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Consumer satisfaction with a product’s form plays an essential role in determining the likelihood of its commercial success. A
consumer perception-centered design approach is proposed in this study to aid product designers with incorporating consumers’
perceptions of product forms in the design process. The consumer perception-centered design approach uses the linear modeling
technique (multiple linear regression) and the nonlinear modeling technique (neural network) to determine the satisfying product
form design formatching a given product image. A series of experimental evaluations are conducted to collect evaluation results for
examining the relationship between the automobile profile features and the consumers’ perceptions of the automobile image. The
result of predictive performance comparison shows that both the nonlinear neural network modeling technique and the multiple
linear regression technique are comparably good for predicting the consumers’ likely response to a particular automobile profile
since the predictive performance difference between the two modeling techniques is very slight in this study. Although this study
has chosen a 2D automobile profile for illustration purposes, the concept of the proposed approach is expansively applicable to 3D
automotive form design or other consumer product forms.

1. Introduction

Consumers interact with a huge number of diverse products
during the course of their daily lives and therefore sub-
consciously develop sophisticated product evaluation skills.
A consumer’s purchase decision is based not only on a
product’s functionality and fitness for use, but also on the
psychological response induced by its physical appearance.
This phenomenon is particularly apparent in the case of
mature consumer products such as automobiles, mobile
phone, tableware, and computer accessories. These mature
consumer products can still sell well in the market place
even when lacking advanced technological features and
functionalities provided that their form design finds favor
with the consumers. As a result, consumer satisfaction with
a product’s form plays an essential role in determining
the likelihood of its commercial success. However, product
form design activities are often reduced to a discussion

based on the designers’ opinions and personal subjectivities,
with no theoretical basis. To avoid the subjective judgments
in the design process and to objectively relate consumers’
psychological satisfaction with a product to its form features,
many systematic design approaches have been proposed
for modeling the correlation between the form features of
a product and the consumers’ perception of the product
image [1–4]. Amongst such techniques, Kansei Engineering
(KE) is a fundamental consumer-oriented systematic design
approach in which the consumers’ feelings or product image
perceptions are expressed using suitable image descriptors.
KE has emerged as one of the most powerful techniques
for taking account of the correlation between a product’s
attributes and the induced product image during the design
process [5].

The effectiveness of the KE approaches is crucially deter-
mined by the choice of analytical technique with which one
can model the correlation between the product form and
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the corresponding consumer perception. The models used
in the product design field to predict the likely consumer
response to a particular product form are commonly based
on either the conventional linear analysis techniques or
the nonlinear modeling techniques (such as the artificial
intelligent system). Conventional linear analysis techniques
such as multiple linear regression (MLR) [6] and quantitative
theory type I [4, 7] are commonly employed to interpret
the relationships between the independent and dependent
variables. MLR and quantitative theory type I are widely
used because they are easy, are simple, and have good
predictive performance. MLR is particularly good when the
input data and output data relationship is linear. However,
MLR and quantitative theory type I do not properly handle
nonlinear relationships very well since the accuracy of the
predicted results is seriously degraded if the independent
and dependent variables are characterized by a nonlinear
relationship. In contrast to conventional linear analysis tech-
niques, nonlinear modeling techniques are defined as an
emerging approach to learning the humanmind in an uncer-
tainty environment [8] and are free of the restriction on the
type of relationship between the independent variables and
dependent variables when constructing prediction models.
Therefore, are the nonlinear modeling techniques suitable for
exploring the relationship between the product form features
and the corresponding consumers’ perceptions? Or are the
linear modeling techniques good enough to do so [9]? What
kind of modeling technique should be used to predict the
likely consumer response to a particular product form? To
illustrate how themodeling techniques can be used to answer
these research questions, this study considers the design of
an automobile profile and explores the correlations between
the design variables of automobile profile and the associated
image perceptions using a linear analysis technique and a
nonlinear modeling technique, respectively. This particular
design case is chosen because the lateral contours of a
vehicle are known to supply powerful stimuli influencing
the consumer’s image perceptions and the distinctiveness
of a vehicle’s outline is receiving increasing emphasis on
manufacturers’ marketing strategies nowadays.

Multiple linear regression (MLR) is a technique for
modeling and analyzing numerical data consisting of the
values of a large number of independent variables and a
smaller number of dependent variables. MLR enables the
identification of a set of independent variables which explain
a certain proportion of the variance in a dependent variable
at a specified significance level. The relationship between
the independent variables and the dependent variables can
be illustrated either graphically or, more usually, by means
of an equation (model). Having established this model, it
can be used to predict the value of the dependent variable
for any given set of independent variables. Because of the
effective learning and prediction capabilities for analyzing
the relationship between the product form features (the
input variables) and the consumers’ perceptions (the out-
put variables), nonlinear neural networks (NNs) have been
successfully applied in a diverse range of fields [10, 11]. NNs
are well suited to formulate the product design process for
matching the product form to the consumers’ perceptions,

which is often a black box and cannot be precisely described
[10, 12, 13].

From the discussions above, a consumer perception-
centered design approach is proposed for modeling the
correlation between the profile features of an automobile and
the consumers’ perception of the image projected by the auto-
mobile. Consumers’ perceptions of the automobile profile
image are described using single adjectives and a coordinate-
based definition is used to define the automobile profile.
In order to gather the evaluation data of consumers, the
consumers’ perception evaluations of automobile image are
conducted.The predictionmodels of consumers’ perceptions
induced by the automobile profile images are constructed
using MLR and NNs. The subsequent sections of this study
are organized as follows. Section 2 presents a review of MLR
and NNs. Section 3 presents the research implementation.
Section 4 analyzes the results of constructing prediction
models. Section 5 verifies the performance of prediction
models and provides the predictive performance comparison
between MLRmodels and NNmodels. Section 6 offers some
brief conclusions.

2. Review of Quantitative Analysis Techniques

In this section, we present a brief outline of the relevant the-
ories and algorithms, including the MLR and the NNs.These
techniques are used to examine the relationship between the
automobile profiles and the corresponding product images in
this study.

2.1. Multiple Linear Regression (MLR). MLR is a traditional
statistical technique for modeling the linear relationships
between the input variables (i.e., the independent variables)
𝑥
𝑖
∈ 𝑅
𝑛 and the desired output variables (i.e., the dependent

variables) 𝑦
𝑖

∈ 𝑅. The regression equation for an MLR
problem involving 𝑙 data samples has the form

𝑦
𝑖
= 𝑏
0
+ 𝑏
1
𝑥
𝑖,1

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑥
𝑖,𝑛

+ 𝑒
𝑖
, 𝑖 = 1, . . . , 𝑙, (1)

where 𝑏
0
is the regression constant, 𝑏

1
, . . . , 𝑏

𝑛
are the partial

regression coefficients corresponding to the 𝑛 input variables,
and 𝑒

𝑖
is the error term. The regression coefficients are

generally estimated using an ordinary least squares (OLS)
procedure such that the sum of the squared errors (∑𝑙

𝑖=1
𝑒
𝑖
)

is minimized. In MLR, the coefficient of determination, 𝑅2,
indicates the percentage of the variation in 𝑦

𝑖
explained

by the independent variables 𝑥
𝑖
. In other words, the value

of 𝑅
2 (ranging from 0 to 1) indicates the goodness of

fit of the regression model. The coefficients 𝑏
1
, . . . , 𝑏

𝑛
in

(10), commonly referred to as the unstandardized regression
coefficients, can be used to construct the regression equation
directly. However, the standardized regression coefficients,
𝛽
1
, . . . , 𝛽

𝑛
, provide a more suitable means of analyzing the

relative importance of the different variables. Note that each
standardized regression coefficient represents the change in
response of appropriate per standard deviation change in one
output value 𝑦.

Having established this equation (model), it can be used
to predict the value of the dependent variable for any given
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set of independent variables. In addition, as described in
the following discussions, MLR enables a screening of the
independent variables such that the performance of the
prediction model is enhanced. It is known that increasing
the number of independent variables in a regression equation
improves the fit to the training set but reduces the predictive
ability of the model when supplied with a set of input data
taken from outside the training set. Therefore, it is neces-
sary to identify the subset of independent variables which
collectively enhance the accuracy of the prediction model.
Generally speaking, the optimal set of independent variables
is compiled using one of three different methods, namely, the
forward selectionmethod, the backward eliminationmethod,
or the stepwise method [14]. Of these three methods, MLR
with a stepwise procedure is particularly advantageous since
it provides the combinatorial benefits of the forward selection
method and the backward elimination method, respectively.

2.2. Neural Networks. NNs are nonlinear models and are
widely used to examine the complex relationship between
input variables and output variables. In this study, we use the
multilayered feed-forward neural networks trained with the
back-propagation learning algorithm, as it is an effective and
the popular supervised learning algorithm. A typical three-
layer network consists of an input layer, an output layer, and
one hidden layer, with 𝑛, 𝑚, and 𝑝 neurons, respectively
(indexed by 𝑖, 𝑗, and 𝑘, resp.) [15]. 𝑤

𝑖𝑗
and 𝑤

𝑗𝑘
represent the

weights for the connection between neuron 𝑖 (𝑖 = 1, 2, . . . , 𝑛)

and neuron 𝑗 (𝑗 = 1, 2, . . . , 𝑚) and between neuron 𝑗 (𝑗 =

1, 2, . . . , 𝑚) and neuron 𝑘 (𝑘 = 1, 2, . . . , 𝑝), respectively.
In training the network, a set of input patterns or signals,
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), is presented to the network input layer. The

network then propagates the inputs from layer to layer until
the output layer generates the outputs. This involves the
generation of the outputs (𝑦

𝑗
) of the neurons in the hidden

layer as given in (2) and the outputs (𝑦
𝑘
) of the neurons in

the output layer as given in (3). One has

𝑦
𝑗
= 𝑓(

𝑛

∑

𝑖=1

𝑥
𝑖
𝑤
𝑖𝑗
− 𝜃
𝑖
) , (2)

𝑦
𝑘
= 𝑓(

𝑚

∑

𝑖=1

𝑥
𝑗
𝑤
𝑗𝑘

− 𝜃
𝑘
) , (3)

where 𝑓(⋅) is the sigmoid activation function as given in (4)
and 𝑗 and 𝑘 are threshold values

𝑓 (𝑋) =

1

1 + 𝑒
−𝑋

. (4)

If the outputs (𝑦
𝑘
) generated by (3) are different from the

target outputs (𝑦∗
𝑘
), errors (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑝
) are calculated by (5)

and then propagated backwards from the output layer to the
input layer in order to update the weights for reducing the
errors:

𝑒
𝑘
= 𝑦
∗

𝑘
− 𝑦
𝑘
. (5)

The weights (𝑤
𝑗𝑘
) at the output neurons are updated as 𝑤

𝑗𝑘
+

Δ𝑤
𝑗𝑘
, where Δ𝑤

𝑗𝑘
is computed by (known as the delta rule)

Δ𝑤
𝑗𝑘

= 𝛼𝑦
𝑗
𝛿
𝑘
, (6)

where 𝛼 is the learning rate (usually 0 < 𝛼 ≤ 1) and 𝛿
𝑘
is the

error gradient at neuron 𝑘, given as

𝛿
𝑘
= 𝑦
𝑘
(1 − 𝑦

𝑘
) 𝑒
𝑘
. (7)

The weights (𝑤
𝑖𝑗
) at the hidden neurons are updated as 𝑤

𝑖𝑗
+

Δ𝑤
𝑖𝑗
, where Δ𝑤

𝑖𝑗
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Δ𝑤
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𝑖
𝛿
𝑗
, (8)

where 𝛼 is the learning rate (usually 0 < 𝛼 ≤ 1) and 𝛿
𝑗
is the

error gradient at neuron 𝑗, given as

𝛿
𝑗
= 𝑦
𝑗
(1 − 𝑦

𝑗
)

𝑝

∑

𝑘=1

𝛿
𝑘
𝑤
𝑗𝑘
. (9)

The training process is repeated until a specified error
criterion is satisfied.

3. Implementation Procedure and Steps

3.1. Automobile Profile Definition and Evaluation Samples.
This study collected a large number of pictures of commercial
automobiles and the corresponding body length datum.
These pictures were then examined to identify the various
profile characteristics which collectively define the overall
automobile profile based on a human interpretation of the
distinctive component features of that particular profile. A
total of 144 vehicle pictures with a side-view orientation were
collected from automobile magazines, catalogs, and websites.
The 144 automobile images were then converted into profile
samples by tracing their contour features with 16 Bézier
segments using computer graphic software.

Table 1 shows a typical example of a car profile con-
structed using the Bézier segments. Of the 16 Bézier segments
(𝐶
1
∼ 𝐶
16
) in the profile, the chassis segment (𝐶

15
) was

assumed to be a straight line with just two control points
since this profile feature is approximately straight in most
automobiles. However, the remaining segments were each
assigned four control points to enable the introduction of
detailed profile variations in each segment. As stated above,
each profile was constructed using 16 Bézier segments. As a
result, a total of 16 control points were located at the joints
between contiguous Bézier curves. Since these joints were
used by both segments when tracing the automobile profile,
the overall car profile was defined using a total of 46 control
points (i.e., 2 + (15 × 4) − 16 = 46). In order to define the
automobile profile, a coordinate-based definition approach
was conducted in this study. Control point P

1
was specified

as the origin (0, 0) and the coordinate positions of each of the
other control points were then recorded with respect to this
origin point. Since each control point was assigned both 𝑋-
and 𝑌-axis coordinates, the automobile profile was defined
using a total of 92 (i.e., 46×2) coordinate data items. Further,
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Table 1: Tracing of automobile profile using 16 Bézier curves.

Origin
(0, 0)

P44
P43

P40

P37

P34

P31

P28
P25

P22P19

P16

P13

P10

P4

P6

P1

C1

C2

C3

C4

C5 C6 C7 C8 C9

C10

C11

C12

C13

C14

C15

C16

Curve segment designation Point Design variables
𝐶
1
: under-part segment of fore bumper 𝑃

1
∼ 𝑃
4

𝑉
1(𝑋)

∼ 𝑉
8(𝑌)

𝐶
2
: middle-part segment of fore bumper 𝑃

4
∼ 𝑃
7

𝑉
7(𝑋)

∼ 𝑉
14(𝑌)

𝐶
3
: upper-part segment of fore bumper 𝑃

7
∼ 𝑃
10

𝑉
13(𝑋)

∼ 𝑉
20(𝑌)

𝐶
4
: fore lamp segment 𝑃

10
∼ 𝑃
13

𝑉
19(𝑋)

∼ 𝑉
26(𝑌)

𝐶
5
: engine hood segment 𝑃

13
∼ 𝑃
16

𝑉
25(𝑋)

∼ 𝑉
32(𝑌)

𝐶
6
: fore windshield segment 𝑃

16
∼ 𝑃
19

𝑉
31(𝑋)

∼ 𝑉
38(𝑌)

𝐶
7
: car roof segment 𝑃

19
∼ 𝑃
22

𝑉
37(𝑋)

∼ 𝑉
44(𝑌)

𝐶
8
: rear windshield segment 𝑃

22
∼ 𝑃
25

𝑉
43(𝑋)

∼ 𝑉
50(𝑌)

𝐶
9
: trunk segment 𝑃

25
∼ 𝑃
28

𝑉
49(𝑋)

∼ 𝑉
56(𝑌)

𝐶
10
: rear lamp segment 𝑃

28
∼ 𝑃
31

𝑉
55(𝑋)

∼ 𝑉
62(𝑌)

𝐶
11
: upper-part segment of rear bumper 𝑃

31
∼ 𝑃
34

𝑉
61(𝑋)

∼ 𝑉
68(𝑌)

𝐶
12
: middle-part segment of rear bumper 𝑃

34
∼ 𝑃
37

𝑉
67(𝑋)

∼ 𝑉
74(𝑌)

𝐶
13
: upper-part segment of rear bumper 𝑃

37
∼ 𝑃
40

𝑉
73(𝑋)

∼ 𝑉
80(𝑌)

𝐶
14
: protection hood segment of rear wheel 𝑃

40
∼ 𝑃
43

𝑉
79(𝑋)

∼ 𝑉
86(𝑌)

𝐶
15
: chassis segment 𝑃

43
∼ 𝑃
44

𝑉
85(𝑋)

∼ 𝑉
88(𝑌)

𝐶
16
: protection hood segment of front wheel 𝑃

44
∼ 𝑃
1

𝑉
87(𝑋)

∼ 𝑉
2(𝑌)

each automobile profile samplewas painted 50%gray in order
to enhance its visual impact and was uniformly reduced in
size using a scaling factor of 1 : 25 based on actual automobile
body length to individually display on an A4-sized card. The
total set of 144 automobile profile samples were considered in
the subsequent evaluation trials.

3.2. Selecting the Representative Image Descriptors of Auto-
mobile Profile. Consumers commonly use image words (i.e.,
adjectives) to express their image perceptions of a product.
Althoughmany different imagewords are usedwhen describ-
ing everyday products, the image words applicable to an
automobile profile are more limited. In this study, 3 designers
and 3 white-collar individuals from nondesign backgrounds
were invited to participate in a discussion aimed at identifying
suitable descriptors with which one can describe the possible
psychological responses of a consumer when presented with
the sample automobile profiles. The image descriptors were
elicited from the participants using the following four-step
procedure.

Step 1. The 144 automobile profiles were reviewed, and the
image words used by the individual participants to describe
their perceptions of the image projected by each automobile
profile were recorded.

Table 2: Selection and classification of image descriptors.

Image
descriptors Image words contained

Modern ← Modern, Advanced, Technical, Novel, Fashionable

Formal ←

Formal, Popular, Robust, Geometric, Rational,
Mature

Classical ← Classical, Sleek, Stylish, Smooth

Rakish ←

Rakish, Personal, Dashing, Young, Peculiar,
Speedy, Future, Streamlined, Wild

Elegant ←

Elegant, Gorgeous, Luxurious, Noble, Lofty,
Gentle

Family ← Family, Leisure, Vital

Step 2. The focus group method [16] was applied to select 33
suitable product image descriptors for a generic automobile
profile.

Step 3. The Kawakita Jiro (K J) method [17] was then
applied to classify the 33 image words in accordance with
their semantic similarities. As shown in Table 2, six basic
descriptor groups were identified.

Step 4. From each group, one image descriptor was chosen
to represent the overall characteristics of the group, that is,
Modern, Formal, Classical, Rakish, Elegant, and Family.
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Table 3: Results of MLR analysis in six image perception domains.

MLR prediction models 𝑅 𝑅
2

“Rakish” image
= −0.123(V.3𝑥) − 0.138(V.9𝑥) + 0194(V.17𝑥) − 0.549(V.19𝑥) + 0.400(V.21𝑥) + 0.182(V.31𝑥)
+ 0.171(V.39𝑥) + 0.112(V.42𝑦) − 0.107(V.43𝑥) − 0.523(V.44𝑦) + 0.105(V.49𝑥) + 0.377(V.50𝑦)
− 0.087(V.58𝑦) + 0.162(V.60𝑦) − 0.184(V.67𝑥) − 0.060(V.73𝑥) − 0.335(V.88𝑦) + 0.263(V.89𝑥)
+ 4.450

0.917 0.819

“Family” image
= 0.067(V.3𝑥) − 0.098(V.5𝑥) + 0.092(V.9𝑥) + 0.099(V.11𝑥) + 0.338(V.19𝑥) − 0.382(V.21𝑥)
− 0.313(V.30𝑦) − 0.286(V.38𝑦) + 0.098(V.42𝑦) + 0.541(V.44𝑦) + 0.145(V.48𝑦) + 0.053(V.51𝑥)
+ 0.204(V.58𝑦) − 0.265(V.76𝑦) − 0.203(V.82𝑦) + 5.804

0.840 0.671

“Formal” image
= 0.075(V.7𝑥) − 0.037(V.15𝑥) − 0.078(V.17𝑥) − 0.390(V.32𝑦) + 0.098(V.33𝑥) + 0.386(V.36𝑦)
− 0.113(V.37𝑥) + 0.095(V.56𝑦) + 0.041(V.57𝑥) − 0.124(V.63𝑥) + 0.112(V.68𝑦) + 0.209(V.69𝑥)
− 0.279(V.70𝑦) + 0.146(V.78𝑦) − 0.165(V.87𝑥) − 0.266(V.92𝑦) + 5.435

0.849 0.685

“Classical” image
= −0.043(V.7𝑥) + 0.128(V.9𝑥) − 0.127(V.10𝑦) − 0.038(V.15𝑥) − 0.094(V.23𝑥) + 0.101(V.33𝑥)
− 0.212(V.34𝑦) + 0.195(V.36𝑦) − 0.140(V.37𝑥) + 0.084(V.41𝑥) + 0.171(V.48𝑦) − 0.140(V.56𝑦)
+ 0.022(V.59𝑥) + 0.040(V.73𝑥) − 0.039(V.77𝑥) − 0.085(V.92𝑦) + 5.208

0.904 0.791

“Elegant” image
= −0.067(V.3𝑥) − 0.228(V.18𝑦) + 0.522(V.20𝑦) − 0.308(V.22𝑦) − 0.075(V.25𝑥) + 0.364(V.44𝑦)
− 0.046(V.47𝑥) + 0.121(V.71𝑥) − 0.214(V.76𝑦) + 5.259

0.813 0.639

“Modern” image
= 0.050(V.5𝑥) − 0.128(V.9𝑥) − 0.201(V.10𝑦) + 0.165(V.12𝑦) + 0.100(V.25𝑥) + 0.160(V.39𝑥)
− 0.072(V.41𝑥) + 0.072(V.42𝑦) − 0.120(V.43𝑥) − 0.517(V.44𝑦) + 0.202(V.48𝑦) + 0.103(V.49𝑥)
− 0.157(V.57𝑥) + 0.193(V.61𝑥) + 0.174(V.62𝑦) − 0.060(V.73𝑥) − 0.151(V.84𝑦) + 0.217(V.92𝑦)
+ 4.304

0.836 0.661

3.3. Evaluation of Automobile Profile Images. The 144 auto-
mobile profile samples and the six image descriptors were
used to perform an examination of the correlation between
the automobile profiles and their associated image percep-
tions. The investigation was performed by 32 subjects. In
the evaluation process, each profile image was assessed in
terms of the six image descriptors. Note that the evaluation
method was performed separately by each of the 32 subjects.
Taking the first image descriptor, each subject divided the
144 automobile profile samples into 3 groups, that is, low
(L), medium (M), and high (H), in accordance with his or
her intuitive perception of the extent to which the image
descriptor described the feelings induced by the profile. The
subject then further divided each of the 3 groups into 3
subgroups. In this way, the 144 automobile profile samples
were divided into a total of 9 groups. Each automobile profile
was then assigned a score from 1 to 9 (LL to HH) depending
on the group to which it was assigned. Having classified the
144 profiles in terms of the first image descriptor, the two-
stage classification process was repeated for each of the other
five image descriptors. Finally, the evaluation results obtained
from the 32 subjects for the 144 automobile profile samples
were used to analyze the relationship between the automobile
profile features and the associated image perceptions.

4. Constructing Prediction Models of
Automobile Profile Image

4.1. MLR Prediction Models. MLR with a stepwise selection
procedure was applied to the evaluation data obtained for

the automobile profiles in order to construct functional
relationships between the design variables of the automobile
profile and the corresponding consumer responses in each
of the image perception domains. The MLR models were
constructed subject to the criteria that a 𝑃 value of less
than 0.1 was required for entry to the model such that only
those design variables having a significant effect on the con-
sumers’ perception of the automobile profile were retained.
In performing the MLR analyses, the independent variables
corresponded to the 92 design variables of automobile profile
and the six dependent variables were specified as the mean
value of the evaluation scores assigned in the corresponding
image perception domain.

Overall, Table 3 shows the functional models relating the
design variables of the automobile profile to an evaluative
rating in each of the six product image perception domains.
In this table, themultiple correlation coefficient𝑅 varies from
0.813 (Elegant) to 0.917 (Rakish) while the adjusted 𝑅

2 values
vary from 0.639 to 0.819, respectively. This result implies the
existence of a significant relationship between the 92 design
variables and the six image perception domains.

4.2. NN Prediction Models. In constructing and training
the NN used to predict the relationship between the 144
automobile profiles and the corresponding image descriptors,
the 92 design variables for each automobile profile were
used as the input neurons of the NN and the average
values of the 6 image evaluations were used as the target
values of the output neurons. In attempting to establish the
optimal NN model, three different models were constructed,
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Table 4: RMSE of NN prediction models for automobile profile
training dataset.

Number of
training
epochs

NN-Arith. NN-Geom. NN-Sum
I: 92 neurons
H: 49 neurons
O: 6 neurons

I: 92 neurons
H: 23 neurons
O: 6 neurons

I: 92 neurons
H: 98 neurons
O: 6 neurons

1000 0.1028 0.1031 0.1069
2000 0.0956 0.0970 0.0964
5000 0.0846 0.0871 0.0872
10,000 0.0775 0.0787 0.0791
20,000 0.0672 0.0685 0.0684
30,000 0.0620 0.0638 0.0643
40,000 0.0588 0.0606 0.0610
50,000 0.0576 0.0599 0.0603
60,000 0.0567 0.0587 0.0592
70,000 0.0558 0.0577 0.0584
80,000 0.0553 0.0570 0.0579
90,000 0.0550 0.0570 0.0577
“I,” “H,” and “O” indicate the input, hidden, and output layer, respectively.

differing only in terms of the number of neurons within
their single hidden layer. The number of neurons in the
hidden layer was specified in accordance with three common
rules, namely, the arithmetic mean (Arith.), the geometric
mean (Geom.), and the sum (Sum) of the input and output
neurons, respectively. As stated above, the 144 automobile
profiles and their associated product images were defined in
terms of the 92 coordinate variables and 6 product image
descriptors, respectively. Consequently, each of the three NN
models comprised 92 input neurons and 6 output neurons. In
accordance with the three rules specified above, the hidden
layers of the three models therefore comprised 49 (Arith), 23
(Geom.), and 98 (Sum) neurons, respectively. The three NN
models were trained using the coordinate-based definition
data associated with the 144 automobile profile samples and
the corresponding image perception values obtained from the
evaluation trials. The three NN models were trained using
a sigmoid transformation function and a delta-rule learning
rule, respectively.

As shown inTable 4, all threemodels converged rapidly to
an RMSE value of just over 0.1 after 1000 training epochs and
to a value of just less than 0.1 after approximately 2000 epochs.
These results indicate that the NN models all successfully
converged as the number of training epochs increased. The
three NN models were trained continuously for a total of
90,000 epochs. As shown in Table 4, the NN-Arith. model
obtained its best predictive performance after 90,000 epochs
(RMSE = 0.0550), while the NN-Geom and NN-Sum
models obtained their best performances after 80,000 epochs
(RMSE = 0.0570) and 90,000 epochs (RMSE = 0.0577),
respectively. Although the difference between the RMSE
values of the three NN models is less than 0.0030 (0.0577 −

0.0550 = 0.0027), the RMSE value of the NN-Arith. model
is lower (i.e., better) than those of the other two models after
90,000 training epochs. Consequently, the NN-Arith. model

was adopted as the operational NN model for predicting the
values of each of the six automobile image descriptors for any
given automobile profile definition data.

5. Validation and Comparison of Prediction
Model Performance

5.1. Performance Evaluation of Prediction Models. To verify
the predictive ability of the MLR and NN models, six
new automobile profiles were designed using the respective
coordinate-based definitions. The six automobile profiles
were displayed on individual A4-sized cards and were evalu-
ated by a group of 30 subjects using nine-point Likert scales.
The product image perception in each of the six domains
associated with the automobile profile was also predicted by
substituting the relevant design variable values of each veri-
fication sample into the functional models. The discrepancy
between the Likert scale evaluation scores assigned to each
verification sample by the 30 subjects and those predicted by
the functional models was then assessed using the following
root-mean-square-error index (EI):

EI = √
∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑥
𝑜
)
2

𝑛

,
(10)

where 𝑥
𝑖
is the Likert scale point assigned by the 𝑖th subject,

𝑥
𝑜
is the Likert scale point predicted by the corresponding

model, and 𝑛 is the number of participants involved in the
validation experiments.The EI value in (10) gives the average
difference between the evaluations of the subjects and those
of the corresponding model, respectively, for a single point
on the nine-point Likert scale. To enable the reliability of
the prediction models to be more conveniently compared,
a normalized EI value was obtained by dividing the result
obtained from (10) by nine to yield an error rate (ER) in
the interval [0, 1]. Clearly, a lower value of ER indicates an
enhanced predictive capability.

Tables 5 and 6 present the predictions, EI values, and
corresponding error rate (ER) values of the MLR and NN
models, respectively, for the six image perception domains
associated with the six automobile verification examples (see
Figure 1). From inspection, it is determined that the average
ER varies from 13.32% for the “Family” image to 20.57%
for the “Modern” image when evaluated using the MLR
prediction models (see Table 5). By contrast, the average
ER is found to vary from 13.38% for the “Family” image
to 19.22% for the “Classical” image when evaluated using
the NN prediction model (see Table 6). Overall, the results
demonstrate the basic reliability of the two functional models
in predicting the image projected by an automobile profile in
each of the six perception domains.

5.2. Prediction Performance Comparison between MLRModel
and NN Model. Table 7 summarizes the average ER values
of the two functional models when applied to predict the
consumer response to the automobile profile in each of
the corresponding image perception domains. The only
exception to this tendency occurs in the “Family” and
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Table 5: Performance evaluation of MLR prediction models.

Mean Prediction ER (EI/9) Mean Prediction ER (EI/9)
Rakish Family

1 5.23 5.10 12.8% 7.70 6.59 17.6%
2 2.77 2.88 12.8% 6.33 5.81 15.0%
3 5.23 4.99 17.1% 7.57 7.20 11.1%
4 2.33 2.49 14.3% 8.43 8.49 8.0%
5 1.77 4.56 31.9% 6.23 6.56 13.6%
6 6.80 7.08 13.3% 6.37 5.97 14.6%

Average ER = 17.03% Average ER = 13.32%
Formal Classical

1 4.33 5.07 21.0% 3.40 4.91 22.0%
2 6.63 5.42 21.6% 5.53 5.72 13.2%
3 5.10 5.01 14.2% 4.53 5.77 23.6%
4 6.47 6.41 15.4% 5.40 4.74 18.0%
5 4.73 3.27 22.4% 3.20 3.95 12.1%
6 3.47 4.89 20.5% 4.93 5.29 20.1%

Average ER = 19.18% Average ER = 18.17%
Elegant Modern

1 4.50 4.24 18.1% 4.93 4.14 18.7%
2 8.10 6.63 19.0% 3.97 4.10 20.2%
3 7.70 6.59 17.6% 5.23 4.84 16.5%
4 5.17 7.29 27.1% 4.60 3.91 21.0%
5 4.93 4.85 14.9% 4.63 6.25 24.9%
6 4.57 5.00 14.2% 5.47 6.39 22.1%

Average ER = 18.48% Average ER = 20.57%

Table 6: Performance evaluation of NN prediction model.

Mean Prediction ER (EI/9) Mean Prediction ER (EI/9)
Rakish Rakish

1 5.23 5.71 13.8% 7.70 8.18 13.6%
2 2.77 3.73 16.5% 6.33 6.52 14.0%
3 5.23 4.17 20.8% 7.57 6.89 12.7%
4 2.33 4.12 24.4% 8.43 7.84 10.3%
5 1.77 3.02 16.2% 6.23 6.84 14.7%
6 6.80 5.72 20.4% 6.37 6.88 15.0%

Average ER = 16.30% Average ER = 13.38%
Rakish Rakish

1 4.33 5.13 21.3% 3.40 5.07 23.4%
2 6.63 5.97 18.4% 5.53 5.12 13.8%
3 5.10 5.37 14.5% 4.53 6.33 27.7%
4 6.47 5.97 16.3% 5.40 6.11 18.2%
5 4.73 4.37 15.9% 3.20 3.72 12.4%
6 3.47 5.03 21.7% 4.93 5.18 19.8%

Average ER = 18.02% Average ER = 19.22%
Rakish Rakish

1 4.50 4.23 18.1% 4.93 4.53 17.1%
2 8.10 6.99 15.6% 3.97 4.44 20.9%
3 7.70 8.02 13.1% 5.23 4.58 17.5%
4 5.17 7.66 30.8% 4.60 4.03 20.6%
5 4.93 5.67 17.0% 4.63 5.03 17.9%
6 4.57 4.81 13.6% 5.47 5.12 20.0%

Average ER = 18.03% Average ER = 19.00%
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v.1 v.2 v.3

v.4 v.5 v.6

Figure 1: Automobile profiles used for functional model verification purposes.

the “Classical” image perception domain, in which the
average ER value of the MLR model (Family = 13.32%;
Classical = 18.17%) is slightly lower than that of the NN
model (Family = 13.38%; Classical = 19.22%). Observing
the mean ER data presented in the lower row of the table, the
mean average ER values of theMLRmodel and theNNmodel
for the automobile profile are 17.79% and 17.33%, respectively.
Comparing the mean average ER value of the MLR model
with that of the NN model, it is observed that the latter is
slightly lower (i.e., better) than the former.This finding seems
to imply that the predictive performance of the NN model is
slightly superior to that of the MLR model. However, while
the inclusion of a large number of design variables enhances
the efficiency of a general predictive model, it also increases
the model complexity and therefore causes the designer
problems in understanding the true nature of the relationship
between the consumers’ image perception and the individual
design variables. Although the average ER values of the MLR
model are slightly inferior to those of the NN, the MLR
model has the advantage that it can use fewer design variables
to predict the consumers’ likely response to the automobile
profile, and thus the functional relationships between the
input design variables and the image perception values are
not only more straightforward than those in the NN model
but also more intuitively understandable. From inspection,
the difference in the mean average ER values of the MLR and
NNmodels is found to be less than 0.5% (17.79%− 17.33% =

0.46%). Thus, overall, it can be inferred that the MLR model
also represents a good solution for predicting the consumer’s
image perceptions of the automobile profile since it achieves
a predictive ability very close to that of the NN model.

6. Conclusions

In this study, the relationships between the independent
variables and the dependent variables are established using
MLR and NNmodeling techniques.The various models have
all been verified by comparing the predicted consumers’
perception of the product image in each product image
domain with the corresponding manual evaluation results.
Although the verification result presented in Table 7 has
shown that the predictive performance of the NN model is
slightly better than that of the MLR model, the difference
in the predictive performance of the two models is very

Table 7: Comparison of average ER values of twopredictionmodels.

MLR prediction
Model

NN prediction
Model

Rakish 17.03% ∗16.30%
Family ∗13.32% 13.38%
Formal 19.18% ∗18.02%
Classical ∗18.17% 19.22%
Elegant 18.48% ∗18.03%
Modern 20.57% ∗19.00%
Mean of all average
ER 17.79% ∗17.33%

Asterisks indicate that average ER value of prediction model is lower (i.e.,
better).

slight here. Thus, this finding implies that the nonlinear NN
modeling technique and the MLR technique are comparably
good for predicting the consumers’ likely response to a
particular automobile profile. However, NNmodel with their
sophisticated nonlinear algorithms is often opaque and it
is therefore frequently difficult to recognize the specific
design variables which dominate the consumers’ response
to the product design. By contrast, MLR technique allows
designers to construct relationship models comprising only
those independent variables which exert the most signifi-
cant effect on the dependent values. Nevertheless, nonlinear
relationship modeling using MLR technique results in poor
predictive performance. In future study, it would be worth-
while considering the use of the integration model which
combines the variable selection advantage of MLR and the
sophisticated data analysis capabilities of NN for establishing
the relationship between the dependent variables and the
independent variables in the product form design field.
Although this study has chosen a 2D automobile profile for
illustration purposes, the concept of the proposed approach is
expansively applicable to 3D automotive form design or other
consumer product forms.
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