉
0

=

1

2

𝑁



𝜉
0

(𝜉
0
+ 4

∗

𝐶) +

1

2

(𝑁
0
+

1

3

) , (47)

or equivalently

𝑧


𝜉
0

=

2 [𝐺
0
+ (1/2) (ℓ

−2/3
− ℓ
4/3
)]

(𝑁
0
+ 4/3) (ℓ

4/3
+ 4

∗

𝐶)

+

1

2

(𝑁
0
+

1

3

) . (48)

The last relation (48) in combination together with (44)
permits us to write

2 [𝐺
0
+ (1/2) (ℓ

−2/3
− ℓ
4/3
)]

(𝑁
0
+ (4/3)) (ℓ

4/3
+ 4

∗

𝐶)

+

1

2

(𝑁
0
+

1

3

)

= 1 −

1

4

ℓ
−1
− ℓ

𝑚

.

(49)

The above three equations (46) to (49) constitute a nonlinear
(transcendental) system for𝑁

0
,𝐺
0
, and 𝜆 by means of which

one calculates these unknowns in terms of the parameters ℓ
and 𝑚. Thus, the discriminant 𝑄

0
(𝑄 at 𝜉 = 𝜉

0
= ℓ
4/3) given

in (27) is also known, the fact that permits us to define the
type of the function𝑁(𝑖)(𝜉) for 𝜉 > 𝜉

0
= ℓ
4/3 (24) to (26).This

completes the solution of the problem under consideration,

which is the construction of the solution of the LB equation
in the phase-plane (and thus in the physical plane) in the
main interval [𝜉

0
= ℓ
4/3
, 𝜉]. If this solution is not unique

inside [ℓ4/3, 𝜉], then we follow step by step the methodology
developed in [15].

6. Conclusions

By a series of admissible functional transformations we
reduce the nonlinear TF and LB equations to Abel’s equa-
tions of the second kind of the normal form of (16) and
(18), respectively. These equations do not admit closed-form
solutions in terms of known (tabulated) functions. This
unsolvability is due to the fact that only very special forms
of this kind of (16) and (18) can be solved in parametric form
[4]. Our goal is the development of the construction of the
exact analytic solutions of the above equations based on a
mathematical technique leading to the derivation of close
form solutions for the Abel equation of the second kind of the
normal form [3, 4]. The proposed methodology constitutes
the intermediate integral of the TF and LB equations in
the phase and physical planes. The reduction procedure in
the paper and the constructed solutions are very general
and can be applied to a large number of nonlinear ODEs
in mathematical physics and nonlinear mechanics. Also the
method employed is exact in accordance with the boundary
conditions of each problem under consideration and guides
us to the a priori approximate construction of the solutions in
power series, some coefficients of which must be evaluated.

With the proposed procedure the exact value of first order
derivative of TF equation is derived at 𝑥 = 0. In particular,
the solution for the TF equation is finally constructed by
calculating 4 constants from the specific boundary conditions
(4) (see (34a), (34b), (41), (42a), and (42b)). Equations
(40) constitute the parametric solutions of the TF problem.
With our method essentially a different way of calculating
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𝑦


𝑥
(0) =

∗

𝐵 (Section 4) is proposed with reference to the
methods proposed in [17–21], where the value of

∗

𝐵 has been
calculated having kept the solution from approximate series
in which their coefficients had been calculated from the
boundary conditions. In conclusion, in this paper an analytic
method is developed that does not contradict previous results
but it is a different way of calculating them.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] I. Langmuir and K. B. Blodgett, “Currents limited by space
charge between coaxial cylinders,” Physical Review, vol. 22, no.
4, pp. 347–356, 1923.

[2] H. T. Davis, Introduction to Nonlinear Differential and Integral
Equations, Dover, New York, NY, USA, 1962.

[3] E. Kamke, Differentialgleichungen I, Gewöhnliche Differential-
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