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Abstract
Background: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K), 
participates in the regulation of actin polymerization and cell survival. A loss of function mutation 
of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) leads 
to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with simultaneous erythrocyte 
akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression 
of vesicle-associated membrane protein 8 (VAMP8) and thus degranulation. The present study 
explored whether chorein is similarly involved in VAMP8 expression and dopamine release of 
pheochromocytoma (PC12) cells. Methods: Chorein was down-regulated by silencing in PC12 
cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-
PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA 
to determine dopamine release. Results: Chorein silencing significantly reduced the number 
of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular 
K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect 
significantly blunted by chorein silencing. Conclusions: Chorein deficiency down-regulates 
VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.
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Introduction

Chorein interacts with the phosphoinositide-3-kinase (PI3K)-p85-subunit thus 
contributing to PI3K activation with subsequent activation of the small G protein ras-related 
C3 botulinum toxin substrate 1 (Rac1) and the p21 protein-activated kinase 1 (PAK), a signaling 
cascade eventually leading to actin polymerization and fostering cell survival [1-4]. Loss-of-
function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated 
protein 13A) underlies chorea-acanthocytosis (CA), an autosomal recessive disease [5-10] 
leading to progressive hyperkinetic movement disorder, cognitive dysfunction, behavioral 
abnormalities, chronic hyperkalemia and erythrocyte acanthocytosis [6, 11]. Knockout of 
chorein in mice yields erythrocyte shape changes [12], neuronal apoptosis [13] and altered 
behavior [13].

Chorein is expressed in a variety of further tissues [14-16] and additional chorein 
sensitive functions include platelet activation [16], endothelial cell stiffness [15] and tumor 
cell survival [4]. Chorein sensitive disarrangement of several cytoskeletal structures was 
reported in human fibroblasts isolated from ChAc-patients [17]. In platelets, chorein deficiency 
decreases the number of intracellular granules and compromises platelet degranulation [16]. 
The defect is paralleled by decreased expression of vesicle-associated membrane protein 8 
(VAMP8), a critical regulator of platelet degranulation [16]. In pheochromocytoma (PC12) 
cells chorein was observed in the termini of extended neurites and localized in dopamine 
containing dense-core vesicles [18]. Overexpression of the carboxyterminal fragment of 
chorein increased K+-induced dopamine release [18].

The present study explored whether chorein deficiency modifies vesicle abundance, 
dopamine release and VAMP8 expression in PC12 cells. 

Materials and Methods

Cells
Pheochromocytoma (PC12) cells [19] were grown in RPMI-1640 (Gibco) supplemented with 10% 

horse serum, 5% fetal bovine serum and 1% penicillin/streptomycin at 37°C in a humidified atmosphere 
containing 5% CO2. 

Silencing of chorein
PC12 cells were seeded in 6 well plates on a density of 2 x 105 and cultured under standard culture 

conditions (37°C, 5% CO2) for 24 h. The cells were subsequently transfected for 72 h with validated siRNA 
for VPS13A (chorein) (ID#s235043, Ambion, Darmstadt, Germany) or with a negative control siRNA 
(ID#s4390843, Ambion) using siPORT amine transfection agent (Ambion) according to the manufacturer’s 
protocol. The efficiency of silencing was checked by RT-PCR.

RT-PCR
For quantitative real-time PCR (RT-PCR) total RNA was isolated from cells using Trifast Reagent 

(Peqlab, Erlangen, Germany) according to the manufacturer’s instructions. Subsequently approximately 2.5 
μg of total RNA was reverse transcribed to cDNA using oligo(dT)12-18 primers and SuperScript II reverse 
transcriptase. To determine transcript levels of chorein and Vamp8, RT-PCR was performed with the 
BioRadiCycleriQTM Real-Time PCR Detection System (Bio-Rad Laboratories) and GoTaqSybr Green Master 
Mix (Promega). The reaction was applied in a final volume of 20 µl containing 2 µl of cDNA under following 
conditions: an initial incubation at 95°C for 5 min, 40 cycles at 95°C for 15 s, 59°C for 20 s and 72°C for 30s. 
Specificity of the PCR products was verified by melting curve analysis. The subsequent primers were used 
(5’→3’ orientation): 

Vps13a fw: TCATCCGGAATCTTCTTCCCTAC
Vps13a rev: TGCCACAACTGTCTGTCCAGTA
Vamp8 fw: ATGACCGAGTCAGGAACCTGC
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Vamp8 rev: TCTTGAAGTGTTCAGACGTGGC
Gapdh fw: TGTGAAGGTCGGTGTGAACG
Gapdh rev: ACATACTCAGCACCAGCATCAC 
The mRNA levels of the respective genes were normalized to the expression levels of GAPDH in the 

same cDNA sample. Relative quantification was calculated according to the 2-ΔΔCtmethod [20]. 

Western Blotting
To quantify protein abundance, cells were washed twice with ice cold PBS and suspended in 100 μl ice-

cold RIPA-lysis buffer (Thermo Fisher Scientific) containing protease inhibitor cocktail (Roche, Mannheim, 
Germany). The protein concentration was determined using the Bradford assay (BioRad, München, 
Germany). Forty µg of protein were solubilized in sample buffer at 95ºC for 5 min and resolved by 12% SDS-
PAGE. For immunoblotting proteins were electro-transferred onto PVDF membranes and blocked with 5% 
BSA in TBS-0.10% Tween 20 at room temperature for 1 h. Then, the membranes were incubated with either 
anti-Vamp8 antibody (1:4000, Abcam) or anti-GAPDH antibody (1:2000, Cell Signaling) at 4°C overnight. 
After washing (TBST) the blots were incubated with HRP-conjugated anti-rabbit (1:2000, Cell Signaling) 
antibody for 1 h at room temperature. After additional washes (TBST) protein abundance was detected 
with the ECL detection reagent (Amersham, Freiburg, Germany) and quantified with Quantity One Software 
(BioRad, Munich, Germany).

Dopamine release
PC12 cells were silenced for 72 hours and treated with 40 mM KCl at 37°C for 3 minutes to induce 

dopamine release in the cell culture medium. For determination of dopamine in the cell culture medium a 
dopamine ELISA kit (IBL International GmbH) was used according to the manufacturer’s protocol. 

Transmission electron microscopy
After washing with warmed PBS, PC12 cells were fixed with warmed Karnovsky’s fixative for 1 h at 

RT and stored at 4°C. For electron microscopic analyses, the cell pellets were embedded in 3.5% agarose 
at 37°C, coagulated at room temperature, and fixed again in Karnovsky’s solution. Post-fixation was based 
on 1.0% osmium tetroxide containing 1.5% K-ferrocyanide in aqua bidest for 2 h. Using standard methods, 
blocks were embedded in glycide ether and cut using an ultra microtome (Ultracut, Reichert, Vienna, 
Austria). Ultra-thin sections (30 nm) were mounted on copper grids and analyzed using a Zeiss LIBRA 120 
transmission electron microscope (Carl Zeiss, Oberkochen, Germany) operating at 80 kV.

Statistics
Data are expressed as arithmetic means ± SEM. Statistical analysis was made by unpaired t-test or Mann-

Whitney test, as appropriate. p < 0.05 was considered statistically significant.

Results

The present study explored whether degranulation of and dopamine release from 
pheochromocytoma (PC12) cells is sensitive to the presence of chorein. In a first approach, 
the morphology of the cells was visualized by electron microscopy. As illustrated in Fig. 1, 
silencing of chorein was followed by a significant decrease of the number of vesicles bound 
to the cell membrane.

In order to test whether chorein silencing influences degranulation of PC12 cells, 
dopamine was determined in the supernatant following an increase of extracellular K+ from 5 
mM to 40 mM. As illustrated in Fig. 2, the amount of dopamine released upon depolarization 
of the cell membrane was significantly decreased following silencing of chorein.

Additional experiments explored whether the decrease of dopamine release is paralleled 
by altered expression of vesicle-associated membrane protein 8 (VAMP8). To this end, VAMP8 
transcript levels were quantified by RT-PCR. As shown in Fig. 3, the VAMP8 transcript levels 
were significantly decreased by chorein silencing. 

http://dx.doi.org/10.1159%2F000442599


Neurosignals 2015;23:1-10
DOI: 10.1159/000442599
Published online: December 10, 2015

© 2015 The Author(s). Published by S. Karger AG, Basel
www.karger.com/nsg 4

Honisch et al.: Chorein Sensitive Dopamine Release

Western blotting was employed to test, whether the decrease of VAMP8 transcript 
levels following chorein silencing was paralleled by a similar decrease of protein abundance. 

Fig. 1. Chorein sensitive number of vesicles bound to the membranes of PC12 cells. A. Original electron 
micrograph of pheochromocytoma (PC12) cells following treatment with siRNA without (left panel, Neg. 
siRNA) and with (right, Vps13 siRNA) specific silencing of chorein. B. Arithmetic means ± SEM (n = 5 prepa-
rations with 50 cells each) of the number of vesicles bound to the cell membrane in PC12 cells treated with 
unspecific (Neg. siRNA, black bar) and chorein specific (Vps13 siRNA, white bar) silencing RNA. * significant 
difference (p<0.05; t-test).

Fig. 2. Chorein sensitive dopamine 
release from PC12 cells. Arithmetic 
means ± SEM (n=5) of dopamine 
released following increase of ex-
tracellular K+ from 5 mM to 40 mM 
from pheochromocytoma (PC12) 
cells treated with unspecific (Neg. 
siRNA, black bar) and chorein spe-
cific (Vps13 siRNA, white bar) si-
lencing RNA. ***significant differ-
ence (p<0.001; unpaired t-test).
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As illustrated in Fig. 4, the VAMP8 protein abundance was significantly lower in chorein 
silenced PC12 cells than in cells transfected with negative siRNA. 

Discussion

The present study confirms the impact of chorein on dopamine release from 
pheochromocytoma (PC12) cells [18]. The present observations further reveal that chorein 
participates in the regulation of vesicle formation. The effect of chorein in PC12 cells is thus 
similar to the effect in blood platelets. As shown previously [16], in platelets drawn from 
patients with chorea-acanthocytosis activation-induced platelet secretion from dense 
granules and alpha granules was significantly less than in platelets drawn from healthy 
individuals. 

The present study further sheds some light on possible mechanisms involved. Similar to 
what has been observed in megakaryocytes [16], chorein silencing decreases the expression 
of vesicle-associated membrane protein 8 (VAMP8). The protein is required for granule 

Fig. 3. Chorein sensitive VAMP8 transcript lev-
els in PC12 cells. Arithmetic means ± SEM (n=5) 
of transcript levels encoding vesicle-associated 
membrane protein 8 (VAMP8) in pheochromo-
cytoma (PC12) cells treated with unspecific 
(Neg. siRNA, black bar) and chorein specific 
(Vps13 siRNA, white bar) silencing RNA. **sig-
nificant difference (p<0.01; unpaired t-test).
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Fig. 4. Chorein sensitive VAMP8 protein ex-
pression in PC12 cells. A. Original Western blot 
showing protein abundance of GAPDH (upper 
lanes) and vesicle-associated membrane pro-
tein 8 (VAMP8, lower lanes) in pheochromocy-
toma (PC12) cells treated with unspecific (left, 
control) and chorein specific (right, siChore-
in) silencing RNA. B. Arithmetic means ± SEM 
(n=5) of vesicle-associated membrane protein 
8 (VAMP8) in pheochromocytoma (PC12) cells 
treated with unspecific (Neg. siRNA, black 
bar) and chorein specific (Vps13 siRNA, white 
bar) silencing RNA. ***significant difference 
(p<0.001; unpaired t-test).
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secretion [21, 22]. VAMP8 forms core SNARE complexes with different partners in different 
tissues or cell lines [23]. In PC12 cells and NRK cells VAMP8 interacts with syntaxin 7 and 
8, as well as Vtilb [24, 25].  In platelets, VAMP8 targets syntaxin 4 [21]. VAMP8 deficiency 
compromizes thrombin-induced secretion of blood platelets [26]. Conversely, VAMP8 
overexpression results in hyperreactive platelets [27]. In pancreatic acinar cell granule 
membranes, VAMP8 interacts with syntaxins 2 and 3 as well as SNAP-23 [23]. VAMP8 
participates in the formation and is required for fusion of pancreatic acinar cell granules  
[23, 28], which are significantly smaller in VAMP8 knockout mice than in wild type mice [23]. 

In cytotoxic T cells VAMP8 interacts with Vtib [29], in kidney with syntaxins 3 and 4 
[30], in mast cells with SNAP23 and syntaxin 4 [31]. Given the function of VAMP8, the protein 
is most likely involved in the effects of chorein on degranulation. However, at this stage, we 
cannot predict to which extent the down-regulation of VAMP8 contributes to the impaired 
formation of vesicles and/or dopamine release. 

The present study did not address the signaling involved in altered VAMP8 expression, 
vesicle formation and dopamine release following chorein silencing. Chorein has previously 
been shown to interact with PI3K [1, 2], which is known to participate in the regulation 
of degranulation in a wide variety of cells [32-40]. Possibly, chorein similarly modifies 
degranulation of those cells. 

PI3K signaling is further known to confer survival of a wide variety of cells including 
cancer cells [41-55] and neurons [56-59]. Chorein is particularly important for function and 
viability of neurons and skeletal muscle cells [6, 11]. Moreover, chorein polymerizes cortical 
actin filaments [3, 17], which is expected to affect a variety of cellular functions including 
exocytosis [3, 60-69].  Along those lines several cytoskeletal structures including actin 
microfilaments, microtubules and desmin-, as well as cytokeratin-intermediate filaments are 
disorganized in human fibroblasts from chorea-acanthocytosis-patients [17]. Interestingly, 
actin redistribution has been previously described to regulate catecholamine secretion in 
PC12 cells [70, 71]. However, whether chorein-associated actin cytoskeleton polymerization 
contributes to the observed chorein sensitive dopamine release in PC12 remains to be 
elucidated. 

In conclusion, the present observations reveal that chorein participates in the 
regulation of vesicle formation and dopamine release, effects which may contribute to the 
pathophysiology of chorea-acanthocytosis. 
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