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DC motors are used in numerous industrial applications like servo systems and speed control applications. For such systems, the
Proportional+Integral+Derivative (PID) controller is usually the controller of choice due to its ease of implementation, ruggedness,
and easy tuning. All the classical methods for PID controller design and tuning provide initial workable values for 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑
which are further manually fine-tuned for achieving desired performance.Themanual fine tuning of the PID controller parameters
is an arduous jobwhich demands expertise and comprehensive knowledge of the domain. In this researchwork, somemetaheuristic
algorithms are explored for designing PID controller and a comprehensive comparison is made between these algorithms and
classical techniques as well for the purpose of selecting the best technique for PID controller design and parameters tuning.

1. Introduction

In this modern industrial age, there is hardly any industrial
application in which DC motors are not being used [1, 2].
This is so because of ease of control, low cost maintenance
especially of brushless DC motor type, low price, and
ruggedness of DC motor over a wide range of applications.
Some industrial applications, which are worthmentioning, in
which DC motors are being used widely are machine tools,
paper mills, textile industry, electric traction, and robotics.
The flexibility in controller design of DC motors is due to
the fact that armature winding and field winding could be
controlled separately [3]. In most of the applications of speed
control of DC motors, the current in field winding is kept
constant and the current in armature winding is varied or
vice versa which gives excellent speed control performance
over a wide range of desired values. In these applications, the
purpose is to track the speed command by keeping output
speed at desired level and to achieve desire speed or position
control in minimum time without having large overshoots
and settling times [4, 5].

There are different types of controllers like lead, lag, LQR
(linear quadratic regulator), PID, and sliding-mode control

that could be incorporated in control applications [6–8].
Among the few mentioned types of controllers, PID con-
troller is one of the earliest and best understood controllers
which is incorporated in almost every industrial control
application due to its efficiency and ease of implementa-
tion [9]. Although there are many classical techniques for
designing and tuning PID controller parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑)
which are widely understood and easily applied, one of the
main disadvantages of these classical techniques is that, for
tuning PID controller through these techniques, expertise
and experience are required.This is so because thesemethods
provide a starting point and achieving desired performance
fine tuning of parameters through hit-and-trial method is
required. However, metaheuristic techniques may be a good
choice to its dynamic nature.

Over the years, many metaheuristic and stochastic opti-
mization techniques have been developed which are being
applied in every discipline of life [10–12].These techniques are
nature inspired depending upon the swarm intelligence, evo-
lutionary, or foraging behavior of different species. Some of
the widely used techniques are genetic algorithm (GA), par-
ticle swarm optimization (PSO), and simulated annealing
(SA). These metaheuristic algorithms have been successfully
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Figure 1: Block diagram of DC motor.

applied also in various fields of control systems and results
obtained through these techniques have proven their suprem-
acy over the classical techniques [13–18].

There have been previously many attempts for the nature
inspiredPID controller tuning; however, according to the best
of our knowledge there has been a little work done in exploit-
ing the power of hybrid techniques for the PID controller
tuning. In this work, a PID controller design for speed control
of DC motor is presented. First, the design through classical
techniques like Zeigler-Nichols and Cohen-Coonmethods is
presented for establishing a base line.Then, six metaheuristic
optimization algorithms are used to find the best possible
parameters of PID controller subjected to minimization of a
cost function and among these three of the hybrid techniques
are used to establish the superiority of hybrid metaheuristic
techniques over the others. A comprehensive comparison is
made between the classical techniques and the metaheuristic
techniques to show the strength, stability, and efficiency of
these methods over the classical techniques. Although some
stochastic algorithms have been used [13, 16] previously
for design of PID controller for different applications, this
study presents some hybrid techniques by combining the
global and local search techniques of swarm intelligence
and evolutionary algorithms for PID controller design and
it could provide a framework of PID controller tuning by
considering the hybrid nature of metaheuristic techniques.

The organization of the rest of the paper is as follows. In
Section 2, mathematical model of DC motor is derived. In
Section 3, overview of classical techniques for PID tuning is
presented. In Section 4, an overview of GA, PSO, SA, and
Nelder-Mead (NM) is presented. In Section 5, results and
simulations are discussed. In Section 6, conclusions about the
present study are presented.

2. Mathematical Model of DC Motor

The dynamic behavior of DC motor is given by following set
of relations [19] and its block diagram is shown in Figure 1.
A simplified linear model is presented for this work ignoring
the nonlinearities like the backlash and dead zones to simplify
the application of metaheuristic techniques. Consider

𝑇𝑚 (𝑠) = 𝐾𝑚𝐼𝑎 (𝑠) ,

𝑈𝑎 (𝑠) = (𝑟𝑎 + 𝐿𝑠) 𝐼𝑎 (𝑠) + 𝑈𝑏 (𝑠) ,

𝑈𝑏 (𝑠) = 𝐾𝑏
̇𝜃 (𝑠) ,

Table 1: DC motor parameters.

Motor parameters Value
𝐾𝑚 0.023N⋅m/A
𝐾𝑡 0.023N⋅m/A
𝑟𝑎 1.0Ω
𝐿 0.5H
𝐽𝑚 0.01 Kg⋅m2/rad
𝐵𝑚 0.00003N⋅m
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Figure 2: Open loop step response of DC motor.

𝐼𝑎 (𝑠) =
𝑈𝑎 (𝑠) − 𝐾𝑏

̇𝜃 (𝑠)

𝑟𝑎 + 𝐿𝑠
,

𝑇𝑙 (𝑠) = 𝐽𝑚𝑠
2
𝜃 (𝑠) + 𝐵𝑚𝑠𝜃 (𝑠) ,

𝑇𝑙 (𝑠) = 𝑇𝑚 (𝑠) − 𝑇𝑑 (𝑠) ,

(1)

where 𝑈𝑎 is armature applied voltage, 𝑈𝑏 is back-emf, 𝐾𝑚 is
motor constant,𝐾𝑏 is back emf constant, 𝐽𝑚 is inertia of rotor,
𝐵𝑚 is viscous damping, 𝑇𝑚 is developed motor torque, 𝑇𝑙 is
torque delivered to load, 𝑇𝑑 is disturbance torque (we neglect
it), 𝑟𝑎 is armature resistance, 𝐿 is armature inductance, 𝐼𝑎 is
armature current, and 𝑠 is s-plane.

By using (1) the transfer function of DC motor is

̇𝜃 (𝑠)

𝑈𝑎 (𝑠)
=

𝐾𝑚

(𝑟𝑎 + 𝐿𝑠) (𝐽𝑚𝑠 + 𝐵𝑚𝑠) + 𝐾𝑚𝐾𝑏

. (2)

The parameters selected for DC motor simulation are
listed in Table 1 [20].

The open loop step response of DC motor without PID
controller is shown in Figure 2 and output values of response
are provided in Table 2.

3. Classical Techniques

The response of DC motor is calculated by Ziegler-Nichols
(Z-N) and Cohen-Coon (C-C) methods, respectively, in
order to validate the proposed scheme.

3.1. Ziegler-Nichols (Z-N) Method. Ziegler and Nichols pro-
posed a rule for design and tuning of PID controller. From the



Advances in Artificial Neural Systems 3

Table 2: DC motor output response.

Response Value
Settling time, 𝑡𝑠 68.6029
Rise time, 𝑡𝑟 38.2458
Maximum percent overshoot,𝑀𝑝 0
Steady state error, 𝑒𝑠𝑠 0.0237

open loop step response of system one can find the following
set of points (𝑡𝑎, 𝑦𝑎) and (𝑡𝑏, 𝑦𝑏). The first point corresponds
to output of step response at a value of 35.3% and the second
point corresponds to output of step response at a value of
85.3% [20]. By using this method, we get open loop step
response values of DC motor given as follows:

𝑡𝑎 = 8 sec, 𝑦𝑎 = 14.52,

𝑡𝑏 = 37.7 sec, 𝑦𝑏 = 35.09,

(3)

and dc gain is

𝛽 = 41.1449. (4)

According to Ziegler-Nichols rule the following relations
could be used for determining PID controller parameters:

𝐾𝑝 = 1.2
𝑇

𝛽𝛼
, (5)

𝑇𝑖 = 2𝛼, (6)

𝑇𝑑 = 0.5𝛼, (7)

𝐾𝑖 =
𝐾𝑃

𝑇𝑖

, (8)

𝐾𝑑 = 𝑇𝑑𝐾𝑃, (9)

where

𝑇 = 0.67 (𝑡𝑏 − 𝑡𝑎) , (10)

𝛼 = 1.3𝑡𝑎 − 0.29𝑡𝑏. (11)

By using (5) to (11) we get the values of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑

listed in Table 3.

3.2. Cohen-Coon (C-C) Method. Cohen and Coon also pro-
posed a method for design and tuning of PID controller.
Based on this method, PID controller parameters could be
determined as follows [20]:

𝐾𝑝 =
𝑇

𝛼𝛽
[
4

3
+

𝛼

4𝑇
] ,

𝑇𝑖 = 𝛼 [
32 + 6𝛼/𝑇

13 + 8𝛼/𝑇
] ,

𝑇𝑑 = 𝛼 [
4

11 + 2𝛼/𝑇
] .

(12)

By using (12) and also from (8) to (11) the following values
of𝐾𝑝, 𝐾𝑖, and𝐾𝑑 have been obtained and listed in Table 4.

Table 3: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values by using Z-N method.

Method 𝐾𝑝 𝐾𝑖 𝐾𝑑

Ziegler-Nichols 0.8000 0.6380 0.2508

Table 4: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values by using C-C method.

Method 𝐾𝑝 𝐾𝑖 𝐾𝑑

Cohen-Coon 0.3522 0.2317 0.0798

4. Metaheuristic Algorithms: An Overview

4.1. Genetic Algorithm (GA). The GA was invented by John
Holland by inspecting adaptation in natural and artificial
systems in 1975 [21]. Holland proposed GA as a heuristic
tool which is based on the method of “survival of the fittest.”
The principle of GA is simple: imitate genetic and natural
selection in the form of computer program. The parameters of
the problem are coded as DNA-like linear data structure, a
vector or a string. GA differs from conventional optimization
techniques in a way that

(i) GA works with coding the solution set and the
solution is not itself used;

(ii) GA uses population of solution for finding the opti-
mum solution;

(iii) it uses the fitness function rather than derivatives for
evaluation purpose;

(iv) it uses the probabilistic transition operators whereas
other techniques use deterministic transition opera-
tors.

The general steps in GA algorithm are as follows.

Step 1 (create a random initial population). An initial popula-
tion is created from a random selection of solution.

Step 2 (evaluate fitness). Each candidate solution is evaluated
against a fitness function.

Step 3 (reproduction).The chromosomes with higher value of
fitness value are more likely to reproduce offspring.

Step 4 (next generation). If the new generation contains
desired solution, then problem has been solved, and if it is not
the case, then the new population will go through the same
process as described above.

Step 5. Termination based on number of iterations or required
fitness value was achieved.

In our design method PID controller parameters (𝐾𝑝,
𝐾𝑖, 𝐾𝑑) are viewed as individuals and each parameter value
is coded by a real number.

4.2. Particle Swarm Optimization (PSO). The particle swarm
optimization algorithm was proposed by Kennedy and Eber-
hart in 1995 [22]. This algorithm is based on the social
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behavior of swarm such as bird flocking and fish schooling.
Here, each individual bird is called the particle, and in our
case each individual particle has three attributes which are
𝐾𝑝, 𝐾𝑖, and𝐾𝑑.

Each particle in PSO flies in the whole search space with
a certain velocity which is dynamically adjusted according
to its own flying experience and the knowledge gain by the
velocities of its peers. Each particle is treated as particle in
𝑑-dimensional search space.

The change in velocity and position of each particle is
governed by the following relations:

V (new) = 𝛿V (old) + 𝑎1 [𝑝best − 𝑥 (old)] + 𝑎2 [𝑔best − 𝑥 (old)]

𝑥 (new) = 𝑥 (old) + V (new) ,
(13)

where 𝛿 is inertia weight factor, 𝑝best is local best, 𝑔best is
global best, V is velocity of the particle, 𝑥 is the position of
the particle, 𝑎1[𝑝best − 𝑥(old)] is individual intelligence, and
𝑎2[𝑔best − 𝑥(old)] is collective intelligence.

4.3. Simulated Annealing (SA). The simulated annealing was
originally inspired by the crystal formation process when
solids are cooled down from some high temperature [21].The
slower the cooling is, the more perfect crystal is formed. In
cooling process, we ultimately converge towardsminimal and
stable energy state. The system movement towards stability
is random, but the probability to stay in any particular
configuration directly depends on the energy of the system
and on its temperature. The said probability is given by the
following Gibbs relation:

𝑝 = 𝑒
𝐸/𝑘𝑇

, (14)

where 𝐸 is the energy in different energy states, 𝑘 is the
Boltzmann constant, and 𝑇 is the temperature.

In 1970, Kirkpatrick formed the simulated annealing
algorithm by using the above said analogy. The SA behaves
like hill climbing algorithm, but it avoids the local minimum
and it usually gives good results. As in stochastic hill climbing
algorithm, in each iteration of SA a new solution in the
neighborhood of actual solution is randomly chosen. If the
fitness value of the new solution is better than the previous
value, then the new solution is accepted as the new current
solution. If the fitness function is not improved, then the new
solution is retained with a probability

𝑝 = 𝑒
−[𝑓(𝑦)−𝑓(𝑥)]/𝑘𝑇

, (15)

where𝑓(𝑦)−𝑓(𝑥) is the difference of fitness function between
the new and the old solutions.

4.4. Nelder-Mead (NM) Method. Nelder-Mead method is a
simplex method which is used to find the local minimum
of a function of several variables [23]. For the two variables
function simplex is a triangle of three vertices and themethod
is a pattern search. At the worst vertex the function value
is the largest and this worst vertex is replaced with new

Table 5: Parameters of PID through Z-N and C-C methods.

Method 𝐾𝑝 𝐾𝑖 𝐾𝑑

Ziegler-Nichols 0.8000 0.6380 0.2508
Cohen-Coon 0.3522 0.2317 0.0798

Table 6: Response for Z-N and C-C methods.

Method 𝑡𝑠 𝑡𝑟 𝑀𝑝 𝑒𝑠𝑠

Ziegler-Nichols 6.2222 0.8058 29.2329 0.5
Cohen-Coon 12.6787 1.3370 36.8658 0.5

vertex and the search is continued by forming the triangular
patterns. The function values at vertices get smaller and
smaller and the triangle size reduces which ultimately results
in finding the local minimum.

5. Results and Discussions

Using the classical methods of PID tuning, Ziegler-Nichols
and Cohen-Coon, PID controller was tuned by keeping
the objective that settling time 𝑡𝑠 and rise time 𝑡𝑟 should
be minimum and there should be no overshoots; that is,
maximum percent over shoot 𝑀𝑝 should be zero. The PID
controller parameters obtained by these classical methods are
given in Table 5.

By using the above values of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, PID
controller was designed and the closed loop response of this
controller with the plant is shown in Figure 3 and also the
output values of 𝑡𝑠, 𝑡𝑟,𝑀𝑝 and steady state error 𝑒𝑠𝑠 are shown
in Table 6.

It is apparent from Figure 3 and Table 6 that the settling
time andmaximum percent overshoot are very large and PID
controller designed by thesemethodswill not provide desired
performance. So these techniques are not helpful in tuning
the PID controllers for the systems in which the parameters
of 𝑡𝑠, 𝑡𝑟, and𝑀𝑝 are critical.

The same problem is also solved by six metaheuristic
algorithms, namely, GA, PSO, SA, GA-NM, PSO-NM, and
SA-NM, for designing and tuning of PID controller. Not only
the global search but also the hybrid searching techniques
using the Nelder-Mead algorithm as the local minimization
search technique are also applied.The purpose is to study the
optimization capabilities of these metaheuristic algorithms
and to demonstrate that by using these techniques PID con-
troller design and tuning give the more accurate and better
results.Theremight bemany possible objective functions like
integral of time-absolute-error (ITAE), integral of absolute-
error (IAE), integral of time-weighted-squared-error (ITSE),
and integral of squared-error (ISE), but the objective function
used in these algorithms for the minimization is defined as
follows [24]:

min 𝐽 = (1 − 𝑒
−𝜉
) (𝑀𝑝 + 𝑒𝑠𝑠) + 𝑒

−𝜉
(𝑡𝑠 − 𝑡𝑟) . (16)

One can change the value of 𝜉, which is the weighting
factor, in three steps, that is, 𝜉 = 0.5, 𝜉 = 1.0, and 𝜉 = 1.5,
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Table 7: Parameters range.

Parameter Lower bound Upper bound
𝐾𝑝 0.0001 1.5000
𝐾𝑑 0.0001 1.0000
𝐾𝑖 0.0001 1.0000
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Figure 3: Step response of system tuned by ZN and CC methods.

and see the effect of change of 𝜉 on 𝑡𝑠, 𝑡𝑟, and 𝑀𝑝. The
lower and upper bounds on the values of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are
given in Table 7 [25], while the parameters settings or values
used in the simulations of various solvers are provided in
Table 8.

The fitness function 𝐽 values obtained by using these
algorithms are shown in Tables 9–11.

As shown in Tables 9–11 and also in Figures 4, 5, and 6
theminimum objective function fitness value is found by SA-
NM. The objective function contains the exponential factor
and also the SA algorithm is governed by the Boltzmann
distribution of the energies in different energies states which
is also in the form of exponential function. So it is the reason
that, for this particular problem, when we combined the
SA with the local search method of NM it gave the best
results even better than PSO and GA alone. So if the problem
landscape and the algorithmwhich is being used match, then
best results would be obtained.Also fromTables 8–10, it could
be seen that the standard deviation for the SA-NM is small,
which is a measure of convergence speed, and it could be
inferred that SA-NM converges fast as compared to other
algorithms used in this research work.

The step response for the mean values of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑
tuned by SA-NM is shown in Figure 7 and also values of 𝑡𝑠, 𝑡𝑟,
and 𝑀𝑝 are given in Table 12. The step response in Figure 7
shows marked improvement over the previous step response
of Figure 3 when PID controller was tuned by using classical
techniques.

A multiple setpoint command is applied to the system
tuned by SA-NM, Z-N, and C-C. The response to multiple
setpoint is also shown in Figures 8 and 9. It is quite obvious
from Figure 9 that the multiple setpoint tracking is excellent
when PID controller is tuned using SA-NM. In this work,
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Figure 4: Fitness (𝐽) for GA-NM, PSO-NM, and SA-NM, 𝜉 = 0.5.
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Figure 5: Fitness (𝐽) for GA-NM, PSO-NM, and SA-NM, 𝜉 = 1.0.

a simplified linear model of the DC motor is considered
neglecting the nonlinearities like backlash, dead zone, and
effects of load torque changes.

6. Conclusion

On the basis of results obtained in the previous section the
following conclusions could be drawn.

The problem under discussion could be solved using
metaheuristic techniques which give a substantial amount of
improvement in terms of 𝑡𝑠, 𝑡𝑟, and 𝑀𝑝 as can be seen from
Tables 6 and 12. Using metaheuristic techniques 𝑡𝑠 decreased
by 83.93%, 𝑡𝑟 decreased by 17.58%, and 𝑀𝑝 decreased by
98.71% as compared to Z-N method. Also the decrease in
value for 𝑡𝑠, 𝑡𝑟, and 𝑀𝑝 was 92.11%, 50.32%, and 98.97%,
respectively, as compared to C-C method. So the objective
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Table 8: Parameters setting and fitness function.

Fitness function: min 𝐽 = (1 − 𝑒
−𝜁
)(𝑀𝑝 + 𝑒𝑠𝑠) + 𝑒

−𝜁
(𝑡𝑠 − 𝑡𝑟)

GA parameters PSO parameters SA parameters NM parameters
Population type: double vector Population type: double vector Max. evaluations: 3000 Max. iterations: 200
Population size: 20 Population size: 40 Initial temperature: 100 Max. function evaluations: 600

Selection function: tournament Cognitive attraction: 0.5 Temperature update function:
exponential

Start point = Best parameters of
SA, GA, PSO

Crossover fraction: 0.8 Social attraction: 1.25 Reannealing interval: 100
Mutation function: Gaussian Stall generations: 50 Annealing function: Boltzmann Others = Default
Stall generations: 50 Function tolerance: 1𝑒 − 6 Stall iterations: 500 𝑋 tolerance: 1𝑒 − 4
Function tolerance: 1𝑒 − 6 Number of epochs: 100 Function tolerance: 1𝑒 − 6 Function tolerance: 1𝑒 − 6
Number of epochs: 100 Others = Default Number of epochs: 100 Number of epochs: 100

Table 9: Fitness (𝐽) case 1, 𝜉 = 0.5.

Algo. Min. Max. Mean Var. Std. Runs
GA 0.4303 0.6804 0.4693 0.0019 0.0433 100
PSO 0.3010 0.4402 0.3665 0.0037 0.0612 100
SA 0.3040 15.9880 1.1158 6.7519 2.5984 100
NM-GA 0.3011 0.5827 0.4272 0.0016 0.0398 100
NM-PSO 0.3010 0.4311 0.3655 0.0038 0.0618 100
NM-SA 0.3010 0.4573 0.3108 0.0005 0.0229 100
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Figure 6: Fitness (𝐽) for GA-NM, PSO-NM, and SA-NM, 𝜉 = 1.5.

of minimizing 𝑡𝑠, 𝑡𝑟, and 𝑀𝑝 is better achieved through
metaheuristic algorithms, which validates the capabilities of
these algorithms of best optimization algorithms for complex
problems like PID controller tuning.

Among all metaheuristic techniques for optimization the
hybrid approach of SA-NM showed the best results and
through this we obtained the PID controller parameters
which showed the excellent results in terms of 𝑡𝑠, 𝑡𝑟, and

Table 10: Fitness (J) case 2, 𝜉 = 1.0.

Algo. Min. Max. Mean Var. Std. Runs
GA 0.4563 14.5462 0.6789 2.2793 1.5097 100
PSO 0.3793 0.4566 0.4206 0.0014 0.0368 100
SA 0.3803 18.3989 NaN NaN NaN 100
NM-GA 0.3795 0.5436 0.4604 0.0005 0.0233 100
NM-PSO 0.3793 0.4559 0.4203 0.0014 0.0371 100
NM-SA 0.3793 0.4015 0.3839 0 0.0046 100

Table 11: Fitness (J) case 3, 𝜉 = 1.5.

Algo. Min. Max. Mean Var. Std. Runs
GA 0.4739 0.5564 0.4907 0.0003 0.0177 100
PSO 0.4268 0.5093 0.4524 0.0006 0.0236 100
SA 0.4282 43.1661 1.8708 40.1765 6.3385 100
NM-GA 0.4301 0.5259 0.4767 0.0002 0.0149 100
NM-PSO 0.4268 0.4933 0.4520 0.0005 0.0231 100
NM-SA 0.4268 0.4740 0.4306 0 0.0070 100

Table 12: Step response values for SA-NM.

Method 𝑡𝑠 𝑡𝑟 𝑀𝑝 𝑒𝑠𝑠

SA-NM 0.9999 0.6641 0.3773 0.5

𝑀𝑝. Hence, metaheuristic techniques are far better than the
classical techniques, and among these hybrid approach is
preferable. However, in future work, these effects could be
considered to form a comprehensive nonlinear model of DC
motor and solve the problem of PID tuning based on the
mentioned metaheuristic techniques because according to
the best of our knowledge there has been a lot of research
potential for the PID controller tuning by considering the
nonlinearities of DC motor model. Some other techniques
like ant colony optimization (ACO), bacterial foraging algo-
rithm (BFA), and differential evolution (DE) could also be
considered by making the hybrid pairs of these algorithms
with some local search techniques.
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Figure 7: Step response for SA-NM.
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Figure 8: Multiple setpoint tracking for Z-N and C-C tuned PID.
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