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Reliable power and temperature control in pressurized water reactor (PWR) nuclear power plant is necessary to guarantee high
efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control
(MPC), by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant
is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed
compensation (PDC) scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared
to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

1. Introduction

In nuclear power plants, steam energy is produced in the
nuclear reactor from continuous fission of the atoms of the
fuel.The steam is then used to drive the turbine and generator
to produce electricity.

Since burning fossil fuels in thermal power plant can have
severe environment problem, the development of nuclear
power plants should be encouraged. For example in China,
although the supercritical and ultrasupercritical technique, as
well as integrated gasification combined cycle (IGCC) plants,
have been well developed, the coal consumption still reaches
about 3.91 million tons in 2012, which comprised over 70% of
national primary energy. Fine particles in the air measuring
less than 2.5 micrometres reached 993 micrograms per cubic
meter in Beijing on 12 January 2013, compared with the limit
of 25 published by the WHO guidelines.

Since nuclear power plants are the complex and nonlinear
systems, it is a great challenge to control the power and
temperature of the nuclear reactor, especially when wide-
range power variations occur in the load following condi-
tion. Thus, various advanced control schemes have appeared
during the past two decades, for example, the observer-
based optimal state feedback assisted control [1, 2], the
linear quadratic Gaussian with loop transfer recovery control

[3, 4], the nonlinear control approach [5, 6], and the neural
network/fuzzy approaches [7, 8].

Modern nuclear power plants should respond to the
load demand on the power grid, which demand high plant
operation performance, subject to various kinds of con-
straints. Meanwhile, nuclear safety and radioactive pollution
prevention have long been much concerned problem. It is
therefore extremely important to reach the economical and
safe operation to maximize the thermal efficiency of the
nuclear power plant. Under these aims, model predictive
control (MPC) shows its obvious advantage, since it is
an advanced model-based control scheme. It performs an
optimization procedure to calculate optimal control actions
at every sampling period based on an explicit process model
subject to process input, output, and state constraints. So
far, MPC has been well constituted for thermal power plant
control [9–11] and also in nuclear power plant water-level
control [12–14]. Paper [15] reports a MPC application in a
three-dimensional nuclear reactor analysis code for nuclear
reactor power.

Nuclear power plants are generally nonlinear, due to
the frequent changes of the operating point right across
the whole operation range. In general, the nonlinear model
predictive control (NMPC) also online solves an optimization
problem, by using the sequential quadratic program (SQP).
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The resulting nonlinear programming problems are usually
nonconvex, and the online computational burden is generally
large. Since the nonlinearities vary with operating power
levels, as well as ageing effects [5, 16], fuzzy models are
used to express the plant dynamic. MPCs are realized in a
parallel distributed compensation (PDC) scheme; that is, for
each local model, a MPC is designed. The overall controller,
which is nonlinear in nature, is similarly constructed by
combining local controllers via fuzzy inference. Simula-
tions on the three-mile island- (TMI-) type pressurized
water reactor (PWR) show the effectiveness of the proposed
method.

2. The Plant Description

As shown in Figure 1, nuclear fission reaction in the reactor
releases tremendous energy, which is transferred from the
reactor to the steam generator by the coolant, heating the
water in the steam generator to generate abundant steam.
Then the turbine is driven by steam to generate electricity.
The main objective is to control the power and temperature
of the reactor by inserting or elevating the control rods.
Conventionally, reactor control system controls the average
temperature of the reactor core coolant to track the reference
temperature which is proportional to the turbine load, in
order to guarantee well matching between the reactor power
level and the load demand at the same time.This temperature
control strategy, considering not only high thermal efficiency
but also technical limits and economical and safe operation,
is widely used in modern PWR power plants.

However, the plant is complex and highly nonlinear
whose parameters vary with the operation conditions. Mean-
while, realistic constraints in the system may lead to actuator
saturation. The performance of the conventional controllers
is often unsatisfactory. Besides, unpredictable disturbances
in the temperature measurement system will induce fluctua-
tions on the measuring values of coolant temperature, which
may lead to the abnormal control rod action and thus must
be considered in the controller design. The proposed Takagi-
Sugeno fuzzy modeling method is used to approximate
the nonlinear plant, based on which the nonlinear MPC
controller is devised via PDC scheme in order to solve the
nonlinear and constraint problems in the reactor power and
temperature control system.

3. T-S Fuzzy Modeling

The reactor model considered is the point kinetics with one
delayed neutron group and also coolant and fuel temperature
feedback. It is typical for a TMI-type PWR at the middle of
the fuel cycle rated at 2500MW [2, 7]:
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Figure 1: PWR and steam generation process.
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The symbols in the above equations are demonstrated in
the Nomenclature section.
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where the symbol 𝛿 indicates a deviation about an equilib-
rium point. 𝑛
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The model can be linearized at the equilibrium point
using the perturbation theory which is valid only for 𝛿𝑛
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space form:
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where 𝑛𝑖
𝑟0

is the power level and 𝐺
𝑖

𝑟
is the control rod

worth for the 𝑖th (𝑖 = 1, 2, . . . , 9) operating point which
is defined in Table 1. The linear model (4) is defined at
each operating point (𝑛𝑖
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are functions of the operating point [7, 17]. The remaining
constant parameters are shown in Table 2. Consider the
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The sampling period is selected to be 1 s, and then nine
discrete-time local models of (4) can be described as follows:
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Table 1: The definition of the operating points.

𝐺
𝑟

𝑛
𝑟0

0.1 0.5 1.0
0.029 Point 3 Point 4 Point 5
0.0145 Point 2 Point 1 Point 6
0.0070 Point 9 Point 8 Point 7

Table 2: The constant parameters in the system matrices.
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by triangle membership functions, as shown in Figure 2.
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as follows:
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where 𝑅(𝑖) denotes the 𝑖th fuzzy inference rule. 𝑧
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Figure 2:The division of fuzzy space and the definition of univariate
membership functions.

By using the center of gravity defuzzification method
[10, 18], the final output of the nonlinear T-S model with nine
fuzzy rules is

x (𝑘 + 1) =
9

∑

𝑖=1

𝜇
𝑖
x
𝑖
(𝑘 + 1) =

9

∑

𝑖=1

𝜇
𝑖
(G
𝑖
x
𝑖
(𝑘) +H

𝑖
𝑢
𝑖
(𝑘))

y (𝑘) =
9

∑

𝑖=1

𝜇
𝑖
y
𝑖
(𝑘) =

9

∑

𝑖=1

𝜇
𝑖
C
𝑖
x
𝑖
(𝑘) ,

(10)

where

𝜇
𝑖
=

𝜇
𝑖

∑
9

𝑖=1
𝜇
𝑖

, (11)

𝜇
𝑖
=

2

∏

𝑗=1

𝛼
𝐹
𝑖

𝑗

(𝑧
𝑗
(𝑘)) . (12)



Mathematical Problems in Engineering 5

0

1

00.0050.010.0150.020.0250.030

0.8
0.9
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.8 0.90.70.60.50.40.30.20.1

1

G
r nr0

Figure 3: Multivariate membership functions in the fuzzy subspace
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Four rules are activated each time instant. At point A in
Figure 2, these four rules are as follows:
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The membership functions are shown in Figure 4.

4. The Nonlinear Fuzzy MPC

4.1. The Local Linear MPC. The local linear model (7) can be
expressed as follows:

x (𝑘) = Gx (𝑘 − 1) +H𝑢 (𝑘 − 1) ,

y (𝑘 − 1) = Cx (𝑘 − 1) .
(13)
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Figure 4: Multivariate membership functions activated at point A.

Subtracting (13) from (7) can result in

Δx (𝑘 + 1) = GΔx (𝑘) +HΔ𝑢 (𝑘) ,

Δy (𝑘) = CΔx (𝑘) ,
(14)

where Δx(𝑘) = x(𝑘) − x(𝑘 − 1), Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1), and
Δy(𝑘) = y(𝑘) − y(𝑘 − 1).

Hence, Δy(𝑘 + 1) = CΔx(𝑘 + 1) = CGΔx(𝑘) + CHΔ𝑢(𝑘).
Choosing a new state variable vector x󸀠(𝑘) =

[Δx(𝑘)𝑇 y(𝑘)𝑇]𝑇 can result in

[
Δx (𝑘 + 1)
y (𝑘 + 1) ] = [

G 0
CG I] [

Δx (𝑘)
y (𝑘) ] + [

H
CH]Δ𝑢 (𝑘) ,

y (𝑘) = [0 I] [Δx (𝑘)y (𝑘) ] .

(15)

Denote (15) as the following normal form:

x󸀠 (𝑘 + 1) = G󸀠x󸀠 (𝑘) +H󸀠𝑢 (𝑘) ,

y (𝑘) = C󸀠x󸀠 (𝑘) ,
(16)

where x󸀠(𝑘) ∈ 𝑅𝑛
󸀠

(𝑛
󸀠

= 𝑛 + 𝑝), G󸀠 = [ G 0
CG I ], H

󸀠

= [ H
CH ], and

C󸀠 = [0 I]. 𝑛 and 𝑝 are, respectively, the number of the state
variables and the output variables.

The predictive control is obtained by minimizing the
following cost function:

𝐽 =
󵄩󵄩󵄩󵄩Y − r

𝑠

󵄩󵄩󵄩󵄩
2

Q + ‖ΔU‖
2

R. (17)

The control is obtained by minimizing the cost function
at each time instant 𝑘.

Define

Y = [ŷ(𝑘 + 1 | 𝑘)𝑇ŷ(𝑘 + 2 | 𝑘)𝑇 ⋅ ⋅ ⋅ ŷ(𝑘 + 𝑁
𝑃
| 𝑘)
𝑇

]
𝑇

,

r
𝑠
= [r(𝑘 + 1)𝑇r(𝑘 + 2)𝑇 ⋅ ⋅ ⋅ r(𝑘 + 𝑁

𝑃
)
𝑇

]
𝑇

,

ΔU = [Δ𝑢 (𝑘) Δ𝑢 (𝑘 + 1) ⋅ ⋅ ⋅ Δ𝑢 (𝑘 + 𝑁
𝑐
− 1)]
𝑇

,
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Q =

[
[
[
[

[

Q (1) 0 ⋅ ⋅ ⋅ 0

0 Q (2) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ Q (𝑁

𝑝
)

]
]
]
]

]

,

R =
[
[
[
[

[

R (0) 0 ⋅ ⋅ ⋅ 0

0 R (1) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ R (𝑁

𝑐
− 1)

]
]
]
]

]

,

(18)

where Q and R are the weighting matrices for the pre-
diction error and the control, respectively, 𝑁

𝑝
and 𝑁

𝑐
are,

respectively, the costing horizon for the prediction error
and the control, and ŷ(𝑘 + 𝑗 | 𝑘)

𝑇 and r(𝑘 + 𝑗)𝑇 (𝑗 =

1, 2, . . . , 𝑁
𝑝
) are the optimum 𝑗th step ahead prediction of

the system output on data up to time instant 𝑘 and the
𝑗th step ahead reference trajectory, respectively. ΔU is the
vector composed of the future control increments which
is obtained by computing the derivative of 𝐽, expressed as
follows:

ΔU = (R +Φ𝑇QΦ)
−1

Φ
𝑇Q (r
𝑠
− Fx (𝑘)) , (19)

where

F =

[
[
[
[
[
[
[

[

C󸀠G󸀠

C󸀠G󸀠2

C󸀠G󸀠3
...

C󸀠G󸀠𝑁𝑝

]
]
]
]
]
]
]

]

, Φ =

[
[
[
[
[
[
[

[

C󸀠H󸀠 0 0 ⋅ ⋅ ⋅ 0
C󸀠G󸀠H󸀠 C󸀠H󸀠 0 ⋅ ⋅ ⋅ 0
C󸀠G󸀠2H󸀠 C󸀠G󸀠H󸀠 C󸀠H󸀠 ⋅ ⋅ ⋅ 0

...
...

... d
...

C󸀠G󸀠𝑁𝑝−1H󸀠 C󸀠G󸀠𝑁𝑝−2H󸀠 C󸀠G󸀠𝑁𝑝−3H󸀠 ⋅ ⋅ ⋅ C󸀠G󸀠𝑁𝑝−𝑁𝑐H󸀠

]
]
]
]
]
]
]

]

. (20)

The optimized 𝑁
𝑐
steps ahead control ΔU is computed,

and only the first step ahead control Δ𝑢(𝑘) is implemented,
using a receding horizon principle [10], giving

Δ𝑢 (𝑘) = [1 0 ⋅ ⋅ ⋅ 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑐

ΔU; (21)

further, 𝑢(𝑘) can be obtained by

𝑢 (𝑘) = 𝑢 (𝑘 − 1) + Δ𝑢 (𝑘) . (22)

The input constraint is expressed as follows:

Umin
≤ U ≤ Umax

. (23)

U can be expressed by ΔU as follows:

[
[
[
[
[
[

[

𝑢 (𝑘)

𝑢 (𝑘 + 1)

𝑢 (𝑘 + 2)

...
𝑢 (𝑘 + 𝑁

𝑐
− 1)

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

1

1

1

...
1

]
]
]
]
]
]

]

𝑢 (𝑘 − 1) +

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

1 1 0 ⋅ ⋅ ⋅ 0

1 1 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

1 1 1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]

]

[
[
[
[
[
[

[

Δ𝑢 (𝑘)

Δ𝑢 (𝑘 + 1)

Δ𝑢 (𝑘 + 2)

...
Δ𝑢 (𝑘 + 𝑁

𝑐
− 1)

]
]
]
]
]
]

]

.

(24)

Define

C
1
=

[
[
[
[
[
[

[

1

1

1

...
1

]
]
]
]
]
]

]

, C
2
=

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

1 1 0 ⋅ ⋅ ⋅ 0

1 1 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

1 1 1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]

]

,

𝜓 = [
−C
2

C
2

] , 𝛾 = [
−Umin

+ C
1
𝑢 (𝑘 − 1)

Umax
− C
1
𝑢 (𝑘 − 1)

] ,

(25)

and constraint (23) can be rewritten as follows:

𝜓ΔU ≤ 𝛾. (26)

Hence, the constrained optimization problem can be
described as

min 𝐽 =
󵄩󵄩󵄩󵄩Y − r

𝑠

󵄩󵄩󵄩󵄩
2

Q + ‖ΔU‖
2

R

s.t. 𝜓ΔU ≤ 𝛾

(27)

which can be solved by quadratic programming (QP)
method.

4.2. The Nonlinear Fuzzy MPC. Based on the T-S fuzzy
model, the controller is devised via the parallel distributed
control (PDC) scheme [19, 20]. In this scheme, the overall
controller, which is naturally nonlinear, is a fuzzy combi-
nation of each individual linear controller designed based
on the corresponding local model. Here, a nonlinear MPC
controller, consisting of nine local MPC controllers, is con-
stituted as shown in Figure 5. For each local linear model,
a conventional MPC controller is designed independently.
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Table 3: The parameters of the nine local controllers.

Parameters 𝑖th controller
1 2 3 4 5 6 7 8 9

𝑞 1 1 1 1 1 1 1 1 1
𝑟 0.07 0.01 0.02 0.07 0.1 0.1 0.1 0.05 0.1
𝑁
𝑝

380 430 400 340 290 300 325 400 460
𝑁
𝑐

50 45 45 50 60 60 60 40 30

MPC1

MPC9

Nonlinear 
plant

Temperature of 
coolant leaving 

the reactor
Set point

Controller

Tl0

u(k) Tl

𝜇1

𝜇9

u1

u9

...
... +

Figure 5: The schematic diagram of fuzzy MPC system.

Consequently, the final control is the weighted sum of the
control obtained from nine local MPC controllers. Consider
the following:

𝑢 (𝑘) =

9

∑

𝑖=1

𝜇
𝑖
𝑢
𝑖
(𝑘) , (28)

where 𝑢
𝑖
(𝑘) is the control of the 𝑖th local predictive controller

and 𝜇
𝑖
is defined previously in (11). Since fuzzy logics dom-

inate the switching between local controllers, the resulting
control can be smooth by properly selecting the weights 𝜇

𝑖

[10].

5. The Application to the PWR Nuclear
Power Plant

In using the proposed fuzzy MPC, the reference temperature
function of power level is defined as follows:

𝑇
𝑙0
= 290 + 24.51𝑛

𝑟0
. (29)

Figure 6 shows this relationship.
Assume that the maximum speed of control rod is 0.2

fraction of core length per second. Hence, the constraint on
the control is considered as −0.2 ≤ 𝑢 ≤ 0.2 which is involved
in the optimization algorithm of MPC.

Define

Q = 𝑞 ×

[
[
[
[

[

I
2×2

0 ⋅ ⋅ ⋅ 0
0 I
2×2

⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ I
2×2

]
]
]
]

]𝑁𝑝×𝑁𝑝

(30)

and R = 𝑟 × I
𝑁𝑐×𝑁𝑐

, where 𝑞 and 𝑟 are the two coefficients.
Assume the control rod worth𝐺

𝑟
to be 0.0145, the parameters

of the nine local controllers are listed in Table 3.

20 40 60 80 100

290

314.51

Power level (%)
0

300

310

Te
m

pe
ra

tu
re

 (∘
C)

Tl

Figure 6: Reference temperature function of power level.

The performance of the nonlinear fuzzy MPC can be
evaluated in three cases.

Case A. Full power operation, that is, 100% → 90% →

100% step changes in power level. Comparison of the
performance between the proposed fuzzy MPC and the
conventional PID controller is presented in Figures 7(a) and
7(b).The temperature and the power stabilize to their respect
set points in an acceptable time, whereas the nonlinear fuzzy
MPC reduces the fluctuation obviously. In real-time nuclear
power control, inserting the control rod can slow down the
release of energy in the reactor so that the temperature and
power level are decreased, while lifting the control rod speed
will raise the temperature and power level.

Case B. Low power operation, that is, 20% → 10% → 20%
step changes in power level. Comparison of the performance
between the proposed controller and the conventional PID
controller is presented in Figures 8(a) and 8(b), showing
the obvious advantage of the proposed fuzzy MPC. It is
noticed that the response time is longer than that in the
full power operation and the resulting fluctuation is more
severe.

In both cases, the constraint on the control rod speed can
be handled by the proposed fuzzy MPC effectively, while the
PID controller cannot achieve it, as shown in Figures 7(c) and
8(c).
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Figure 7: Comparison of the performance between the nonlinear
fuzzy MPC and the conventional PID controller (100% → 90% →

100% power level change), (a) coolant temperature (unit: ∘C), (b)
power level, and (c) control rod speed.

Case C. Wide-range load following, that is, 100% →

10% → 100% ramp changes in power level with 5%/min
rate, as shown in Figure 9. With the constraint handling
on the control rod speed by the fuzzy MPC, satisfactory
tracking performance is obtained for both temperature and
power.
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Figure 8: Comparison of the performance between the nonlinear
fuzzy controller and the conventional PID controller (20% →

10% → 20% power level change), (a) coolant temperature (unit:
∘C), (b) power level, and (c) control rod speed.

6. Conclusions

The paper constituted a nonlinear MPC controller by incor-
porating fuzzy modeling technique. Feasible optimal solu-
tions have been acquired under plant nonlinearity and
constraints. The proposed nonlinear fuzzy MPC is simulated
in power and temperature control for a three-mile island-
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Figure 9: The performance for the nonlinear fuzzy controller
(100% → 10% → 100% ramp changes in power level with 5%/min
rate), (a) coolant temperature (unit:∘C), (b) power level, and (c)
control rod speed.

(TMI-) type PWR. Better performance is obtained while
it is compared with the PID controller. Load following is
accomplished under constraints on the control rod.

Nomenclature

𝑛
𝑟
: Neutron density relative to density at rated
condition

𝑐
𝑟
: Precursor density relative to density at rated
condition

𝛿𝜌: Reactivity
𝛿𝜌
𝑟
: Reactivity due to the control rod

𝛽: Fraction of delayed fission neutrons
Λ: Effective prompt neutron lifetime
𝜆: Effective precursor density
𝑇
𝑓
: Average reactor fuel temperature

𝑓
𝑓
: Fraction of reactor power deposited in fuel

𝜇
𝑓
: Heat capacity of the fuel

𝑃
𝑎0
: Rated power level

Ω: Heat transfer coefficient between fuel and
coolant

𝑇
𝑙
: The temperature of coolant leaving the

reactor
𝑇
𝑒
: The temperature of coolant entering the

reactor
𝜇
𝑐
: Heat capacity of the coolant

𝑀: Mass flow rate times heat capacity of the
water

𝐺
𝑟
: Total reactivity worth of the rod

𝑧
𝑟
: The control rod speed (fraction of core

length per second)
𝛼
𝑓
: Fuel temperature reactivity coefficient

𝛼
𝑐
: Coolant temperature reactivity coefficient.
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