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Upconversion nanoparticles (UCNPs) based on NaYF
4
nanocrystals with strong upconversion luminescence are synthesized

by the solvothermal method. The emission color of these NaYF
4
upconversion nanoparticles can be easily modulated by the

doping. These NaYF
4
upconversion nanocrystals can be employed as fluorescence donors to pump fluorescent organic molecules.

For example, the efficient luminescence resonant energy transfer (LRET) can be achieved by controlling the distance between
NaYF

4
:Yb3+/Er3+ UCNPs and Rhodamine B (RB). NaYF

4
:Yb3+/Er3+ UCNPs can emit green light at the wavelength of ∼540 nm

while RB can efficiently absorb the green light of∼540 nm to emit red light of 610 nm.TheLRET efficiency is highly dependent on the
concentration of NaYF

4
upconversion fluorescent donors. For the fixed concentration of 3.2𝜇g/mL RB, the optimal concentration

of NaYF
4
:Yb3+/Er3+ UCNPs is equal to 4mg/mL which generates the highest LRET signal ratio. In addition, it is addressed that the

upconversion nanoparticles with diameter of 200 nm are suitable for imaging the cells larger than 10𝜇m with clear differentiation
between cell walls and cytoplasm.

1. Introduction

Upconversion luminescence (UCL) is a nonlinear, anti-
Stokes process, whereby low-energy photons are converted to
higher energy photons [1–3]. Compared to organic fluoro-
phores and quantum dots, upconversion nanophosphors
(UCNPs) exhibit high photochemical stability, sharp emis-
sion bandwidths, and large anti-Stokes shifts [4–6]. Lantha-
nide-doped UCNPs can be considered as dilute guest-host
systems, where trivalent lanthanide ions are dispersed as
guests in an appropriate inorganic host lattice with dimen-
sions of less than 100 nm [7]. Light upconverting nanos-
tructures employing lanthanide ions constitute an emerging
research field recognized with wide ramifications and impact
in many areas ranging from healthcare to energy and to
security [8–12].

In the past few decades, lanthanide-based UCNPs
have been regarded as a new generation of bioprobes for

photoluminescent bioimaging applications [13]. UCL imag-
ing for cells and animal tissues has attracted substantial atten-
tion because of the unique characteristics of upconversion
materials, which can minimize the background interference
from the autofluorescence of biosamples and enhance tissue
penetration [14, 15]. Recently, upconversion nanocrystals
with surface modification have been used for HeLa cell
microscopic imaging in vitro [16] but rarely been developed
for imaging other cells or tissues, especially for the in vivo
imaging.

Fluorescence resonance energy transfer (FRET) is an
optical process in which the energy is transferred from a
donor at its excited state to a nearby ground-state acceptor
[17, 18]. Efficient FRET process requires the donor and
acceptor molecules in very close proximity and the donor
emission spectrum to overlap with the acceptor absorption.
Fluorescence resonance energy transfer (FRET) has been
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widely used as a spectroscopic technique in various areas
such as structural elucidation of biological molecules and
their interactions, in vitro assays, in vivo monitoring in
cellular research, nucleic acid analysis, signal transduction,
light harvesting, and metallic nanomaterials [19–21]. When
UCNPs are used as the energy donor, the upconversion
luminescence uponNIR excitation ofUCNPs is transferred to
donor molecules, a mechanism named as luminescence reso-
nance energy transfer (LRET) similar to FRET [22–24]. To
date, several upconversion LRET (UC-LRET) nanosystems
have been developed for detection of biomacromolecules
(such as DNA [25], metalloproteinase [26], avidin [27], and
thrombin [28]), metal cations, anions, and oxygen [29], in
which the energy transfer process is utilized to modulate the
UCL intensity.

In this work, a series of high-quality NaYF
4
UCNPs were

synthesized by a facile solvent-thermal method. We focus on
application of the multicolor upconversion nanoparticles in
cells imaging and detection of Rhodamine B. On the other
hand, we developed an upconversion LRET-based nanosys-
tem composed of UCNPs and organic dyes (UCNPs@dye).
The LRET-based UCNPs@dye systems can be extended for
detecting other organic dyes and fluorescent proteins in living
beings in vivo.

2. Experimental

Yttrium oxide (99.99%), ytterbium oxide (99.99%), erbium
oxide (99.9%), and thulium oxide (99.99%) were purchased
from Sinopharm Chemical Reagent Co., Ltd. 1-Octadecene
(ODE) (90%) and oleic acid (OA) (90%) were purchased
from Alfa Aesar (China) Chemical Co., Ltd. Sodium flu-
orescein (95%) and Rhodamine B (95%) were purchased
from Sinopharm Chemical Reagent Co., Ltd. Rare earth
chloride RE(Cl)

3
(RE Y, Yb, Er, and Tm) was prepared by

dissolving the corresponding rare earth oxides in hydrochlo-
ric acid at a high temperature of 90∘C. All other chemicals
were of analytical grade and used without further purifica-
tion.

2.1. Synthesis of NaYF
4
Nanoparticles. In a typical procedure

for the synthesis of NaYF
4
:Yb3+, Er3+/Tm3+ nanoparticles,

2mL water solution of RECl
3
⋅6H
2
O (0.4M, RE = Lu, Yb,

and Er/Tm) was added to a 50mL flask containing ODE
(12mL) and OA (4mL). The resulting mixture was heated
to 160∘C with constant stirring to remove residual water
and oxygen. After 30min, the temperature was reduced to
room temperature with general flow of argon gas through the
reaction flask. Shortly thereafter, 5mL methanol solution of
NH
4
F (1.5mmol) and NaOH (1mmol) was added and the

resultant solution was stirred for another 30min under 50∘C
of temperature. After themethanol from the reactionmixture
was evaporated, the solution was heated to 315∘C under an
argon atmosphere for 60min and then cooled down to room
temperature naturally. The resulting nanoparticles were pre-
cipitated by addition of ethanol, collected by centrifugation
at 10000 rpm for 5min, and washed with ethanol three times;
finally these prepared nanocrystals could be redispersed in
nonpolar organic solvent such as cyclohexane.

2.2. Characterization. The size and morphology of the pre-
pared nanoparticles were measured using H-7650c trans-
mission electron microscopy (TEM) operating at 80 kV and
JEM 3010 high-resolution transmission electron microscopy
(HR-TEM) operating at 200 kV.The photoluminescence (PL)
emission spectra were measured using a Hitachi F-2700
spectrophotometer equipped with a 980 nm laser as the
excitation source. The photos of upconversion luminescence
were digitally obtained by a Sony multiple CCD camera.

Imaging plant cells and animal issues incubated with
upconversion nanoparticles were imaged using Olympus
BX43 fluorescence microscopy under the excitation of a NIR
980 nm laser. The power density was equal to 100mW/cm2.
The multicolor fluorescence was collected by a Tucsen H-
694CICE digital camera. All studies were carried out at room
temperature.

3. Results and Discussion

3.1. Upconversion Fluorescence Properties of NaYF
4
Nanopar-

ticles. To reveal the phase and size control, NaYF
4
nanocrys-

tals with the doping of Yb3+/Er3+ or Yb3+/Tm3+ ionic
pairs synthesized by the solvothermal method were char-
acterized by TEM and high-resolution TEM (HR-TEM). It
can be observed from Figure 1 that NaYF

4
:18%Yb3+/2%Er3+

nanoparticles have an average diameter of 200 nm, typical
hexagonal crystal facets, and good crystallinity. These uni-
form nanoparticles display regular morphology and high
crystal quality. Typical high-resolution transmission electron
microscopy (Figure 1(b)) shows the distance between the
lattice fringes to be 0.32 nm along (0001) orientation in
the NaYF

4
nanocrystals, which also revealed their highly

crystalline nature and structural uniformity. If substituting
the Er3+ (2mol%) dopingwith Tm3+ ion (0.5mol%), the aver-
age diameter of synthesized NaYF

4
nanoparticles particles

reaches up to 300 nm.
Theupconversion fluorescent spectra ofNaYF

4
:18%Yb3+/

2%Er3+ and NaYF
4
:20%Yb3+/0.5%Tm3+ nanocrystals in cy-

clohexane solution under the 980 nm laser excitation at dif-
ferent pumppower are shown in Figures 2(a) and 2(c), respec-
tively.The emission bands can easily be assigned to transition
within the 4f-4f levels of the Er3+ and Tm3+ ions. The spec-
trum of the NaYF

4
:18%Yb3+/2%Er3+ sample (Figure 2(a))

exhibits three distinct Er3+ emission bands. The three sharp
emissions bands centered at 405 nm, 540 nm, and 656 nm
were assigned to the Er3+-4f𝑛 electronic transitions 2H

9/2
→

4I
15/2

, 4S
3/2
→

4I
15/2

, and 4F
9/2
→

4I
15/2

. The total lu-
minescence appears green in color due to a combina-
tion of green and red emissions from the Er3+ ion.
NaYF

4
:20%Yb3+/0.5%Tm3+ nanocrystals can emit intense

blue light under the excitation of infrared light with wave-
length of 980 nm. The corresponding upconversion fluores-
cent spectrum (Figure 2(c)) shows the main emission band
centered at 472 nmwhich is ascribed to the 4f-shell electronic
transition 1G

4
→

3H
6
of Tm3+ ions. Upconverted emission

was also detected in the red and ultraviolet (UV) regions of
the spectrum and assigned to the 1G

4
→

3F
4
(centered at

645 nm) and 1D
2
→

3H
6
(centered at 355 nm) transitions,
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Figure 1: (a) TEM images of NaYF
4
:18%Yb3+/2%Er3+ nanocrystals; (b) the corresponding high-resolution TEM images (HR-TEM) of

NaYF
4
:18%Yb3+/2%Er3+ nanocrystals. (c) TEM images of NaYF

4
:20%Yb3+/0.5%Tm3+ nanocrystals; (d) the corresponding high-resolution

TEM images (HR-TEM) of NaYF
4
:20%Yb3+/0.5%Tm3+ nanocrystals.

respectively. The upconversion excitation pathways of the
Er3+/Yb3+ and Tm3+/Yb3+ ion couples in these materials are
well known and shown in Figure 3.

To better understand the populating mechanism of the
excited states following near-infrared irradiation, the upcon-
version luminescence intensities versus the excitation power
density are measured. It is known that, for unsaturated
UC processes, the number of excitation photons which are
required to generate an emission photon can be obtained by
the following relation [30, 31]:

𝐼

𝑓
∝ 𝑃

𝑛
, (1)

where 𝐼
𝑓
is the fluorescent intensity, 𝑃 is the pump laser

power, and 𝑛 is the number of the laser photons required.
The excitation power dependence of the three emission bands
of NaYF

4
:18%Yb3+/2%Er3+ nanocrystals is measured and

treated by Auzel’s method (Figure 2(b)) [32]. It should also be
noted that the observed slope values, which correspond to the

number of photons required to generate an emission photon
in the upconversion process, deviate from the expected val-
ues. For NaYF

4
:18%Yb3+/2%Er3+ nanocrystals, the 𝑛 values

are equal to 1.92 for the green emission and 1.87 for red
emission, respectively. This indicates that two photons are
involved in the upconversion process of both red and green
emissions. The slope values of weak blue emission are equal
to 2.81 which indicates a three-photon upconversion process.
Figure 4 shows the excitation power dependence of the three
emission bands of NaYF

4
:20%Yb3+/0.5%Tm3+ nanocrystals.

The 𝑛 values of blue emission equal 1.88, while those of red
emission equal 1.93. The 𝑛 values of both blue and red bands
are much lower than the theoretical value (𝑛 = 3) that could
be strongly ascribed to the saturation effect [33–35]. As the
excited level 3F

4
has nearly saturated population, it will play

a role of electron reservoir similar to the ground state and
presents a false image for the electrons in the 3F

4
level that

they transit from ground state to the upper ones. As a result,
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Figure 2: Power dependence of the upconversion emissions of NaYF
4
nanocrystals: (a) upconversion spectrum of NaYF

4
:18%Yb3+/2%Er3+

under different excitation power; (b) plots (log-log) of emission intensity versus excitation power in NaYF
4
:Yb3+/Er3+ nanocrystals; (c)

upconversion spectrum of NaYF
4
:20%Yb3+/0.5%Tm3+ under different excitation power; (d) plots (log-log) of emission intensity versus

excitation power in NaYF
4
:Yb3+/Tm3+ nanocrystals.

it is observed for blue and red emissions that the 𝑛 value
locates at the range of 1.0∼2.0 which corresponds to a two-
photon conversion process. This saturation phenomenon is
also observed for the ultraviolet emission band which has
the slope value of 2.71. It can be easily addressed that the
saturation of 3F

4
level leads to the three-photon upconversion

for NaYF
4
:20%Yb3+/0.5% nanocrystals.

To obtain the multicolor output from yellow-green to
red emission in the visible region, the UC emissions of
NaYF

4
:Yb3+, Er3+ nanocrystals are tuned by controlling the

dopant concentration of the Yb3+ ion. In Figure 4, three

common emission peaks at 405 nm, 540 nm, and 656 nm are
observed, which are assigned to the 2H

9/2
→

4I
15/2

, 4S
3/2
→

4I
15/2

, and 4F
9/2
→

4I
15/2

transition of Er3+, respectively.
Noticeably, the relative intensity of red to green emission
gradually decreases along with the concentration of Yb3+
ions from 18mol% to 80mol%. With the increase of the
concentration of Yb3+ ions, the color of NaYF

4
:Yb3+, Er3+

nanocrystals changes from green to yellow and then turns red
(Figures 6(b)–6(e)).

The upconversion luminescence spectra of Yb3+/Tm3+/
Er3+ tridoped NaYF

4
nanoparticles were measured under a
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Figure 3: The energy level diagrams of the Er3+, Tm3+, and Yb3+ dopant ions and upconversion mechanisms following 980 nm laser diode
excitation.
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4
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excitation of a 980 nm laser diode at low pump power of 0.2W.

980 nm diode laser excitation and shown in Figure 5. For
Yb3+/Tm3+/Er3+ tridoped NaYF

4
nanoparticles (Figure 5),

the green emission peak at 540 nm is attributed to the
4S
3/2
→

4I
15/2

transition of Er3+, while the blue emission
peaks at 472 nm and 541 nm are attributed to the 1G

4
→

3H
6

transition of Tm3+ ions. At the same time, the red, weak violet,
and ultraviolet emission peaks can still be observed. It is quite
clear from Figure 5 that the intensity ratio of the green to red
(IRGR) emission varies with the change of the content of Er3+
ions. When the content of Er3+ ions is 2%, the IRGR reaches
a maximum value. The color of NaYF

4
:Yb3+, Tm3+, and Er3+

nanocrystals changes from cyan to green (Figures 6(g)–6(i)).

3.2. Cell Imaging. Bioimaging is an important diagnostic
tool for researching biological phenomena in/between cells.
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Figure 5: The upconversion luminescence spectra of Yb3+/Tm3+/
Er3+ tridoped NaYF

4
nanoparticles.

Conventional bioslice imaging technology has been gradually
substituted by fluorescent imaging in biological and clinical
application due to its defects of complicated slicing process
and strictly limited thickness, which is incapable of imaging
the cells in vivo. UCNP-based UC luminescence imaging
shows excellent optical features, such as narrow anti-Stokes
shifted light and low autofluorescence background. Because
fluorescence-based techniques are inherently sensitive, selec-
tive, convenient, diverse, nondestructive, potentially real-
time, and in situ, they have been widely used in biological
imaging.

Here, the tomato skin cells were used for upconversion
fluorescence imaging technique. In order to conveniently
compare conventional bioslice imaging with upconversion
fluorescent imaging, the slices of tomato skin were adopted
as research objectives. However, it should be noted that
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6: (a) Bright-field photo of the prepared NaYF
4
nanocrystals dispersed in cyclohexane. Eye-visible luminescence photos of the

colloidal solution of NaYF
4
doped with (b–e) (18, 40, 60, 80)%Yb3+/2%Er3+; (f) 20%Yb3+/0.5%Tm3+; (g–i) 20%Yb3+/0.5%Tm3+/(0.05, 1,

2)%Er3+ under the excitation of a 980 nm laser diode.

the tomato skin without slicing process can be directly
used for fluorescence imaging in vivo in practical biological
applications.

The upconversion fluorescent bioimaging is detected
in two kinds of cells incubated with multicolor NaYF

4

nanocrystals. First, the slices were dried at temperature
of 35∘C for one day. Second, an aqueous dispersion of
UCNPs was added to container with these slices, which were
incubated for 15min at the temperature of 26∘C. For cell and
imaging, these hydrophobic upconversion NaYF

4
nanoparti-

cles were transferred to be biocompatible and hydrophilic by
coating them with PEG. The cell imaging was measured by
confocal fluorescencemicroscopy (Olympus BX43) equipped
with a 980 nm NIR diode laser after incubation in different
kinds of NaYF

4
nanocrystal aqueous solution.

The fluorescent images of the tomato skin cells with
upconversion NaYF

4
:Yb3+/Er3+ and NaYF

4
:Yb3+/Tm3+ na-

noprobes are shown in Figure 7 for comparing with conven-
tional slicing imaging. To change the multicolor upconver-
sion nanoprobes, the imaging with green, blue, cyan, yellow,
and red color could be obtained. It is clear from Figures
7(a)–7(c) that the tomato skin cells with an average size of
10 𝜇m can be clear imaged by these 200 nm upconversion
nanoprobes with remarkable differentiation between cell
walls and cytoplasm. In addition, unambiguous cell structure
is observed in the dark field with the assistance of UC
fluorescence, which shows the possibility for the imaging in
vivo. The shape and position of the cells overlapped very
well in bright field and dark field, which indicated well
biocompatibility between NaYF

4
nanocrystals and tomato

skin cells. However, it can be seen from Figures 7(d) and
7(e) that these upconversion nanoprobes with diameter of
200 nm are not suitable for clearly imaging the cells with
diameter smaller than 4 𝜇m, in which the cell walls and
cytoplasm can not be clearly differentiated. Conventional
transmission imaging (left column in Figure 7) and upcon-
version fluorescent imaging (right column in Figure 7) are
both capable of presenting the microstructure of slicing
cells in vitro. However, the conventional slicing transmission
imaging is incapable of presenting the cell microstructures in
vivo.

3.3. Detection of Rhodamine B. Rhodamine B (RB) is an
efficient fluorescent dye which can emit red light of ∼610 nm
under the excitation of 540 nm green light and has well
solubility in water, methanol, and ethanol. It is commonly
used for dyeing textiles, paper, soap, leather, and even food
in some countries. But the recent investigation indicates that
the dye of RB may threaten the health of human beings. So
it is urgent to develop a novel and efficient way for detecting
the RB in the food.

There is a perfect overlap between the excitation spectra
of Rhodamine B and the emission spectra of NaYF

4
:Yb3+,

Er3+ nanoparticles in green region, so that an LRET-based
sensor system can be successfully constructed by combining
the UCNPs with Rhodamine B, in which UCNPs play a role
of energy donor while Rhodamine B plays a role of energy
acceptor. The synthesized UCNPs have an acidic ligand
(oleic acid) which can quickly capture the basic molecule
RB to form a close nanosystem of UCNPs@dye. In practical
experiment, we control the distance between UCNPs and the
fluorescent dyes by tuning the thickness of acidic ligand to
obtain the optimal energy transfer efficiency in UCNPs@dye
system. By comparing the relative emission intensities of
red emission (RB) and green emission (UCNPs with emit-
ter Er3+), the concentration of RB can be correspondingly
addressed.

Here, we used LRET tuned UCNPs for imaging tail fin
tissues of crucian carp. The fluorescence imaging of tail fin
tissues with UCNP1@RB under different excitation power is
depicted in Figure 8, where the concentration of RB is fixed
at 160 𝜇g/mL. It is clearly observed that the tail fin tissues
exhibited bright green light and yellow light to the naked
eyes. As the excitation power increases, the yellow emission
is becoming stronger and stronger. This indicates that the
resonance energy transfer from UCNP to RB is enhanced
with the increasing of excitation power. The increasing of
excitation power makes the emission of UCNP stronger,
which makes many more RB molecules be able to obtain the
resonance energy and emit bright yellow light.

The UC luminescence spectra of UCNP@RB system with
various concentrations of RB are shown in Figure 9. While
the concentration of RB increases, the intensity of green
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Figure 7: Right column: fluorescence microscope imaging of cells: (a) the skin issues loaded with 18%Yb3+/2%Er3+; (b) the tomato
skin cells loaded with 40%Yb3+/2%Er3+; (c) the tomato skin cells loaded with 80%Yb3+/2%Er3+; (d) the tomato skin cells loaded with
20%Yb3+/0.5%Tm3+; and (e) the tomato skin cells with NaYF

4
:18%Yb3+/2%Er3+ and NaYF

4
:20%Yb3+/0.5%Tm3+. Left column: conventional

slice transmission imaging.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: (a) Conventional slice transmission imaging, (b–f) fluorescence imaging of tail fin tissues of crucian carp with UCNP1@RhB under
different excitation power: (b) 0.15W, (c) 0.2W, (d) 0.3W, (e) 0.34W, and (f) 0.55W.

UCL peak decreases gradually, whereas the emissions at
the range of 570∼630 nm from RB occur via the resonance
energy transfer from UCNP to those dye acceptors. The
red emissions of UCNP at 656 nm are not affected after
loading of RB molecules since those organic dyes have no
absorption at this wavelength.When the concentration of RB
is increased to 160 𝜇g/mL, the green emission peaks of UCNP
almost disappear. In this case, the green emission of UCNP
has been completely absorbed by RB for emitting the peak
centered at 610 nm. Importantly, the integral intensity ratio
of red to green emission (IIRRGE) varies with decreasing the
concentration of RB solution. The concentration of RB can

be easily addressed according to IIRRGE signal. The IIRRGE
values can be used for the quick and precise detection of
RB concentration in vitro or in vivo. Employing a 980 nm
diode infrared power source of 0.34Wmm−2, the detection
limit of RB can reach 0.016𝜇g/mL, if the concentration of
upconversion nanoprobes is properly controlled.

Upconversion fluorescent spectra of UCNPs@RB with
various concentrations of NaYF

4
nanoparticles are shown in

Figure 10.When the concentration of RB is fixed at 3.2𝜇g/mL,
four emission peaks, centered at 408 nm, 525 nm, 650 nm,
and 590 nm, are observed for this UCNPs@RB system which
can be assigned to the electronic transitions 2H

9/2
-4I
15/2

,
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Figure 10: Evolution of the fluorescence spectra of UCNPs@RB
in the presence of various concentrations of UCNPs (from 1 to
20mg/mL).
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of Er3+ ions and the emission
of RB, respectively. It is clear that the intensity ratio of RB
emission peak to the green emission peak of Er3+ reaches
to the highest value when the concentration of upconversion
NaYF

4
:Yb3+, Er3+ fluorescent donors is equal to 4mg/mL.

4. Conclusions

In conclusion, NaYF
4
upconversion fluorescent nanoprobes

doped with Yb3+ and Er3+ or Tm3+ were successfully synthe-
sized via the solvothermalmethod.ModulatedUCL emission
spectra were obtained via changing the doping. Fluorescent
biological imaging for living beings can be achieved by

using these multicolor NaYF
4
upconversion nanocrystals as

fluorescent probes without the need of a slicing process.
These NaYF

4
upconversion nanocrystals can be employed as

fluorescence donors to pump fluorescent organic molecules.
For example, the efficient luminescence resonant energy
transfer (LRET) can be achieved by controlling the dis-
tance between NaYF

4
:Yb3+/Er3+ UCNPs and Rhodamine B

(RB). NaYF
4
:Yb3+/Er3+ UCNPs can emit green light at the

wavelength of ∼540 nm while RB can efficiently absorb the
green light of ∼540 nm to emit red light of 610 nm. The
LRET efficiency is highly dependent on the concentration
of NaYF

4
upconversion fluorescent donors. For the fixed

concentration of 3.2𝜇g/mL RB, the optimal concentration
of NaYF

4
:Yb3+/Er3+ UCNPs is equal to 4mg/mL which

generates the highest LRET signal ratio. In addition, it is
addressed that the upconversion nanoparticles with diameter
of 200 nm are suitable for imaging the cells larger than 10 𝜇m
with clear differentiation between cell walls and cytoplasm.
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