
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 846854, 10 pages
http://dx.doi.org/10.1155/2013/846854

Research Article
Modeling the CO2 Sequestration Convection Problem Using the
Lattice Boltzmann Method

Hassen M. Ouakad

Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Correspondence should be addressed to Hassen M. Ouakad; houakad@kfupm.edu.sa

Received 10 May 2013; Revised 3 October 2013; Accepted 16 October 2013

Academic Editor: Jian Guo Zhou

Copyright © 2013 Hassen M. Ouakad. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents an investigation of the density-driven problem that rises during the CO
2
sequestration into saline aquifer. The

lattice Boltzmann method (LBM) is implemented in a way to solve this mixing problem (the brine problem along with the solute
transport). The CO

2
-brine interface was located at the top of the considered domain. Different Rayleigh numbers were used in

order to investigate this problem.When Rayleigh number is low, we got steady-state concentration contours describing a Rayleigh-
Bénard type of convection. Moreover, when the Rayleigh number was selected to be big enough, we observe that the system is less
stable and a convective fingering is initiated. This instability is caused by a higher density difference between the brine and the
sequestrated CO

2
. Note here that the turbulence is not taken into account in the study. After the onset this convective instability,

the brine with a high CO
2
concentration migrates down into the porous medium. This study is based on a statistical LBM theory

without assuming periodicity in any directions and without considering any type of disturbances in order to turnon the instability
behavior.

1. Introduction

Carbon dioxide storage in deep saline aquifers is considered
a possible option to bring greenhouse gas emissions under
control. The final goal of this process is to dissolve the CO

2

into the sub-surface saline water. Injected CO
2
dissolves into

formation brines from above, increasing brine density and
creating an unstable hydrodynamic state favorable for natural
convection. After injection, there exist sort of gravity forces
that tend to redistribute the injected CO

2
. This mechanism is

known as a convection-advection process.Theunderstanding
of this mechanism and the associated mechanisms affecting
this mixing may have an impact on the long-term seques-
tration process in deep saline aquifers. Several groups [1–
18] used linear stability theory and high-order numerical
integrations to study how this unstable convection affects
the rate of dissolution of CO

2
whereas others [19–32] used

the Lattice Boltzmann Method (LBM) to solve fluid flow
problems in different media. Finally, laboratory studies [33–
35] have confirmed qualitative and quantitative aspects of
CO
2
solute convection process and found similarity with

previous simulated results.

Lindeberg and Bergmo [1] presented numerical simu-
lations of the long-term fate of CO

2
in an aquifer. They

proposed that the gravitational instability of this convective
mixing problem can be studied in the context of a finite
domain, bounded at the top by a constant concentration
boundary, using theBoussinesq approximation.Hassanzadeh
et al. [2, 3] developed a 2D numerical model to study the
diffusive and convection mixing of CO

2
in geologic storage.

Their study revealed two important time scales involved in
this process: the time to start the instability and the time to
achieve ultimate dissolution.They showed that depending on
the system Rayleigh number and the heterogeneity, convec-
tive mixing can greatly accelerate the dissolution of CO

2
in

an aquifer.
Some studies [4–8] have also been performed investi-

gating the linear and global stability analysis of the time-
dependent density-driven convection in deep saline aquifers
for long-term storage of CO

2
. They investigated the onset

time for convection, the preferred wavelength for the growth
of convective fingers, and growth rates. Hassanzadeh et al. [9,
10] presented scaling analysis of the convectivemixing of CO

2

in saline aquifers based on direct numerical simulations.They
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subjected the top layer to a sudden rise in CO
2
concentration

from the top. They ascertained the stability of the system
by integrating numerically a Galerkin-based reduced-order
model. They showed results revealing increase in the onset
time of convection with the transverse dispersion. Rapaka
et al. [11] used the idea of nonmodal stability analysis to
compute the maximum amplification of perturbations in
the density-driven convection resulting from dissolution of
CO
2
in brine in the underlying medium, optimized over

the entire space of initial perturbations. They presented 3D
spectral calculations of the problem governing equations.
Their results showed good agreement compared to those
obtained from spectral calculations. The same group [12]
extended the analysis they adopted in [11] to the impor-
tant cases of anisotropic and layered porous media with a
permeability variation in the vertical direction and while
using a modal analysis based on the so-called Galerkin
method. They showed that, unlike the solution of the initial
value problem, results obtained using nonmodal analysis
used in [11] is insensitive to the choice of bottom boundary
condition.

Ghesmat et al. [13, 14] studied the velocity dependent
dispersion influence on the mechanism of dissolution of
CO
2
into brine by fully nonlinear numerical simulations.

Their investigation revealed that this dispersion increases the
dissolution of CO

2
as its strength increases and that it also has

an impact on the fingering pattern.
Some groups [15, 16] developed parallel simulator, based

on the TOUGH2 code, for large-scale and long-term CO
2

geologic sequestration in saline aquifers. They investigated
the convective mixing induced by a small increase in brine
density due to dissolution of CO

2
. Their numerical model

involves more than 1 million grid blocks, which is currently
impossible to run without using a parallel simulator [15].
In the same optic, Lu and Lichtner [17] investigated the
convective instability of CO

2
by taking advantage of a 3D

parallel computing using the code PFLOTRAN.The onset of
this instability was resolved with high-resolution numerical
simulations to investigate the rate of plumedissolution caused
by fingering phenomena. The calculated rate of dissolution
of CO

2
into the brine was found to be highly dependent

on grid resolution. Farajzadeh et al. [18] investigated the
transient density-driven natural convection problem when
the top of the porous medium initially saturated with a
liquid is exposed to a CO

2
-rich gaseous phase. They solved

this problem numerically using the mass and momentum
conservation laws and diffusion of CO

2
into the liquid.

Their results showed that the effect of natural convection
increases with increasing Rayleigh number, and that the
nonlinear behavior depends strongly on this nondimensional
number.

Recently, the lattice Boltzmann method (LBM) has been
proposed as an alternative numerical method for simulating
fluid flows as well as physics in fluids. The method is
principally successful in fluid flow applications involving
nonlinearities as well as complicated domains and bound-
aries. Unlike the methods used in the above literature review
(conventional numerical schemes based on discretizations
of macroscopic continuum equations), the LBM is based

on coupled microscopic models and mesoscopic kinetic
equations. Some studies [19–21] used LBM to model thermal
convection problems, while others [22–25] used it to model
fluid flow, heat-solute transport problems [26], and solute
transport in porous media [27–29].

Chen and Doolen [22] and Aidun and Clausen [23] pre-
sented a review of the use of the LBMas a parallel and efficient
algorithm for simulating single-phase and multiphase fluid
flows, for incorporating additional physical complexities, and
for modeling complicated boundary conditions and multi-
phase interfaces. Both groups concluded that this method
represents a mature and efficient substitute for Navier-Stokes
solvers in many flow problems. Dong et al. [24] investigated
the viscous fingering phenomenon of two immiscible fluids
in a channel by applying the LBM. They claimed that the
LBM can be viewed as a promising tool for investigating fluid
behaviour and other immiscible displacement problems by
providing good understanding of the mechanisms of viscous
fingering. Thorne and Sukop [25] used the LBM to solve the
classic solute-induced buoyancyElder problem [26, 27].Their
work represented first steps toward using lattice Boltzmann
models for application to groundwater problems (salt-water
intrusion) in coastal regions. Bardsley et al. [28] adopted the
Lattice Boltzmann modeling to simulate large-scale density-
dependent ground water flow and heat/solute transport sys-
tems. Anwar and Sukop [29] presented LBM formodeling the
flow and transport of solute in heterogeneous porous media
and compared their results with available analytical solutions.
Recently, Boek [30] described the ongoing development of
lattice-Boltzmann (LB) computer simulation codes to study
flow in porous media at the pore scale using X-ray Micro
Tomography (XMT) pore space images. He reviewed the
development of his codes to study flow in 2Dmicromodels as
well as in 3D. Chen and Zhang [31] used a pore-scale LBM to
simulate the density-driven convection problem in a porous
medium in order to study the possibility of CO

2
sequestration

in deep saline aquifers. Add to that, recent developments
of the LBM for large-scale haemodynamic applications was
discussed in [32].

From the aforementioned review, one can note that
a robust numerical method is still needed to tackle the
buoyancy-driven flow of CO

2
during its geological storage

into saline aquifer. It is well-known fact that numerical
scheme, based on finite-difference method for example,
suffers from convergence as well as numerical diffusion
problems. Add to that, method based on the TOUGH2 codes
are time-consuming since they need to run more lots of
grid blocks equations. In addition, many groups tend to use
assumptions to be able to solve such problems by means of
the previousmentionednumericalmethod (such as assuming
periodicity in certain directions, or inject some noise signals
to turn on the nonlinearity of the system).

The organization of this paper is as follows. First, a
Lattice Boltzmann scheme is proposed to tackle the coupled
convection-advection problem of CO

2
into brine. Then, a

convergence is ascertained in order to get the suitable lattice
to be used for this problem. Finally, CO

2
concentration aswell

as steam-function contours are shown for different Rayleigh
numbers and iteration times.
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2. Problem Formulation

In this section, we formulate the problem governing the flow
of injected CO

2
into saline aquifer (brine), Figure 1.

After injection, gravity forces will tend to accumulate the
injected CO

2
at the top of the aquifer. This is modeled by

assuming that the CO
2
will form a horizontal layer in top

of the brine layer [8]. We consider here a 2D, homogeneous
and isotropic porous layer of a finite thickness. We assume
that the model is saturated with the brine. Add to that,
symmetry condition at the lateral boundaries and no-flow
in the bottom boundary at all times is been set. We assume
also that CO

2
is injected at the top, which is assumed

to be under thermodynamic equilibrium with the brine at
the upper boundary interface. Therefore, we propose also
to use a finite domain, bounded at the top by a constant
concentration boundary and under the Boussinesq approx-
imation as was assumed by [1]. The equations describing the
Boussinesq-type of flow in a horizontal porous layer are given
as follow [9]:

⃗
𝑈 = −

𝑘

𝜇

(
⃗
∇𝑃 − 𝜌𝑔𝑧⃗) , 𝜌 = 𝜌

0
(1 + 𝛽𝐶) , (1)

𝜙

𝜕𝐶

𝜕𝑡

= −
⃗
𝑈 ⋅

⃗
∇𝐶 + 𝜙𝐷

⃗
∇

2
𝐶, (2)

∇
⃗
𝑈 = 0, (3)

where ⃗
𝑈 is the Darcy velocity, 𝐶 is the concentration of

the dissolved CO
2
, 𝑘 is the permeability, 𝐷 is the diffusion

coefficient, 𝜙 is the porosity, 𝛽 is the volumetric expansion
factor, and 𝜇 is the viscosity.

For convenience, we introduce the following nondimen-
sional variables:

̂

⃗
𝑈 =

⃗
𝑈

𝑈

∗
,

̂
𝑃 =

𝑃

𝑃

∗
,

̂
𝑡 =

𝑡

𝑡

∗
,

(4)

where

𝑈

∗
=

𝑘Δ𝜌𝑔

𝜇

, 𝑃

∗
=

𝜇𝑈

∗
𝐻

𝑘

= Δ𝜌𝑔𝐻,

𝑡

∗
=

𝜙𝐻

𝑈

∗
=

𝜙𝜇𝐻

𝑘Δ𝜌𝑔

,

(5)

and where Δ𝜌 is the Density difference between of the CO
2

saturated into brine and the fresh brine.
Substituting (4)-(5) into (1)–(3) anddropping the hats, the

nondimensional equations are written as

⃗
𝑈 = −(

⃗
∇𝑃 −

𝜌
0

Δ𝜌

𝑧⃗ − 𝐶𝑧⃗) ,

𝜕𝐶

𝜕𝑡

= −
⃗
𝑈 ⋅

⃗
∇𝐶 +

1

𝑅
𝑎

⃗
∇

2
𝐶,

⃗
∇
⃗
𝑈 = 0,

(6)
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Figure 1: Schematic of the CO
2
-brine convective mixing process.

where 𝑅
𝑎
is the Rayleigh number which is the only nondi-

mensional parameter present in the problem and is given by:

𝑅
𝑎
=

𝑈

∗
𝐻

𝜙𝐷

=

𝑘Δ𝜌𝑔𝐻

𝜙𝐷𝜇

. (7)

Using the vorticity formulation for (1) to eliminate the
pressure. Hence, we take the curl of (1) and get

𝜔 = −

𝜕𝐶

𝜕𝑥

= −
⃗
∇

2
𝜓, (8)

where𝜔 is the vorticity and𝜓 is the streamfunction related to
the velocity components as follow:

𝑤 =

𝜕𝜓

𝜕𝑥

, 𝑢 = −

𝜕𝜓

𝜕𝑧

. (9)

Equation (8) is the so-called Poisson’s equation with two
unknown functions 𝜔 and 𝜓.

The boundary conditions are given as follow:

𝑢 (0, 𝑧, 𝑡) = 𝑢 (

𝐿

𝐻

, 𝑧, 𝑡) = 𝑢 (𝑥, 0, 𝑡) = 𝑢 (𝑥, 1, 𝑡) = 0,

𝑤 (0, 𝑧, 𝑡) = 𝑤(

𝐿

𝐻

, 𝑧, 𝑡) = 𝑤 (𝑥, 0, 𝑡) = 𝑤 (𝑥, 1, 𝑡) = 0,

𝐶 (𝑥, 0, 𝑡) = 𝐶
0
,

𝜕𝐶

𝜕𝑥

(0, 𝑧, 𝑡) =

𝜕𝐶

𝜕𝑥

(𝐴, 𝑧, 𝑡) =

𝜕𝐶

𝜕𝑥

(𝑥, 1, 𝑡) = 0.

(10)

3. The Lattice Boltzmann Method

3.1. Overview. The lattice Boltzmann method is based on the
use of a particle velocity distribution function, 𝑓

𝑖
(𝑥⃗, 𝑡) [35],

which quantifies the probability to monitor a fluid particle
with velocity ⃗𝑐

𝑖
at a lattice location 𝑥⃗ and time 𝑡.The subscripts

“𝑖” of the distribution functions 𝑓
𝑖
(𝑥⃗, 𝑡) indicate the different

discrete lattice directions of the considered lattice, Figure 2.
In Figure 2, we show two examples of lattice Boltzmann: the
one with five directions called D2Q5 and the one with nine
directions called D2Q9.

The fluid particle velocity distribution functions are
defined for particles moving simultaneously along each lat-
tice.The occurring velocity vectors depend on the number of
sub-lattices. The fluid particles can collide with each other as
they move under applied external forces.
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Figure 2: Schematic figure showing the (a) D2Q5 and (b) D2Q9 lattices, with some nonzero vectors of the particle velocity distribution
function at a node.
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Figure 3: Schematic figure showing the D2Q5 and the D2Q9
lattices at the top boundary. The grey area represents the outside
of the considered system. The known particle velocity distribution
functions from inside the system are (𝑓
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7
) for the D2Q9.

In the LBM, the temporal evolution of the particle velocity
distribution function satisfies the following equation:

𝑓
𝑖
(𝑥 + ⃗𝑐

𝑖
𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓

𝑖
(𝑥⃗, 𝑡) = −

𝑓
𝑖
(𝑥⃗, 𝑡) − 𝑓

eq
𝑖
(𝑥⃗, 𝑡)

𝜏

,

𝑖 = 1, 2, . . . , 𝑛,

(11)

where 𝛿𝑡 is the lattice time step. The index 𝑖 stands for
the 𝑛 base vectors of the underlying lattice type. The left
hand term of (5) is the advection term which represents the
free propagation of the fluid particles. The right term of (5)
represents the collision operator. The term 𝑓

𝑖
(𝑥 + ⃗𝑐
𝑖
𝛿𝑡, 𝑡 + 𝛿𝑡)

represents the new distribution function after advection and
rearrangement. The function 𝑓eq

𝑖
(𝑥⃗, 𝑡) represents the local

equilibrium particle distribution, which depends only on the
locally conserved mass and momentum density.

When considering an additional external source of
momentum (e.g., body forces such as occurring in pressure
gradients or gravitational fields), (5) is written as

𝑓
𝑖
(𝑥 + ⃗𝑐

𝑖
𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓

𝑖
(𝑥⃗, 𝑡) = −

𝑓
𝑖
(𝑥⃗, 𝑡) − 𝑓

eq
𝑖
(𝑥⃗, 𝑡)

𝜏

+ 𝐹
𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(12)

where 𝐹
𝑖
is the applied external force.

In the above equations, (11) and (12), the relaxation time 𝜏
is a parameter which characterizes the constitutive behavior
of the considered fluid at a microscopic level. It is related to
the macroscopic kinematic viscosity ] of the simulated fluid
as

] =
1

3

(𝜏 −

1

2

) . (13)

The equilibrium distribution for an incompressible fluid,
𝑓

eq
𝑖
(𝑥⃗, 𝑡), which approximates the Maxwell-Boltzmann equi-

librium distribution up to a second order Taylor series, can
be written as

𝑓

eq
𝑖
(𝑥⃗, 𝑡) = 𝜌𝜔

𝑖
(1 +

⃗𝑐
𝑖
⋅ 𝑢⃗

3

+

9( ⃗𝑐
𝑖
⋅ 𝑢⃗)

2

2

−

3𝑢⃗ ⋅ 𝑢⃗

2

) , (14)

where 𝜔
𝑖
represent weight factors, 𝜌 is the mass-density, and

𝑢⃗ is the velocity vector given as follow:

𝜌 =

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑥⃗, 𝑡) , 𝑢⃗ =

1

𝜌

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑥⃗, 𝑡) ⋅ ⃗𝑐

𝑖
. (15)
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Figure 4: Lattice Boltzmann simulated velocity, concentration, and stream-function contours with 𝑅
𝑎
= 4000, 𝑃

𝑟
= 1, and 𝑛

𝑠
= 0 after 20000

time iteration.

3.2. Solute Transport. The transport of solute or concen-
tration is described with the advection-diffusion equation
(see (2)), where 𝐶 is the concentration of the solute. The
lattice Boltzmann equation can be used to describe the solute
advection-diffusion process into another fluid. Hence, we
introduce another probability distribution function, 𝑔

𝑖
(𝑥⃗, 𝑡),

for the solute concentration as follow:

𝑔
𝑖
(𝑥 + ⃗𝑐

𝑖
𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑔

𝑖
(𝑥⃗, 𝑡) = −

𝑔
𝑖
(𝑥⃗, 𝑡) − 𝑔

eq
𝑖
(𝑥⃗, 𝑡)

𝜏
𝑐

,

𝑖 = 1, 2, . . . , 𝑛,

(16)

where

𝐶 =

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥⃗, 𝑡) , (17)

𝑔

eq
𝑖
(𝑥⃗, 𝑡) = 𝐶𝜔

𝑖
(1 +

⃗𝑐
𝑖
⋅ 𝑢⃗

3

+

9( ⃗𝑐
𝑖
⋅ 𝑢⃗)

2

2

−

3𝑢⃗ ⋅ 𝑢⃗

2

) , (18)

and the relaxation time 𝜏
𝑐
is a parameter which characterizes

the solute and is related to the macroscopic diffusion coeffi-
cient as follows:

𝐷 =

1

3

(𝜏
𝑐
−

1

2

) . (19)

3.3. LBM Steps. Themain steps in the LBM are the following:

(1) definition of the boundary conditions;

(2) initialization of initial values for density, velocity, and
concentration;

(3) calculation of the equilibrium distribution functions
with these given values;

(4) propagation of the particle portions to the next
neighbor: streaming step;

(5) collision step (see (12) and (16));

(6) calculation of the new density, velocity and concen-
tration distributions (see (15) and (17));

(7) after this last step, we need to iterate on time by
increasing it by one unit and we start again with the
calculation of the equilibrium distribution (Step 3).

3.4. Boundary Conditions. For the definition of the boundary
conditions in LBMs, we need to translate them into the
microscopic domain. In fact, we usually have some macro-
scopic information such asthe no-slip condition on walls
for fluid flows. Therefore, in the LB algorithm, one has to
translate the macroscopic information into the microscopic
distribution functions and should be aware that the choice of
certain boundary conditions is of primary importance since
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Figure 5: Lattice Boltzmann simulated velocity, concentration and stream-function contours with 𝑅
𝑎
= 2 ∗ 105, 𝑃

𝑟
= 1, and 𝑛

𝑠
= 0 after 2000

time iteration.

it affects quantitatively (accuracy) and qualitatively (stability)
of the simulation results.

As described above in the problem formulation as well
as the LBM overview and solute transport sections, we
encounter two mixed problems: the fluid flow and the solute
flow. For the fluid flow, a no-slip boundary condition was
used at the top and bottom boundaries, and a periodic
boundary conditionwas used at the left and right boundaries.
For the solute transport, the concentration of the top bound-
ary was fixed, and a zero concentration gradient bound-
ary condition was employed at the left, right, and bottom
boundaries. Hence, we have here two types of boundary
conditions (see (10)): constant boundary (zero velocity and
constant concentration at the top), and constant gradient
(zero concentration gradient).

Note here that we used a full-way bounce-back boundary
condition in order to implement the no-slip (zero-velocity)
walls. In the full-way bounce-back boundary condition, each
fluid particle distribution function is replaced by the value of
the one with a velocity vector pointing in opposite direction.
This identity completes the collision step, and the streaming
step is executed directly after.

For the constant boundary condition type, we will
describe here the case of constant concentration at the top by
considering the boundary node of Figure 3 which is aligned
with the𝑥 direction.We notice that the distribution functions

𝑓
1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
for the D2Q5 lattice and 𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
6
,

and 𝑓
7
for the D2Q9 one are inside the boundary (known),

whereas 𝑓
5
for the D2Q5 and 𝑓

5
, 𝑓
8
, and 𝑓

9
for the D2Q9 are

outside the boundary (unknown). Hence, for both cases, after
streaming the functions laying inside the boundary will be
known functions. Hence, we need one equation for the first
lattice case and three equations for the second lattice case.

For the D2Q5 case, we use (17), that is,
𝑔
5
= 𝐶
𝑜
− [𝑔
1
+ 𝑔
2
+ 𝑔
3
+ 𝑔
4
] . (20)

For the D2Q9 case, we use also (17) along with the
bounce-back conditions in the longitudinal directions of the
lattice [32, 36], that is,

𝑔
8
= 𝑔
6
− 𝑔

eq
6
+ 𝑔

eq
8
,

𝑔
9
= 𝑔
7
− 𝑔

eq
7
+ 𝑔

eq
9
,

𝑔
5
= 𝐶
𝑜
− [𝑔
1
+ 𝑔
2
+ 𝑔
3
+ 𝑔
4
+ 𝑔
6
+ 𝑔
7
+ 𝑔
8
+ 𝑔
9
] .

(21)

Finally, for the zero concentration gradient (Neumann-
type boundary condition), we use the following identity [37]
to satisfy this condition in the rest of the boundaries (dashed
boundaries in Figure 3):

𝐶 (𝑥
0
) =

4𝐶 (𝑥
0
+ 1) − 𝐶 (𝑥

0
+ 2)

3

,
(22)

where 𝑥
0
is the boundary location.
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Figure 6: Lattice Boltzmann simulated concentration contours with 𝑅
𝑎
= 2 ∗ 104, 𝑃

𝑟
= 1, and 𝑛

𝑠
= 0 for various Rayleigh number.
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Figure 7: Lattice Boltzmann simulated concentration contours with 𝑅
𝑎
= 2 ∗ 105, 𝑃

𝑟
= 1, and 𝑛

𝑠
= 0 for various time iteration.

3.5. LBM Nondimensional Parameters. We should note here
that there are two nondimensional parameters that are
controlling the studied density-driven flow and solute trans-
port problem in the LBM process. These parameters are
the Rayleigh and Prandtl numbers defined respectively as

follows:

𝑅
𝑎
=

𝑔ℎ

3

]𝐷
, 𝑃

𝑟
=

]
𝐷

,
(23)

where ℎ is the lattice height given in lattice unit (LU).
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3.6. Porous Media Step. There exist in the literature several
groups [25, 38, 39] that attempted to model the porous media
through the LBM. One of these groups [39] stated that their
model is much more efficient and can handle this problem
without suffering from any kind of convergence issues. In
fact, to model the porous media in the LBM, Walsh et al.
[39] proposed to add a new step along with the streaming
and the collision steps. We note here by 𝑓

𝑖
the given particle

velocity distribution function and by 𝑓𝑐
𝑖
the distribution

function calculated after the collision step.Thenewcalculated
distribution function that account for the porous media step
is given as follow:

𝑓

out
𝑖
(𝑥, 𝑡) = (1 − 𝑛

𝑠
) 𝑓

𝑐

𝑖
(𝑥, 𝑡) + 𝑛

𝑠
𝑓opposite(𝑖) (𝑥, 𝑡) ,

𝑖 = 1, 2, . . . , 𝑛,

(24)

where 𝑛
𝑠
is a constant for a homogenous medium and called

the volumetric solids fraction parameter used to damp the
evolution of each particle momentum in the considered
porous media.

4. Results

4.1. Rayleigh-Benard Type of Convection. We start here our
simulations by considering a nonporous media (𝑛

𝑠
= 0).

Figure 4 show a simulation of a Rayleigh-Bénard type of
convection. Here, we set 𝑅

𝑎
= 4000, and 𝑃

𝑟
= 1 and we present

the steady state concentration contours as well as the stream-
function and velocity distributions. It can be seen that we
ended-up having a Rayleigh-Bénard type of contours and this
results is in perfect agreement with what was presented in
[31].

4.2. Effect of Rayleigh Number. In this subsection, numerical
simulations are performed to find the onset of convection
in large-scale fields with some given properties. Numerical
simulations were performed by changing the molecular dif-
fusivity, model thickness, and porous medium permeability,
resulting in a wide range of Rayleigh numbers. Results for
the onset of convection are illustrated in Figures 5, 6, and
7 as a function of Rayleigh number. We have noticed that
with the continuous increase of the Rayleigh number 𝑅

𝑎
, we

noticed that the simulated concentration contours became
more and more unpredictable until we are get a convective-
mixing type of behavior. The concentration contours start
to contract and we saw initiation of concentration fingers
that migrates downward in a convective-mixing way, Figures
5–7. The theoretical stability analyses performed by several
researchers [4, 8, 10] suggest that Rayleigh should be larger
than certain critical values, which depends on aquifer’s
characteristics. Hence, for CO

2
storage applications, the

geometrical, kinematical, and material properties should be
well selected for a healthy injection process.

4.3. Effect of the Porous Media Step. Finally, we include here
in the above described LBM model, the porous media step
through the volumetric solids fraction parameter 𝑛

𝑠
. The

main approach used is the so-called GLBmodel that consider
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Figure 8: Lattice Boltzmann simulated concentration contours with
𝑅
𝑎
= 1 ∗ 105, 𝑃

𝑟
= 1, and (a) 𝑛

𝑠
= 0, and (b) 𝑛

𝑠
= 0.9 after 5000 time

iteration.

the partial-bounce back term in the LBM model and simply
take a form of 𝑛

𝑠
∗ 𝑑𝑓, where 𝑑𝑓 represents the net fluid

particles to be bounced back due to the existence of solid
phase. Four GLBmodels, which have been proposed in many
previously published works [25, 38, 39], the models take
the same form of the partial-bounce back term, and they
treat a solid boundary node as a special case of a gray node
where 𝑛

𝑠
= 1, that is, partial-bounce back term in the LBM

reduces to the standard bounce-back but with a delay of one
time step. As a result, no additional treatment is required
for treating the boundary condition. Solving simultaneously
the LBM equations, (14) and (16), along with the porous
step equation, (24), we notice that the porous media step
damp the whole mixing system and we end-up changing the
whole mixing behavior from transient with concentration
contours with form of fingers, Figure 8(a), to steady-state
parallel concentration contours, Figure 8(b).We are currently
still investigating the effect of inclusion of this step in the
whole process of the LBM.

5. Conclusions
In this paper, an investigation into the density-driven prob-
lem that rises during the CO

2
sequestration into saline
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aquifer was presented. The Boussinesq-type of flow has been
solved using a Lattice Boltzmann method. We have shown
possible scenario of a Rayleigh-Bénard type of convection
for low Rayleigh number. Then, a convective-mixing loop
was obtained for high Rayleigh number. To account for the
porous media effect, we proposed to use a new step in the
LBM process. The results indicated that the inclusion of this
step may damp the whole mixing system and may affect the
whole convective-mixing process.
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