
Hindawi Publishing Corporation
Journal of Quality and Reliability Engineering
Volume 2013, Article ID 532350, 14 pages
http://dx.doi.org/10.1155/2013/532350

Research Article
AHeuristic Methodology for Efficient Reduction of Large
Multistate Event Trees

Eftychia C. Marcoulaki

��ste� Relia�ilit� an� �n��strial �a�et� �a��rat�r�, �ati�nal �entre ��r �cienti�c Research ��e��krit�s�, P��� ��� �0���,
Agia Paraskevi, 15310 Athens, Greece

Correspondence should be addressed to Eychia C. Marcoulaki; emarcoulaki@ipta.demokritos.gr

Received 31 May 2012; Revised 22 August 2012; Accepted 26 September 2012

Academic Editor: Nikolaos E. Limnios

Copyright © 2013 Eychia C. Marcoulaki. is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

is work proposes a new methodology for the management of event tree information used in the quantitative risk assessment of
complex systems. e size of event trees increases exponentially with the number of system components and the number of states
that each component can be found in. eir reduction to a manageable set of events can facilitate risk quanti�cation and safety
optimization tasks. e proposed method launches a deductive exploitation of the event space, to generate reduced event trees for
large multistate systems. e approach consists in the simultaneous treatment of large subsets of the tree, rather than focusing on
the given single components of the system and getting trapped into guesses on their structural arrangement.

1. Introduction

For a given system, the scope of quantitative risk assessment is
to investigate the circumstances giving rise to differentmodes
of system operation and to quantify the risk for each opera-
tionmode. A system can be comprised of hardware, soware,
humans, or organizational components [1]. Each component
can be found in various states of operation, leading to mul-
tiple modes of failure and normal operation for the overall
system. Once this mapping of component states to system
outcomes is known, it is theoretically possible to quantify
the risks for different operation modes to occur, given the
occurrence probabilities for all the component states [2, 3].

e computational effort and the memory requirements
for risk evaluations increase exponentially as the system com-
ponents and the number of component states increases. Exact
calculations for binary systems are achieved faster by employ-
ing binary decision diagrams to effectively organize the evalu-
ation procedure [4]. Since the logic behindmultistate systems
is not Boolean, multistate behavior cannot be represented
by binary models without introducing additional variables
and constraints [5]. Rocco and Muselli [6] developed a
methodology based onmachine-learning and hamming clus-
tering to addressmultistate systems and any success criterion.

e required computational resources can be reduced using
approximate risk estimations [7] or criticality analysis [8].
Event trees represent the combination of component states
leading to each mode of system operation. Quanti�cation of
event trees enables faster exact risk evaluation [2] and is not
limited to binary or two-terminal systems, it is, however, very
computationally intensive. Clearly, implementation of event
tree quanti�cation to systems with many components in
multiple states needs to be preceded by substantial reduction
of the number of tree branches.

is work develops an algorithm that can efficiently
exploit a large event space and generate a reduced event tree.
It is assumed that every real system has an intrinsic logic
behind the assignment of system outcomes to the system
events. A simple and general methodology is suggested to
robustly extract this knowledge, by exploiting the system out-
come space information as this is stored in a table listing all
the possible event combinations and their associated �nal sys-
tem outcomes. e proposed algorithm is not biased by any
prior information on the functionalities of the system in
structural or algebraic form and seeks to acquire knowledge
on the system logic and encapsulate it in the reduced tree.e
algorithm can be generally applied to any given system and
is not affected by the way that the supplied data may be
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organized or sorted. e procedure is deductive, starting
from the entire event table and systematically organizing the
system events in a set of clusters. e �nal set of clusters can
be translated back to an event tree that is signi�cantly reduced
compared to original outcome space information supplied to
the algorithm.

e paper is organized as follows: Section 2 presents some
very basic system de�nitions used in the system represen-
tation and operations presented in Section 3. In Section 3 a
suitable system representation is de�ned, using sets of events
and based on the concepts of Cartesian products. Section 4
describes a set of clustering and declustering operations
to be applied on the event sets. Section 5 discusses the imple-
mentation of the proposed developments into an algorithmic
procedure. Section 6 presents an illustration example and a
large case study to demonstrate the proposed methodology.
Section 7 concludes the work.

�. �asi� System�e�nitions

e system considered here is comprised of blocks. Each
block can be found in various states, and the system response
(or output) at every given instance of time, 𝑡𝑡, depends on the
state that the blocks occupy at 𝑡𝑡. Each block relates to a com-
ponent, a set of components or a part of a component of the
system, regardless of physical conventions and according to
the choices in the system modeling. e basic de�nitions are
taken from Papazoglou [9, 10] where the blocks were inter-
connected to form functional block diagrams. In the present
work, the blocks are stripped of their networking functional-
ities, and the de�nitions are simpli�ed accordingly.

2.1. System Blocks and eir States. Consider a system of 𝐾𝐾-
independent blocks. Each block 𝑏𝑏𝑘𝑘, 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘, can be
found in various internal states during the system operation
period.

Let the state set of block 𝑏𝑏𝑘𝑘, denoted as 𝐒𝐒𝑘𝑘 = {𝑠𝑠1𝑘𝑘, 𝑠𝑠
2
𝑘𝑘,…,

𝑠𝑠
𝐾𝐾𝑆𝑆𝑘𝑘
𝑘𝑘 }, be a partition over the possible instances of 𝑏𝑏𝑘𝑘, where 𝑠𝑠

𝑖𝑖𝑘𝑘
𝑘𝑘

denotes the 𝑖𝑖𝑘𝑘th state of block 𝑏𝑏𝑘𝑘, and𝐾𝐾𝑆𝑆𝑘𝑘 denotes the number
of elements in 𝐒𝐒𝑘𝑘, thus𝐾𝐾𝑆𝑆𝑘𝑘 is the cardinality of 𝑆𝑆𝑘𝑘, |𝑆𝑆𝑘𝑘|.

It is assumed that, at every given time instance within the
period of system operation, 𝑏𝑏𝑘𝑘 is found in exactly one state
(e.g., at 94% of maximum production level), and this state
relates to exactly one member of 𝐒𝐒𝑘𝑘 (e.g., 𝑠𝑠

2
𝑘𝑘 = “at least 90%

of maximum production level”).

2.2. Event �e�nitions. A basic event is an instance of a single
system block according to the state set partition of this block.
A basic event for block 𝑏𝑏𝑘𝑘 is denoted as {𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘 }, 𝑠𝑠

𝑖𝑖𝑘𝑘
𝑘𝑘 ∈ 𝐒𝐒𝑘𝑘.

A joint event {𝑠𝑠𝑖𝑖𝑘𝑘1𝑘𝑘1 , 𝑠𝑠
𝑖𝑖𝑘𝑘2
𝑘𝑘2
,…,  𝑠𝑠

𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘𝑚𝑚
} is the combination ofmore

than one basic events taking place in𝑚𝑚 different blocks of the
system 𝑏𝑏𝑘𝑘1 , 𝑏𝑏𝑘𝑘2 ,…,  𝑏𝑏𝑘𝑘𝑚𝑚 . Note that, the set {𝑠𝑠

𝑖𝑖𝑘𝑘1
𝑘𝑘1
, 𝑠𝑠
𝑖𝑖𝑘𝑘2
𝑘𝑘2
,…,  𝑠𝑠

𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘𝑚𝑚
} is

the result of the Cartesian product {𝑠𝑠𝑖𝑖𝑘𝑘1𝑘𝑘1 } × {𝑠𝑠
𝑖𝑖𝑘𝑘2
𝑘𝑘2
} × ⋯ × {𝑠𝑠

𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘𝑚𝑚
}.

A complete joint event ̂𝑒𝑒 is de�ned here as a joint event
over all the system blocks {𝑠𝑠𝑖𝑖11 , 𝑠𝑠

𝑖𝑖2
2 ,…,  𝑠𝑠𝑖𝑖𝐾𝐾𝐾𝐾 }. For simplicity, the

term event is used here instead of complete joint event.

Note that, the above event de�nitions are simpli�ed com-
pared to Papazoglou [10] where blocks had functionalities
not considered here.

2.3. Event Space, Subspaces, and Event Partitions. Let the
system event space 𝐄𝐄 be the set of all the possible complete
joint events ̂𝑒𝑒. en 𝐄𝐄 𝐄𝐄 󵰂󵰂𝑒𝑒1,󵰂󵰂𝑒𝑒2,…, 󵰅󵰅𝑒𝑒𝐾𝐾𝐸𝐸

}, where 𝐾𝐾𝐸𝐸 denotes
the number of elements 𝐄𝐄, thus 𝐾𝐾𝐸𝐸 = |𝐸𝐸𝐸. Note that, 𝐄𝐄 is the
result of the Cartesian product 𝐒𝐒1 × 𝐒𝐒2 × ⋯ × 𝐒𝐒𝐾𝐾, therefore
|𝐄𝐄𝐄𝐄  𝐄𝐾𝐾

𝑘𝑘𝑘𝑘|𝐒𝐒𝑘𝑘|.
Consider a nonempty subspace 𝐀𝐀 of the system event

space 𝐀𝐀 𝐀 𝐀𝐀 𝐀 𝐀𝐀𝐀𝐀. Let 𝐐𝐐𝐐𝐐𝐐𝐐 denote a partition applied
over 𝐀𝐀, composed of 𝐾𝐾𝐐𝐐𝐐𝐐𝐐𝐐 disjoint subspaces of 𝐀𝐀 denoted
by 𝐪𝐪𝑄𝑄𝑖𝑖 (𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀     𝐐𝐐𝐐𝐐𝐐𝐐}.

2.4. Event Table. Let 𝐑𝐑 𝐑𝐑 𝐑𝐑1,𝑟𝑟 2,…,𝑟𝑟  𝐾𝐾𝐑𝐑
} denote the set of

the all possible system outcomes and 𝐾𝐾𝐑𝐑 is their number.
erefore,𝐾𝐾𝐑𝐑 is the cardinality, |𝐑𝐑𝐑, of 𝐑𝐑.

Each event yields a unique system outcome, while differ-
ent events may yield the same outcome. For instance, there
might be more than one event that leads to system failure. In
event trees, a complete joint event and its associated outcome
are equivalent to a path [9, 10].

Let 𝑇𝑇 𝑇 ̂𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒𝑒   ̂𝑒𝑒𝑒, where ̂𝑒𝑒 𝑒𝑒𝑒  and 𝑟𝑟𝑟𝑟𝑟  , denote
themany-to-onemapping from the event space𝐄𝐄 to the set of
system outcomes𝐑𝐑. e 𝑇𝑇mapping is recorded in the system
event table, as a complete list of all the system events and their
outcome.

e 𝑇𝑇 de�nes a partition on 𝐄𝐄, which is herein called
the outcome-based partition and denoted by 𝐐𝐐𝑇𝑇(𝐄𝐄𝐄. e
members of𝐐𝐐𝑇𝑇(𝐄𝐄𝐄 are denoted by 𝐪𝐪𝐐𝐐

𝑇𝑇

𝑟𝑟𝑖𝑖 (𝐄𝐄𝐄𝐄𝐄𝐄 𝑖𝑖 ∈ 𝐑𝐑.
Table 1 gives the event table of an example taken from

Papazoglou [10]. In this case, there are 32 events and 4
possible outcomes, and𝐐𝐐𝑇𝑇(𝐄𝐄𝐄 is comprised of the 4 sets:

(1) 𝐪𝐪𝐐𝐐
𝑇𝑇

𝑟𝑟1 (𝐄𝐄𝐄𝐄𝐄  󵰂󵰂𝑒𝑒1,󵰂󵰂𝑒𝑒3,󵰂󵰂𝑒𝑒4,󵰄󵰄𝑒𝑒11,󵰄󵰄𝑒𝑒12,󵰄󵰄𝑒𝑒17,󵰄󵰄𝑒𝑒18,󵰄󵰄𝑒𝑒19,󵰄󵰄𝑒𝑒20,󵰄󵰄𝑒𝑒25,󵰄󵰄𝑒𝑒26,
󵰄󵰄𝑒𝑒27,󵰄󵰄𝑒𝑒28},

(2) 𝐪𝐪𝐐𝐐
𝑇𝑇

𝑟𝑟2 (𝐄𝐄𝐄𝐄𝐄  󵰂󵰂𝑒𝑒7,󵰄󵰄𝑒𝑒15,󵰄󵰄𝑒𝑒16,󵰄󵰄𝑒𝑒21,󵰄󵰄𝑒𝑒22,󵰄󵰄𝑒𝑒23,󵰄󵰄𝑒𝑒24,󵰄󵰄𝑒𝑒29,󵰄󵰄𝑒𝑒30,󵰄󵰄𝑒𝑒31,󵰄󵰄𝑒𝑒32},

(3) 𝐪𝐪𝐐𝐐
𝑇𝑇

𝑟𝑟3 (𝐄𝐄𝐄𝐄𝐄  󵰂󵰂𝑒𝑒5,󵰂󵰂𝑒𝑒6,󵰂󵰂𝑒𝑒8,󵰄󵰄𝑒𝑒13,󵰄󵰄𝑒𝑒14},

(4) 𝐪𝐪𝐐𝐐
𝑇𝑇

𝑟𝑟4 (𝐄𝐄𝐄𝐄𝐄  󵰂󵰂𝑒𝑒2,󵰂󵰂𝑒𝑒9,󵰄󵰄𝑒𝑒10}.

Note that the 𝑇𝑇 mapping can be derived from the structural
dependencies among the system blocks, as dictated by the
rational and physical interconnections of components within
the system and depicted in the form of a fault tree or a
functional block diagram. However, such information may
be unavailable or too difficult to attain or process. is work
assumes that the only information available is the system
event table.

3. System Representation

e system representation presented here aims to organize
the information contained in the event table. e table
data are partitioned and organized into vectors summarizing
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T 1: Event table for the motor-operated valve [10].

Complete joint events Block states System outcomes
𝑏𝑏1 𝑏𝑏2 𝑏𝑏3

󵰂󵰂𝑒𝑒1 𝑠𝑠11 𝑠𝑠12 𝑠𝑠13 𝑟𝑟1
󵰂󵰂𝑒𝑒2 𝑠𝑠11 𝑠𝑠12 𝑠𝑠23 𝑟𝑟4
󵰂󵰂𝑒𝑒3 𝑠𝑠11 𝑠𝑠12 𝑠𝑠33 𝑟𝑟1
󵰂󵰂𝑒𝑒4 𝑠𝑠11 𝑠𝑠12 𝑠𝑠43 𝑟𝑟1
󵰂󵰂𝑒𝑒5 𝑠𝑠11 𝑠𝑠22 𝑠𝑠13 𝑟𝑟3
󵰂󵰂𝑒𝑒6 𝑠𝑠11 𝑠𝑠22 𝑠𝑠23 𝑟𝑟3
󵰂󵰂𝑒𝑒7 𝑠𝑠11 𝑠𝑠22 𝑠𝑠33 𝑟𝑟2
󵰂󵰂𝑒𝑒8 𝑠𝑠11 𝑠𝑠22 𝑠𝑠43 𝑟𝑟3
󵰂󵰂𝑒𝑒9 𝑠𝑠11 𝑠𝑠32 𝑠𝑠13 𝑟𝑟4
󵰄󵰄𝑒𝑒10 𝑠𝑠11 𝑠𝑠32 𝑠𝑠23 𝑟𝑟4
󵰄󵰄𝑒𝑒11 𝑠𝑠11 𝑠𝑠32 𝑠𝑠33 𝑟𝑟1
󵰄󵰄𝑒𝑒12 𝑠𝑠11 𝑠𝑠32 𝑠𝑠43 𝑟𝑟1
󵰄󵰄𝑒𝑒13 𝑠𝑠11 𝑠𝑠42 𝑠𝑠13 𝑟𝑟3
󵰄󵰄𝑒𝑒14 𝑠𝑠11 𝑠𝑠42 𝑠𝑠23 𝑟𝑟3
󵰄󵰄𝑒𝑒15 𝑠𝑠11 𝑠𝑠42 𝑠𝑠33 𝑟𝑟2
󵰄󵰄𝑒𝑒16 𝑠𝑠11 𝑠𝑠42 𝑠𝑠43 𝑟𝑟2
󵰄󵰄𝑒𝑒17 𝑠𝑠21 𝑠𝑠12 𝑠𝑠13 𝑟𝑟1
󵰄󵰄𝑒𝑒18 𝑠𝑠21 𝑠𝑠12 𝑠𝑠23 𝑟𝑟1
󵰄󵰄𝑒𝑒19 𝑠𝑠21 𝑠𝑠12 𝑠𝑠33 𝑟𝑟1
󵰄󵰄𝑒𝑒20 𝑠𝑠21 𝑠𝑠12 𝑠𝑠43 𝑟𝑟1
󵰄󵰄𝑒𝑒21 𝑠𝑠21 𝑠𝑠22 𝑠𝑠13 𝑟𝑟2
󵰄󵰄𝑒𝑒22 𝑠𝑠21 𝑠𝑠22 𝑠𝑠23 𝑟𝑟2
󵰄󵰄𝑒𝑒23 𝑠𝑠21 𝑠𝑠22 𝑠𝑠33 𝑟𝑟2
󵰄󵰄𝑒𝑒24 𝑠𝑠21 𝑠𝑠22 𝑠𝑠43 𝑟𝑟2
󵰄󵰄𝑒𝑒25 𝑠𝑠21 𝑠𝑠32 𝑠𝑠13 𝑟𝑟1
󵰄󵰄𝑒𝑒26 𝑠𝑠21 𝑠𝑠32 𝑠𝑠23 𝑟𝑟1
󵰄󵰄𝑒𝑒27 𝑠𝑠21 𝑠𝑠32 𝑠𝑠33 𝑟𝑟1
󵰄󵰄𝑒𝑒28 𝑠𝑠21 𝑠𝑠32 𝑠𝑠43 𝑟𝑟1
󵰄󵰄𝑒𝑒29 𝑠𝑠21 𝑠𝑠42 𝑠𝑠13 𝑟𝑟2
󵰄󵰄𝑒𝑒30 𝑠𝑠21 𝑠𝑠42 𝑠𝑠23 𝑟𝑟2
󵰄󵰄𝑒𝑒31 𝑠𝑠21 𝑠𝑠42 𝑠𝑠33 𝑟𝑟2
󵰄󵰄𝑒𝑒32 𝑠𝑠21 𝑠𝑠42 𝑠𝑠43 𝑟𝑟2

the contribution of block states in each subspace of the
partition. ese vectors will provide the framework to apply
the manipulations described in Section 4.

3.1. Cartesian Subspaces and Partitions. Let 𝐒𝐒𝐀𝐀𝑘𝑘 ⊆ 𝐒𝐒𝑘𝑘, 𝐀𝐀 𝐀
𝐄𝐄𝐄𝐄𝐄𝐄𝐄 denote the set of 𝑏𝑏𝑘𝑘 block states, 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘, in
the events comprising𝐀𝐀. Note that, since𝐀𝐀𝐀𝐀, then 𝐒𝐒𝐀𝐀𝑘𝑘 ≠∅,
for all 𝑘𝑘.

Let 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂     , denote the Cartesian product
𝐒𝐒𝐀𝐀1 ×𝐒𝐒

𝐀𝐀
2 ×⋯×𝐒𝐒𝐀𝐀𝐾𝐾. In general,𝐂𝐂𝐂𝐂𝐂𝐂 is a superset of𝐀𝐀, since it

always contains all the elements of𝐀𝐀 and may contain events
not included in 𝐀𝐀.

Consider the system of Table 1. For the subspace 𝐁𝐁 𝐁
{󵰂󵰂𝑒𝑒1,󵰂󵰂𝑒𝑒3,󵰂󵰂𝑒𝑒4,󵰄󵰄𝑒𝑒17,󵰄󵰄𝑒𝑒18,󵰄󵰄𝑒𝑒19,󵰄󵰄𝑒𝑒20} we get 𝐒𝐒𝐁𝐁1 ={ 𝑠𝑠11, 𝑠𝑠

2
1}, 𝐒𝐒

𝐁𝐁
2 ={ 𝑠𝑠12},

𝐒𝐒𝐁𝐁3 ={ 𝑠𝑠13, 𝑠𝑠
2
3, 𝑠𝑠

3
3, 𝑠𝑠

4
3}, and 𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐂 󵰂󵰂𝑒𝑒1,󵰂󵰂𝑒𝑒2,󵰂󵰂𝑒𝑒3,󵰂󵰂𝑒𝑒4,󵰄󵰄𝑒𝑒17,󵰄󵰄𝑒𝑒18,󵰄󵰄𝑒𝑒19,󵰄󵰄𝑒𝑒20}.

As expected, 𝐂𝐂𝐂𝐂𝐂𝐂 is a superset of 𝐁𝐁.
A Cartesian subspace, denoted as𝐀𝐀

󵰒󵰒
, is herein de�ned as a

nonempty subspace of 𝐄𝐄, such that 𝐀𝐀
󵰒󵰒
= 𝐂𝐂𝐂𝐂𝐂

󵰒󵰒
). Note that, all

the singleton subspaces are Cartesian.
A Cartesian partition over 𝐀𝐀𝐀 𝐀𝐀 𝐀𝐀𝐀𝐀   𝐀𝐀𝐀𝐀, denoted

as 𝐐𝐐
󵰒󵰒
(𝐀𝐀𝐀, is herein de�ned as a partition comprised only of

Cartesian subspaces of 𝐀𝐀. e elements of𝐐𝐐
󵰒󵰒
(𝐀𝐀𝐀 are denoted

as 𝐪𝐪
󵰑󵰑

𝐐𝐐
󵰑󵰑𝑖𝑖 (𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀     𝐐𝐐

󵰑󵰑
(𝐀𝐀𝐀}. Note that, every subspace of

𝐄𝐄 has at least one Cartesian partition comprised of singleton
subspaces.

For instance, the subspace 𝐁𝐁 de�ned above can be parti-
tioned into the four subspaces 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑1 (𝐁𝐁𝐁 𝐁 𝐁󵰂󵰂𝑒𝑒1}, 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑2 (𝐁𝐁𝐁 𝐁 𝐁󵰂󵰂𝑒𝑒3},

𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑3 (𝐁𝐁𝐁 𝐁 𝐁󵰂󵰂𝑒𝑒4}, and 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑4 (𝐁𝐁𝐁 𝐁 𝐁󵰄󵰄𝑒𝑒17,󵰄󵰄𝑒𝑒18,󵰄󵰄𝑒𝑒19,󵰄󵰄𝑒𝑒20}. ese are all

Cartesian, since 𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑1 (𝐁𝐁𝐁, 𝐪𝐪󵰑󵰑

𝐐𝐐
󵰑󵰑2 (𝐁𝐁𝐁, 𝐪𝐪󵰑󵰑

𝐐𝐐
󵰑󵰑3 (𝐁𝐁𝐁 are singleton, and

𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑4 (𝐁𝐁𝐁 𝐁 𝐁𝐁21 × 𝑠𝑠

1
2 × 𝐒𝐒3.

3.2. Implicit Subspaces and Partitions. e state set 𝐒𝐒𝐀𝐀𝑘𝑘 is
called a complete state set when it contains all the possible
states of the 𝑏𝑏𝑘𝑘 block, that is, 𝐒𝐒

𝐀𝐀
𝑘𝑘 = 𝐒𝐒𝑘𝑘.

An implicit subspace, denoted as 𝐀𝐀
≈
, is herein de�ned

as a Cartesian subspace when all of its constituent block
state subsets 𝐒𝐒

𝐀𝐀≈
𝑘𝑘 are either complete or singleton sets. Note

that an implicit subspace corresponds to the implicant [11]
containing only the block states in the singleton sets. e
subspace 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑4 (𝐁𝐁𝐁 de�ned above is implicit and corresponds to

the implicant {𝑠𝑠21, 𝑠𝑠
1
2}.

For example, the sets𝐁𝐁1 = 𝑠𝑠21 × 𝑠𝑠
2
2 ×𝐒𝐒3, 𝐁𝐁2 = 𝑠𝑠21 × {𝑠𝑠

1
2, 𝑠𝑠

2
2} ×

𝐒𝐒3 and 𝐁𝐁3 = 𝑠𝑠21 × 𝐒𝐒2 × 𝐒𝐒3 are all Cartesian (since they are
Cartesian products) but 𝐁𝐁2 is not implicit.

An implicit partition over 𝐀𝐀, denoted as 𝐐𝐐
≈
(𝐀𝐀𝐀, is herein

de�ned as a partition comprised only of implicit subspaces.
e elements of 𝐐𝐐

≈
(𝐀𝐀𝐀 are denoted as 𝐪𝐪

≈

𝐐𝐐
󵰑󵰑
𝑖𝑖
(𝐀𝐀𝐀. Every subspace

𝐀𝐀 has at least oneimplicit partition, the 𝐐𝐐
≈
(𝐀𝐀𝐀𝐀  𝐀𝐀, and the

cardinalities of all possible partitions over 𝐀𝐀 lie between one
(when 𝐀𝐀 is an implicit subspace) and |𝐀𝐀𝐀.

For example, the partition over subspace 𝐁𝐁 into
𝐪𝐪
󵰑󵰑

𝐐𝐐
󵰑󵰑𝑖𝑖 (𝐁𝐁𝐁, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , is implicit. Also, the partition of

𝐁𝐁2 = 𝑠𝑠21 × {𝑠𝑠12, 𝑠𝑠
2
2} × 𝐒𝐒3 into 𝑠𝑠

2
1 × 𝑠𝑠12 × 𝐒𝐒3 and 𝑠𝑠21 × 𝑠𝑠22 × 𝐒𝐒3 is

implicit.
An implicit partition conveys the same information as

the set of its corresponding implicants. erefore 𝐁𝐁2 can be
derived from the prime implicants {𝑠𝑠21, 𝑠𝑠

1
2} and {𝑠𝑠

2
1, 𝑠𝑠

2
2}.

3.3. ContributionVectors. e contribution vector of subspace
𝐀𝐀, denoted by𝐍𝐍𝐍𝐍𝐍𝐍, is de�ned here as a vector of nonnegative
integer entries 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀𝐀  𝐀+, reporting the sum of the contrib-
utions of each state 𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘 of each block 𝑏𝑏𝑘𝑘 in the events com-
prising 𝐀𝐀, namely, the number of times that each block state
contributes in the development of 𝐀𝐀.
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For the example of subspace 𝐁𝐁, the contribution vector
is 𝐍𝐍𝐍𝐍𝐍𝐍 𝐍 𝐍𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍 𝐍𝐍, where the semicolons are
used as separators between the three block compartments.

Properties of contribution vectors include the following.

(i) e vector length is 𝜆𝜆 𝜆 𝜆𝐾𝐾
𝑘𝑘𝑘𝑘 |𝐒𝐒𝑘𝑘|, therefore 𝐍𝐍𝐍𝐍𝐍𝐍 𝐍

ℕ𝜆𝜆
+, for all 𝐀𝐀 𝐀 𝐀𝐀.

(ii) For each block 𝑏𝑏𝑘𝑘, the sum of all the block entries in
𝐍𝐍𝐍𝐍𝐍𝐍 equals |𝐀𝐀𝐀.

In general, vector 𝐍𝐍𝐍𝐍𝐍𝐍 is an abstract (inductive) represen-
tation of the information stored in 𝐀𝐀. As the size of 𝐀𝐀
increases, retrieving it from 𝐍𝐍𝐍𝐍𝐍𝐍 is not trivial, it might even
be impossible.

3.4. Bicontribution Vectors. Let the bicontribution vector
𝐋𝐋𝐋𝐋𝐋𝐋 of subspace 𝐀𝐀 be de�ned as a vector of Boolean entries
𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀𝐀  𝐀O, I}, reporting the contribution or not of each state
𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘 of each block 𝑏𝑏𝑘𝑘 to the events of 𝐀𝐀, namely, whether a
certain block state contributes (“true” or I) or not (“false” or
O) in the development of set 𝐀𝐀.

Properties of bicontribution vectors include the follow-
ing.

(i) e vector length is 𝜆𝜆 𝜆 𝜆𝐾𝐾
𝑘𝑘𝑘𝑘 |𝐒𝐒𝑘𝑘|, so 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋  O, I}

𝜆𝜆,
for all 𝐀𝐀 𝐀 𝐀𝐀.

(ii) e sum of all the entries corresponding to block 𝑏𝑏𝑘𝑘
equals |𝐒𝐒𝐀𝐀𝑘𝑘 |, for all 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 𝑘𝑘𝑘𝑘.

For instance, the associated bicontribution vector of 𝐍𝐍𝐍𝐍𝐍𝐍 is
𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋  I, I; I,O,O, I; I, I, I, I]. e sum of entries is 8 and
equals the number of block state instances present in set 𝐁𝐁.

LetΛ[𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐍 𝐍𝐍𝐍 𝐍𝐍𝐍 𝐍 𝐍𝐍𝐍𝐍𝐍 𝐍 𝐍I,O} denote the opera-
tion applied on the contribution vector 𝐍𝐍𝐍𝐍𝐍𝐍 to derive
its associated bicontribution vector 𝐋𝐋𝐋𝐋𝐋𝐋. Based on the
de�nitions of contribution and bicontribution vectors:

𝐋𝐋(𝐀𝐀) = Λ󶁢󶁢𝐍𝐍(𝐀𝐀)󶁲󶁲⟺ 𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

O, 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) =0,

I, 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) > 0,
∀𝑘𝑘𝑘𝑘𝑘 𝑘𝑘.

(1)

e reverse operation Λ−1[𝐍𝐍𝐍𝐍𝐍𝐍𝐍 yields 𝐂𝐂𝐂𝐂𝐂𝐂 as follows:

Λ−1󶁢󶁢𝐍𝐍(𝐀𝐀)󶁲󶁲

= 󶁂󶁂 ̂𝑒𝑒 𝑒 󶁂󶁂𝑠𝑠𝑖𝑖11 , 𝑠𝑠
𝑖𝑖2
2 ,…,  𝑠𝑠𝑖𝑖𝐾𝐾𝐾𝐾 󶁒󶁒 ∈𝐄𝐄𝐄𝐄𝐄   𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) = I, ∀𝑘𝑘𝑘𝑘𝑘 𝑘𝑘󶁒󶁒 .

(2)

erefore, from the de�nition of 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 −1[𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋  .
Clearly, 𝐋𝐋𝐋𝐋𝐋𝐋 always carries less information than its associ-
ated vector 𝐍𝐍𝐍𝐍𝐍𝐍, unless 𝐀𝐀 is Cartesian.

3.5. Cartesian Contribution Vectors. e Cartesian contribu-
tion vector of subspace𝐀𝐀, denoted as𝐍𝐍

󵰒󵰒
(𝐀𝐀𝐀, is de�ned here as

the contribution vector of 𝐂𝐂𝐂𝐂𝐂𝐂, thus 𝐍𝐍
󵰒󵰒
(𝐀𝐀𝐀 𝐀 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍. Let

𝑛𝑛
󵰑󵰑
𝑖𝑖𝑘𝑘
𝑘𝑘 (𝐀𝐀𝐀 denote the entries of 𝐍𝐍󵰒󵰒

(𝐀𝐀𝐀.

For instance, starting from subspace 𝐁𝐁 we get 𝐍𝐍
󵰒󵰒
(𝐁𝐁𝐁𝐁

[4,4;  8,0,0,0;2,2,2,2]       .
Let Ξ[𝐋𝐋𝐋𝐋𝐋𝐋𝐋 denote the operation applied on the bicon-

tribution vector 𝐋𝐋𝐋𝐋𝐋𝐋 to derive the Cartesian contribution
vector 𝐍𝐍

󵰒󵰒
(𝐀𝐀𝐀. Based on the above vector de�nitions:

𝐍𝐍
󵰒󵰒
(𝐀𝐀) = Ξ󶁢󶁢𝐋𝐋(𝐀𝐀)󶁲󶁲⟺ 𝑛𝑛

󵰑󵰑
𝑖𝑖𝑘𝑘
𝑘𝑘
(𝐀𝐀) =

󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

0, 𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) = O,
|𝐂𝐂(𝐀𝐀)|
󶙢󶙢𝐒𝐒𝐀𝐀𝑘𝑘 󶙢󶙢

, 𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀) = I,

∀𝑘𝑘𝑘𝑘𝑘 𝑘𝑘.
(3)

For every subspace 𝐀𝐀, each entry of 𝐂𝐂𝐂𝐂𝐂𝐂, 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀, lays
between zero and 𝑛𝑛𝑖𝑖𝑘𝑘∼𝑘𝑘(𝐀𝐀𝐀. Nonzero entries for which 𝑛𝑛

𝑖𝑖𝑘𝑘
𝑘𝑘 (𝐀𝐀𝐀𝐀

𝑛𝑛𝑖𝑖𝑘𝑘∼𝑘𝑘(𝐀𝐀𝐀 are herein called Cartesian entries.
e vector 𝐍𝐍𝐍𝐍𝐍𝐍 satis�es the Cartesian property if and

only if is 𝐀𝐀 a Cartesian subset. In this case 𝐍𝐍𝐍𝐍𝐍𝐍 𝐍 𝐍𝐍
󵰒󵰒
(𝐀𝐀𝐀.

Going back to set 𝐁𝐁 and comparing 𝐍𝐍𝐍𝐍𝐍𝐍 to 𝐍𝐍
󵰒󵰒
(𝐁𝐁𝐁:

(i) the entries corresponding to the block states 𝑠𝑠41, 𝑠𝑠
1
4, 𝑠𝑠

3
4,

and 𝑠𝑠44 are Cartesian,

(ii) the 𝐍𝐍𝐍𝐍𝐍𝐍 vector does not satisfy the Cartesian prop-
erty since 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐁𝐁𝐁 𝐁 𝐁𝐁

𝑖𝑖𝑘𝑘
∼𝑘𝑘(𝐁𝐁𝐁 at {𝑘𝑘𝑘𝑘𝑘 𝑘𝑘} ={2,1  } or {3,2 }.

e contribution vectors of implicit subspaces are herein
called implicit contribution vectors. Since, implicit subspaces
are always Cartesian, implicit contribution vectors always
satisfy the Cartesian property.

3.6. Vector Partitions. Considering a partition𝐐𝐐𝐐𝐐𝐐𝐐, the con-
tribution vector partition of 𝐐𝐐𝐐𝐐𝐐𝐐, denoted as 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍, is
de�ned as the set of the contribution vectors 𝐍𝐍𝐍𝐍𝐍𝐐𝐐𝑖𝑖 (𝐀𝐀𝐀𝐀.

Since ∑𝑖𝑖 𝑛𝑛
𝑖𝑖𝑘𝑘
𝑘𝑘 (𝐪𝐪

𝑄𝑄
𝑖𝑖 (𝐀𝐀𝐀𝐀𝐀𝐀𝐀  𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀, for all 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘, the vector

𝐍𝐍𝐍𝐍𝐍𝐍 is speci�ed as the composite contribution vector of
𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍. In general, composite contribution vectors carry
less information than their vector partitions.

Likewise to subspace partitions, vector partitions can be
classi�ed as Cartesian (when all their associated vectors are
Cartesian) or implicit (when all their associated vectors are
implicit). Cartesian and implicit partitions are denoted as
𝐍𝐍
󵰒󵰒
(•) and 𝐍𝐍

≈
(•), respectively.

Considering subspace 𝐁𝐁 and its partition 𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑1 (𝐁𝐁𝐁𝐁

{󵰂󵰂𝑒𝑒1}, 𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑2 (𝐁𝐁𝐁𝐁𝐁  󵰂󵰂𝑒𝑒3}, 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑3 (𝐁𝐁𝐁𝐁𝐁  󵰂󵰂𝑒𝑒4}, and 𝐪𝐪

󵰑󵰑
𝐐𝐐
󵰑󵰑4 (𝐁𝐁𝐁𝐁𝐁  󵰄󵰄𝑒𝑒17,󵰄󵰄𝑒𝑒18,󵰄󵰄𝑒𝑒19,

󵰄󵰄𝑒𝑒20}, the respective contribution vector partition is:

𝐍𝐍(𝐐𝐐(𝐁𝐁)) =

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

𝐍𝐍󶀣󶀣𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑1 (𝐁𝐁)󶀳󶀳

𝐍𝐍󶀣󶀣𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑2 (𝐁𝐁)󶀳󶀳

𝐍𝐍󶀣󶀣𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑3 (𝐁𝐁)󶀳󶀳

𝐍𝐍󶀣󶀣𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑4 (𝐁𝐁)󶀳󶀳

󶀃󶀃󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓󶀓
󶀛󶀛

=
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

[1,0;1,0,0,0;1,0,0,0         ]
[1,0;1,0,0,0;0,0,1,0         ]
[1,0;1,0,0,0;0,0,0,1         ]
[0,4;4,0,0,0;1,1,1,1         ]

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

.

(4)
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e 𝐪𝐪
󵰑󵰑

𝐐𝐐
󵰑󵰑𝑖𝑖 (𝐁𝐁𝐁 subsets are implicit, so 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 is an implicit

contribution vector partition.
It should be highlighted that a Cartesian contribution

vector partition is a disjoint-set data structure, as it contains
all the information necessary to: (a) �nd which subspace
includes a certain event and (b) reconstruct the event union
set using the Λ−1[𝐋𝐋(•)] operations.

4. Decomposition and Recomposition
Operations

Stating from a given outcome-based partition 𝐐𝐐𝑇𝑇(𝐄𝐄𝐄, the
scope here is to derive an implicit partition featuringminimal
cardinality for each of the 𝐪𝐪𝐐𝐐

𝑇𝑇

𝑟𝑟𝑖𝑖 (𝐄𝐄𝐄, 𝑟𝑟𝑖𝑖 ∈ 𝐑𝐑 subspaces. is
would be equivalent to a set of prime implicants describing
the event table.e scope is accomplished through the appli-
cation of speci�c operations on the system vectors de�ned
above. ese operations extract knowledge from the infor-
mation carried in the composition vectors and store this
knowledge in the minimal possible schemes. e naming of
these operations is aer Shannon’s decomposition [11].

4.1. Decomposition of Contribution Vectors. is section
presents an operation for the systematic manipulation of a
contribution vector to yield a contribution vector partition.
e operation is called decomposition, since it is a case of
multistate Shannon’s decomposition applied on the contribu-
tion vectors. is operation decreases the abstraction of the
information stored in the vector, since contribution vector
partitions carry more information than their composite
vectors. Starting from a contribution vector, subsequent
decomposition actions generate a low cardinality implicit
partition of this vector.

Consider a subspace 𝐀𝐀𝐀𝐀 𝐀 𝐀𝐀𝐀 𝐀 𝐀𝐀𝐀𝐀𝐀𝑘𝑘 | ≥ 2 and a non-
empty subset 𝜎𝜎𝑘𝑘 ⊂ 𝐒𝐒𝐀𝐀𝑘𝑘 . e decomposition operation of 𝐀𝐀
according to 𝜎𝜎𝑘𝑘 is a partition rule applied on 𝐀𝐀 to generate
the sets {𝐀𝐀𝜎𝜎𝑘𝑘 , 𝐀𝐀 𝐀 𝐀𝐀𝜎𝜎𝑘𝑘} such that:

𝐀𝐀𝜎𝜎𝑘𝑘 = 󶁂󶁂 ̂𝑒𝑒 𝑒𝑒𝑒  𝑒 𝑒𝜎𝜎𝑘𝑘
𝐀𝐀 󶁒󶁒 ,

𝐀𝐀 𝐀 𝐀𝐀𝜎𝜎𝑘𝑘 = 󶁂󶁂 ̂𝑒𝑒 𝑒𝑒𝑒  𝑒 󶀢󶀢𝐂𝐂(𝐀𝐀) − Δ𝜎𝜎𝑘𝑘
𝐀𝐀 󶀲󶀲󶁒󶁒 ,

where Δ𝜎𝜎𝑘𝑘
𝐀𝐀 = 󶁂󶁂𝐒𝐒𝐀𝐀1 × 𝐒𝐒𝐀𝐀2 × ⋯ × 𝜎𝜎𝑘𝑘 ×⋯ × 𝐒𝐒𝐀𝐀𝐾𝐾󶁒󶁒 .

(5)

Since 𝜎𝜎𝑘𝑘 ≠∅ then 𝐀𝐀𝜎𝜎𝑘𝑘 ,𝐀𝐀 𝐀 𝐀𝐀𝜎𝜎𝑘𝑘 ≠∅.
e simplest way of applying the decomposition opera-

tion is to go through each one of the events in𝐀𝐀, as described
in the operation de�nition. is procedure requires com-
putational effort to decide whether a certain event belongs
in 𝐀𝐀𝜎𝜎𝑘𝑘 or 𝐀𝐀 𝐀 𝐀𝐀𝜎𝜎𝑘𝑘 . If, on the other hand, 𝐍𝐍𝐍𝐍𝐍𝐍 contains
Cartesian entries, the operation can be applied directly on
𝐍𝐍𝐍𝐍𝐍𝐍. Section 6 shows that decomposing 𝐍𝐍𝐍𝐍𝐍𝐍 rather than
𝐀𝐀 reduces the computational effort by several orders of
magnitude.

Consider a contribution vector 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍    𝐀𝐀𝑘𝑘 | ≥
2 ∧ |𝐒𝐒𝐀𝐀𝑘𝑘 |≠  0 and a nonempty set 𝜎𝜎𝑘𝑘 ⊆ 𝐒𝐒𝐀𝐀𝑘𝑘 . e vector
decomposition operation according to 𝜎𝜎𝑘𝑘 is a partition rule

applied on 𝐍𝐍𝐍𝐍𝐍𝐍 to yield the contribution vector partition
{𝐍𝐍𝐍𝐍𝐍𝜎𝜎𝑘𝑘), 𝐍𝐍𝐍𝐍𝐍𝜎𝜎𝑘𝑘)} such that

𝐍𝐍󶀡󶀡𝐀𝐀𝜎𝜎𝑘𝑘󶀱󶀱 = 𝐍𝐍󶀢󶀢𝐒𝐒𝐍𝐍1 × 𝐒𝐒𝐍𝐍2 × ⋯ × 𝜎𝜎𝑘𝑘 ×⋯ × 𝐒𝐒𝐍𝐍𝐾𝐾󶀲󶀲 ,

𝐍𝐍󶀡󶀡𝐀𝐀𝜎𝜎𝑘𝑘󶀱󶀱 = 𝐍𝐍(𝐀𝐀) − 𝐍𝐍󶀡󶀡𝐀𝐀𝜎𝜎𝑘𝑘󶀱󶀱 .
(6)

e development of 𝐍𝐍𝐍𝐍𝐍𝜎𝜎𝑘𝑘) ensures that this vector has the
Cartesian property. Instead of theCartesian product𝐒𝐒𝐍𝐍1 ×𝐒𝐒

𝐍𝐍
2 ×

⋯ × 𝜎𝜎𝑘𝑘 ×⋯ × 𝐒𝐒𝐍𝐍𝐾𝐾 we can use the bicontribution vector:

𝐋𝐋󶀡󶀡𝐀𝐀𝜎𝜎𝑘𝑘󶀱󶀱 ∶ 𝑙𝑙𝑖𝑖𝑚𝑚𝑚𝑚 󶙢󶙢𝐋𝐋𝐋𝐋𝐋𝜎𝜎𝑘𝑘 ) =

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

𝑙𝑙𝑖𝑖𝑚𝑚𝑚𝑚 󶙢󶙢𝐋𝐋𝐋𝐋𝐋𝐋, 𝑘𝑘𝑘𝑘𝑘𝑘

I, 𝑘𝑘𝑘𝑘𝑘𝑘    𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚 ∈ 𝜎𝜎𝑘𝑘,

O, 𝑘𝑘𝑘𝑘𝑘𝑘    𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∉ 𝜎𝜎𝑘𝑘.
(7)

e decomposition operation can be applied iteratively. To
simplify the notation, let𝐍𝐍0 be an initial contribution vector,
decomposed into {𝐍𝐍

𝜎𝜎0
1 , 𝐍𝐍1}, where 𝐍𝐍

𝜎𝜎0
1 has the Cartesian

property. en, 𝐍𝐍1 is decomposed into {𝐍𝐍𝜎𝜎1
2 , 𝐍𝐍2}, where 𝐍𝐍

𝜎𝜎1
2

has the Cartesian property and so forth. Application of the
decomposition operation over 𝑖𝑖 iterations replaces 𝐍𝐍0 with
the contribution vector partition 𝐍𝐍𝑖𝑖 = {𝐍𝐍

𝜎𝜎0
1 , 𝐍𝐍

𝜎𝜎1
2 , 𝐍𝐍

𝜎𝜎2
3 ,… ,

𝐍𝐍
𝜎𝜎𝑖𝑖𝑖𝑖
𝑖𝑖 , 𝐍𝐍𝑖𝑖}. e iterations terminate when𝐍𝐍𝑖𝑖 has the Cartesian

property, therefore 𝐍𝐍𝑖𝑖 is a Cartesian partition. Note that, the
𝐍𝐍
𝜎𝜎𝑖𝑖𝑖𝑖
𝑖𝑖 vectors can be derived as 𝐍𝐍𝜎𝜎𝑖𝑖𝑖𝑖

𝑖𝑖 = Ξ[𝐋𝐋
𝜎𝜎𝑖𝑖𝑖𝑖
𝑖𝑖 ], using (7) and

𝐋𝐋𝑖𝑖𝑖𝑖 = Λ[𝐍𝐍𝑖𝑖𝑖𝑖].

4.1.1. Decomposition Example. To illustrate the decompo-
sition operation consider the set 𝐪𝐪𝑇𝑇𝑟𝑟1 (𝐄𝐄𝐄 of Table 1 and its
contribution vector 𝐍𝐍0 = [5, 8; 7, 0, 6, 0; 3, 2, 4, 4].

Starting from 𝐍𝐍0, the bicontribution vector is 𝐋𝐋0 =
[I, I; I,O, I,O; I, I, I, I] and the Cartesian contribution vector
is 𝐍𝐍∼0 = [8, 8; 8, 0, 8, 0; 4, 4, 4, 4]. Clearly, 𝐍𝐍∼0 has three
Cartesian entries at 𝑠𝑠21, 𝑠𝑠

3
3 and 𝑠𝑠43. Let 𝜎𝜎0 = {𝑠𝑠33}:

(i) 𝐋𝐋
𝜎𝜎0
1 = [I, I; I,O, I,O;O,O, 𝐈𝐈𝐈O]

⇒ 𝐍𝐍
𝜎𝜎0
1 = [2, 2; 2, 0, 2, 0; 0, 0, 𝟒𝟒𝟒𝟒𝟒 ,

(ii) 𝐍𝐍1 = 𝐍𝐍0 − 𝐍𝐍
𝜎𝜎0
1 = [3, 6; 5, 0, 4, 0; 3, 2, 𝟎𝟎𝟎𝟎𝟎𝟎

𝐋𝐋1 = [I, I; I,O, I,O; I, I, 𝐎𝐎𝐎 I].

Alternatively, the decomposition could be applied simultane-
ously at 𝜎𝜎∗0 = {𝑠𝑠33, 𝑠𝑠

4
3} as follows:

(i) 𝐋𝐋𝜎𝜎∗0
1 = [I, I; I,O, I,O;O,O, 𝐈𝐈𝐈 𝐈𝐈𝐈

⇒ 𝐍𝐍
𝜎𝜎∗0
1 = [4, 4; 4, 0, 4, 0; 0, 0, 𝟒𝟒𝟒 𝟒𝟒𝟒,

(ii) 𝐍𝐍∗
1 = 𝐍𝐍0 − 𝐍𝐍

𝜎𝜎∗0
1 = [1, 4; 3, 0, 2, 0; 3, 2, 𝟎𝟎𝟎 𝟎𝟎𝟎𝟎

𝐋𝐋
∗
1 = [I, I; I,O, I,O; I, I, 𝐎𝐎𝐎𝐎𝐎𝐎.
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In both cases, the vectors 𝐍𝐍1 and 𝐍𝐍
∗
1 do not satisfy the

Cartesian property, but they contain Cartesian entries. For
instance, 𝐍𝐍∗

1 can be decomposed at 𝜎𝜎∗1 = {𝑠𝑠21} as follows:

(i) 𝐋𝐋𝜎𝜎∗1
2 = [0, 𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏   𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏   𝟏

⇒ 𝐍𝐍
𝜎𝜎∗1
2 = [0, 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒        ,

(ii) 𝐍𝐍∗
2 = 𝐍𝐍

∗
1 − 𝐍𝐍

𝜎𝜎∗1
2 = [1, 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎        .

Both 𝐍𝐍
∗
2 and 𝐍𝐍

𝜎𝜎∗1
2 satisfy the Cartesian property and no

further decomposition is necessary. So, the decomposition
of 𝐍𝐍0 yields the Cartesian contribution vector partition
{𝐍𝐍

𝜎𝜎0
1 , 𝐍𝐍

∗
2 , 𝐍𝐍

𝜎𝜎∗1
2 }.

e set vectors may contain complete blocks, like the
�rst block in 𝐍𝐍

𝜎𝜎0
1 . e vectors 𝐍𝐍𝜎𝜎0

1 and 𝐍𝐍
𝜎𝜎1
2 can be further

decomposed until they give implicit contribution vector
partitions:

(i)

𝐍𝐍
𝜎𝜎0
1 = [4, 4; 4, 0, 4, 0; 0, 0, 4, 4]

∼ 󶁅󶁅
[2, 2; 4, 0, 0, 0; 0, 0, 2, 2]
[2, 2; 0, 0, 4, 0; 0, 0, 2, 2]

󶁕󶁕

∼
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

[1, 1; 2, 0, 0, 0; 0, 0, 2, 0]
[1, 1; 2, 0, 0, 0; 0, 0, 0, 2]
[1, 1; 0, 0, 2, 0; 0, 0, 2, 0]
[1, 1; 0, 0, 2, 0; 0, 0, 0, 2]

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

,

(8)

(ii)

𝐍𝐍
𝜎𝜎1
2 = [0, 4; 2, 0, 2, 0; 2, 2, 0, 0]

∼ 󶁅󶁅
[0, 2; 0, 0, 2, 0; 1, 1, 0, 0]
[0, 2; 2, 0, 0, 0; 1, 1, 0, 0]

󶁕󶁕

∼
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

[0, 1; 0, 0, 1, 0; 0, 1, 0, 0]
[0, 1; 0, 0, 1, 0; 1, 0, 0, 0]
[0, 1; 1, 0, 0, 0; 0, 1, 0, 0]
[0, 1; 1, 0, 0, 0; 1, 0, 0, 0]

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

.

(9)

In the previous example, the cardinality of 𝐪𝐪𝑇𝑇𝑟𝑟1(𝐄𝐄𝐄 was 13,
while the cardinality of the implicit partition is equal to 4+4+
1 = 9. e latter cardinality could be even smaller if a more
intelligent decomposition strategy were applied. For instance,
𝐍𝐍0 has two complete blocks (�rst and third block) and three
Cartesian entries (one in the �rst block and two in the third).
e choice of decomposition order, that is, the sequence of
𝜎𝜎𝑖𝑖’s is crucial, as discussed in the algorithm implementation
section.

4.2. Recomposition of Contribution Vectors. e outcome of
the decomposition operation is an implicit contribution vec-
tor partition. Given this, we can seek merging opportunities
to create unions that have complete blocks, thus reduce the
partition cardinality. Since the contribution vectors are all

implicit, the recomposition operation is hereby discussed in
terms of bicontribution vectors.

Consider a block 𝑏𝑏𝑚𝑚 and its set of states 𝐒𝐒𝑚𝑚. Let 𝐋𝐋 be a
set of |𝐒𝐒𝑚𝑚| bicontribution vectors, 𝐋𝐋𝑖𝑖 = [𝑙𝑙𝑖𝑖𝑘𝑘𝑖𝑖𝑚𝑚,𝑘𝑘], 𝑖𝑖𝑚𝑚 ∈ {1, 2,… ,
|𝐒𝐒𝑚𝑚|}, 𝑖𝑖𝑘𝑘 ∈ {1, 2,… , |𝐒𝐒𝑘𝑘|}, 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘   𝑘𝑘𝑘, such that 𝑙𝑙𝑖𝑖𝑘𝑘𝑖𝑖𝑚𝑚,𝑘𝑘 =

𝜆𝜆𝑖𝑖𝑘𝑘𝑘𝑘 ∈ {O, I}, for all 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘 𝑚𝑚, 𝑖𝑖𝑘𝑘. en, the set 𝐋𝐋 can be
replaced by the single bicontribution vector 𝐋𝐋 𝐋𝐋𝐋𝐋 𝑖𝑖𝑘𝑘𝑘𝑘 ], where
𝜆𝜆𝑖𝑖𝑚𝑚𝑚𝑚 = 𝐼𝐼, for all 𝑖𝑖𝑚𝑚. Note that, 𝐋𝐋 𝐋 𝐋𝐋𝐋𝐋𝐋𝐋𝐋1

1 × 𝐒𝐒𝐋𝐋1
2 × ⋯ × 𝐒𝐒𝑚𝑚 ×

⋯ × 𝐒𝐒𝐋𝐋1
𝐾𝐾 ).

4.2.1. Recomposition Example. Consider the set 𝐋𝐋 𝐋
󶁂󶁂 [I, O; I, O, O, O; I, O, O, O][O, I; I, O, O, O; I, O, O, O] 󶁒󶁒.

From the decomposition example discussed earlier. e
two bicomposition vectors have exactly the same entries
in the second and third block but different entries in the
�rst block. In addition, the �rst block has exactly two state
instances. e two vectors can be recomposed into a single
equivalent vector [I, I; I,O,O,O; I,O,O,O].

5. Algorithm Implementation

Given the table associated with an event tree, the proposed
algorithm launches an iterative process of decomposition
and recomposition operations until we obtain an implicit
partition of minimal cardinality for each one of the tree out-
comes. �orking with the vectors de�ned above rather than
sets of events decreases signi�cantly the amount of informa-
tion being stored and the computational effort for manipu-
lating this information.

e algorithm applies the vector decomposition and
recomposition operations using a set of heuristic rules.
ese rules help in the identi�cation of more promising
entries to apply the operations. Sections 5.1 and 5.2 describe
the heuristic rules, and Section 5.3 discusses how these
procedures work together within the proposed algorithm.

5.1. Heuristic Rules for Decomposition Order. e decompo-
sition operations proceed iteratively, replacing the original
|𝐑𝐑𝐑 vectors of the outcome partition with |𝐑𝐑𝐑 contribution
vector sets. Decompositions are applied locally, based on
the features (e.g., the Cartesian entries) of each contribution
vector.

Given a composition vector, the choice of decomposition
order is crucial in preserving the maximum possible of the
initial complete blocks. e set 𝐪𝐪𝑇𝑇𝑟𝑟1 (𝐄𝐄𝐄 of Table 1 has a com-
plete block of 2 states and a complete block of 4 states. If the
decomposition order is different the �nal implicit partition
could be different. In effect, applying the decomposition on
entries {𝑠𝑠33, 𝑠𝑠

4
3} of𝐍𝐍0 results in a reduction by 4 = 13−9 on the

cardinality of the �nal implicit partition of 𝐪𝐪𝑇𝑇𝑟𝑟1 (𝐄𝐄𝐄. Applying
the decomposition on {𝑠𝑠21}—followed by {𝑠𝑠33, 𝑠𝑠

4
3}, {𝑠𝑠

1
3}, {𝑠𝑠

3
4, 𝑠𝑠

4
4},
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and so forth, in any order—preserves the third block, and the
�nal reduction is by 13 − 7 = 6:

𝐍𝐍0 = [5, 8; 7, 0, 6, 0; 3, 2, 4, 4] ∼ 󶁅󶁅
[0, 8; 4, 0, 4, 0; 2, 2, 2, 2]
[5, 0; 3, 0, 2, 0; 1, 0, 2, 2]

󶁕󶁕

∼
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

[0, 4; 4, 0, 0, 0; 1, 1, 1, 1]
[0, 4; 0, 0, 4, 0; 1, 1, 1, 1]
[4, 0; 2, 0, 2, 0; 0, 0, 2, 2]
[1, 0; 1, 0, 0, 0; 1, 0, 0, 0]

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

∼
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

[0, 4; 4, 0, 0, 0; 1, 1, 1, 1]
[0, 4; 0, 0, 4, 0; 1, 1, 1, 1]
[1, 0; 1, 0, 0, 0; 1, 0, 0, 0]

[1, 0; 1, 0, 0, 0; 0, 0, 1, 0]
[1, 0; 1, 0, 0, 0; 0, 0, 0, 1]
[1, 0; 0, 0, 1, 0; 0, 0, 1, 0]
[1, 0; 0, 0, 1, 0; 0, 0, 0, 1]

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

.

(10)

e following decomposition rules support the generation
of the smallest possible implicit partitions at the minimum
possible execution time, and they are applied on each contri-
bution vector that is not Cartesian.

(a) If there are Cartesian entries in the current contribu-
tion vector:

(i) it is prefered to decompose at Cartesian entries
in incomplete blocks, to avoid breaking the
complete blocks. Note that, in this case, the
decomposition order makes no difference to the
�nal partitions,

(ii) if the only Cartesian entries are within complete
blocks, start decomposing the complete blocks
with the largest span between their contribution
values, relatively to their number of states,
that is, sort blocks according to (max𝑘𝑘{𝑛𝑛

𝑖𝑖𝑘𝑘
𝑘𝑘 } −

min𝑘𝑘{𝑛𝑛
𝑖𝑖𝑘𝑘
𝑘𝑘 })/|𝐒𝐒𝑘𝑘|.

(b) If there are no Cartesian entries in the current con-
tribution vector, then:

(i) if no complete blocks are present, prefer incom-
plete blocks with more states being present, and
decompose them into as many vectors as the
number of states present,

(ii) if only complete blocks are present, decompose
the block featuring the entry with the maxi-
mum departure from its Cartesian value, that is,
max𝑘𝑘{𝑛𝑛󵰑󵰑

𝑖𝑖𝑘𝑘
𝑘𝑘 − 𝑛𝑛

𝑖𝑖𝑘𝑘
𝑘𝑘 }.

Before the application of these rules it is essential to recognize
which of the complete blocks make sense, according to the
values of the contribution vector entries. For instance, the
vector [5, 8; 7, 0, 6, 0; 3, 2, 4, 4] could lead to a partition that
includes a bicontribution vector of 2 complete blocks, but
this not possible for the vector [3, 8; 5, 0, 6, 0; 2, 2, 4, 3], since
the �rst entry in the compartment of the �rst block is lower
than the number of states in the third block. Similarly, in the
vector [0, 4; 2, 0, 2, 0; 1, 1, 1, 1] the third block cannot remain
complete under any decomposition order since there is no

single entry in the second block compartment greater or
equal to |𝐒𝐒3| = 4.

e �nal Cartesian partition includes vectors and may
need to be further decomposed to derive implicit parti-
tions. In this case, the vectors are decomposed in all their
incomplete block entries (which are all Cartesian), and the
decomposition order makes no difference.

5.2. Heuristic Rules for Recomposition Order. Once the
decomposition stage is completed, the �nal implicit parti-
tions may have vectors that can be merged. is reduces the
partition cardinalities. e choice of recomposition order is
crucial, since the application of decomposition operations
on large event tables can produce numerous vectors as
candidates for recomposition.

Let 𝐐𝐐0(𝐪𝐪
𝑇𝑇
𝑟𝑟𝑖𝑖 (𝐄𝐄𝐄𝐄, 𝑟𝑟𝑖𝑖 ∈ 𝐑𝐑, denote the implicit partitions

output from the decomposition stage. e recomposition
algorithm proceeds according to the following steps applied
on each vector partition 𝐍𝐍

󵰒󵰒0 = 𝐍𝐍
󵰒󵰒
(𝐐𝐐0(𝐪𝐪

𝑇𝑇
𝑟𝑟𝑖𝑖 (𝐄𝐄𝐄𝐄𝐄 (or the asso-

ciated bicontribution vectors).

(i) Partition𝐍𝐍
󵰒󵰒
into sets having the same complete blocks.

Let 𝐍𝐍
󵰒󵰒𝑎𝑎 be such a subset of 𝐍𝐍

󵰒󵰒
.

(ii) e set 𝐍𝐍
󵰒󵰒𝑎𝑎 is a candidate for creating an additional

complete block 𝑏𝑏𝑚𝑚, if there is at least one subset𝐍𝐍󵰒󵰒
𝑚𝑚𝑖𝑖
𝑎𝑎 ⊆

𝐍𝐍
󵰒󵰒𝑎𝑎 of cardinality |𝐒𝐒𝑚𝑚|, where 𝑖𝑖 𝑖 𝑖𝑖𝑚𝑚 is the index of
the particular subset for 𝑏𝑏𝑚𝑚, such that: (i) its overall
contribution vector features 𝑏𝑏𝑚𝑚 as a complete block
and (ii) the remaining blocks have the same state sets
𝐒𝐒𝑚𝑚𝑖𝑖
𝑘𝑘 , for all 𝑘𝑘 𝑘𝑘𝑘.

(iii) If𝐍𝐍
󵰒󵰒
𝑚𝑚𝑖𝑖
𝑎𝑎 is replaced by its composite contribution vector,

the resulting vector partition 𝐍𝐍
󵰒󵰒1 = 𝐍𝐍

󵰒󵰒
(𝐐𝐐1(𝐪𝐪

𝑇𝑇
𝑟𝑟𝑖𝑖 (𝐄𝐄𝐄𝐄𝐄 is

implicit.

(iv) e process is repeated on the new set𝐍𝐍
󵰒󵰒1 to reduce it

to 𝐍𝐍
󵰒󵰒2 and so forth and terminates when there are no

more recomposition candidates le.

e set 𝐍𝐍
󵰒󵰒𝑎𝑎 may have several subsets 𝐍𝐍

󵰒󵰒
𝑚𝑚𝑖𝑖
𝑎𝑎 that relate to the

creation of different complete blocks and/or to different ways
of creating a particular complete block. e recomposition
procedure is supported by intelligent selection biases to
ensure that the merging opportunities are properly exploited.
During the iterative recomposition process, the following
recomposition rules are applied on every set 𝐍𝐍

󵰒󵰒𝑎𝑎 of Cartesian
contribution vectors featuring the same complete blocks.

(i) Find all the candidate sets 𝐍𝐍
󵰒󵰒
𝑚𝑚𝑖𝑖
𝑎𝑎 ⊆ 𝐍𝐍

󵰒󵰒𝑎𝑎, 𝑖𝑖 𝑖 𝑖𝑖𝑚𝑚, for
creating each new complete block at 𝑏𝑏𝑚𝑚, for all 𝑚𝑚 𝑚
{1, 2,… ,𝐾𝐾𝐾.

(ii) Associate each candidate to a score 𝑤𝑤𝑚𝑚𝑖𝑖
𝑎𝑎 proportional

to |𝐒𝐒𝑚𝑚| and 𝐼𝐼𝑚𝑚 and incorporate the potential to create
two complete blocks in one go.

(iii) Select among con�icting sets according to their 𝑤𝑤𝑚𝑚𝑖𝑖
𝑎𝑎 .
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T 2: Recomposition example: initial set of bicontribution vectors (Step 1).

𝐋𝐋𝑖𝑖 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7 𝑏𝑏8 𝑏𝑏9 𝑏𝑏10
24 O O O I I O O I O O I O I I O I O I O I O I O
26 O O O I I O O I O O I O I I O I O I O O I I O
28 O O O I I O O I O O I O I O I I O I O I I I O
21 I O O O I O I I I O I O I I O I O I O I O I O
25 I O O O I O I I I O I O I I O I O I O O I I O
11 O O O I I O O I O I O I O I I I O I O I I I O
12 O O O I I O O I O O I I O I I I O I O I I I O
18 O O O I I O O I O I O O I I I I O I O I I I O
22 O O O I I O I O O O I O I I O I I I I I O I O
23 O O O I I O O O I O I O I I O I I I I I O I O
27 I O O O I O I I I O I O I O I I O I O I I I O
5 I O O O I O I I I I O I O I I I O I O I I I O
6 I O O O I O I I I O I I O I I I O I O I I I O
14 I O O O I O I I I I O O I I I I O I O I I I O
15 O O I O I O I I I I O O I I O I I I I I O I O
19 O I O O I O I I I O I O I I O I I I I I O I O
20 O O I O I O I I I O I O I I O I I I I I O I O
7 O O O I I O I O O I O I O I I I I I I I I I O
8 O O O I I O I O O O I I O I I I I I I I I I O
9 O O O I I O O O I I O I O I I I I I I I I I O
10 O O O I I O O O I O I I O I I I I I I I I I O
16 O O O I I O I O O I O O I I I I I I I I I I O
17 O O O I I O O O I I O O I I I I I I I I I I O
29 O O O I I O I O O I O I O I I I I I I I I O I
30 O O O I I O I O O I O O I I I I I I I I I O I
1 O I O O I O I I I I O I O I I I I I I I I I O
2 O I O O I O I I I O I I O I I I I I I I I I O
3 O O I O I O I I I I O I O I I I I I I I I I O
4 O O I O I O I I I O I I O I I I I I I I I I O
13 O I O O I O I I I I O O I I I I I I I I I I O

(iv) Apply the recomposition operation on the selected
sets.

Note that, in the new partition, the composite vectors should
be removed form the subset𝐍𝐍

󵰒󵰒𝑎𝑎 and possibly included in other
subsets including the complete blocks of 𝐍𝐍

󵰒󵰒𝑎𝑎 and complete
blocks created during the recomposition.e reason why the
value of 𝐼𝐼𝑚𝑚 is taken into account is that larger 𝐼𝐼𝑚𝑚’s increase
the probability of �nding �recomposable� sets in the next
iteration of the recomposition process.

Consider, for example, the vectors of Table 2 representing
the implicit partition for the �h outcome of the ��R exam�
ple solved in Section 6.1. As explained above, recomposition
operations are applied on bicontribution vectors. e vectors
are sorted and divided into different sets according to their
complete blocks. e procedure starts from the subset with
the fewer complete blocks. is includes the vectors 𝐋𝐋24
and 𝐋𝐋26, which are merged to give 𝐋𝐋24+26. Table 3 shows
the Cartesian set updated with 𝐋𝐋24+26, which can now be

merged with 𝐋𝐋28 and so forth.e recomposition choices are
not always so few and they can be con�icting. e subset
of Table 4 appears aer a few iterations. A crude analysis
indicates the potential of creating new complete blocks at:

(i) block 𝑏𝑏4 by merging 𝐋𝐋i & 𝐋𝐋iii and/or 𝐋𝐋iv & 𝐋𝐋viii,

(ii) block 𝑏𝑏5 bymerging𝐋𝐋ii &𝐋𝐋iii, 𝐋𝐋v &𝐋𝐋vii and/or𝐋𝐋vi &
𝐋𝐋viii,

(iii) block 𝑏𝑏10 by merging 𝐋𝐋v & 𝐋𝐋vi and/or 𝐋𝐋vii & 𝐋𝐋viii.

e above seven merging actions involve binary state blocks,
so their initial scores are equal to 2. is score is multiplied
by the number of candidate merges per block (𝐼𝐼𝑚𝑚), giving a
score of 4 for the 4 merges in blocks 𝑏𝑏4 and 𝑏𝑏10 and 6 for
the 3 merges in block 𝑏𝑏5. e possible merging actions are
sorted according to their score and an action can take place if
it does not con�ict with any of the higher score actions. In this
sense the proposed actions are 𝐋𝐋ii & 𝐋𝐋iii, 𝐋𝐋v & 𝐋𝐋vii and 𝐋𝐋vi &
𝐋𝐋viii.
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is involvement of 𝐼𝐼𝑚𝑚 in the score calculation stems
from the observation that the resulting vectors have many
common entries so the possibility of these vectors being
treated as candidates for subsequent merges is very high.
In effect, amongst the merged vectors of Table 5, vectors
𝐋𝐋v+vii and 𝐋𝐋vi+viii are candidates to be merged. However,
this potential should be examined along with other vectors
featuring the same complete blocks.

5.3. Algorithm Implementation. e decomposition and
recomposition operations discussed above are each imple-
mented into an iterative procedure. Following is a step-by-
step description of the algorithm, using the motor-operated
valve (MOV) example of Table 1 to illustrate the different
procedures.

Step 1. Acquire event outcome data.is step returns a table of
𝐾𝐾 columns for the𝐾𝐾 component blocks and 1 column for the
outcomes. Following is the data array for the MOV example:

1 1 1

1

1 1 2 4

1 1 3 1

1 1 4 1

1 2 1 3

1 2 2 3

1

2 3 2

1 2 4 3

1 3 1 4

1 3 2 4

1 3 3 1

1 3 4

1

1 4 1 3

1 4 2 3

1 4 3 2

1 4 4 2

2 1 1 1

2

1 2 1

2 1 3 1

2 1 4 1

2 2 1 2

2 2 2 2

2 2 3

2

2 2 4 2

2 3 1 1

2 3 2 1

2 3 3 1

2 3 4 1

2

4 1 2

2 4 2 2

2 4 3 2

2 4 4

2

Step 2. Get the contribution vectors referring to the outcome
partition. e 32 events in columns 1 to 3 of the above array
can be divided into 13, 11, 5, and 3 events according to the

outcome they yield. e following arrays can be derived for
the 4 outcomes:

1 1 1 1

1 1 3 1

1 1 4 1

1 3 3 1

1 3 4 1

2 1 1 1

2 1 2 1

2 1 3 1

2 1 4 1

2 3 1 1

2 3 2 1

2 3 3 1

2 3 4 1

1 2 3 2

1 4 3 2

1 4 4 2

2 2 1 2

2 2 2 2

2 2 3 2

2 2 4 2

2 4 1 2

2 4 2 2

2 4 3 2

2 4 4 2

1 2 1 3

1 2 2 3

1 2 4 3

1 4 1 3

1 4 2 3

1 1 2 4

1 3 1 4

1 3 2 4

Using composition vectors, each of these arrays gives a row of
the following array:

𝑁𝑁𝑅𝑅 = 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

5 8 7 0 6 0 3 2 4 4 1
3 8 0 5 0 6 2 2 4 3 2
5 0 0 3 0 2 2 2 0 1 3
3 0 1 0 2 0 1 2 0 0 4

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

. (11)

e 𝑁𝑁𝑅𝑅array now stores the contribution vector partition
according to the system outcome. e superscript 𝑅𝑅 is used

to indicate that the last column of𝑁𝑁𝑅𝑅 also stores the number
of the outcome associated with each contribution vector.

Step 3. Check data consistency. is step exposes any irreg-
ularities present in the original data, by checking that all
the possible complete events are present in the event table,
only these events are present, and the table has no duplicate
entries.

� �st check involves the columns of the contribution
vector array. Based on the number of block states, we estimate
the exact number of occurrences for each one of them and
see if the sums of entries in the array satisfy this constraint.
e MOV example has 3 blocks of 2, 4, and 4 states each.
erefore, each one of the 2 states of block 1 should occur
16 times; each one of the 4 states of blocks 2 and 3 should
occur 8 times each. In effect, 16 = 5+3+5+3 = 8+8+0+0;
8 = 7 + 0 + 0 + 1 = 0 + 5 + 3 + 0 = ⋯ = 4 + 3 + 1 + 0.

e second check involves the rows of the contribution
vector array. Each entry refers to a speci�c state of a speci�c
block. In each row, the total number of occurrences of the
block 1 states should be equal to the number of occurrences
of blocks 2 and 3. Looking at the �rst row of the contribution
vector array 5 + 8 = 7 + 0 + 6 + 0 = 3 + 2 + 4 + 4.

Step 3 is repeated for the other rows of𝑁𝑁𝑅𝑅.

Step 4. Contribution vector decomposition. is step
applies the decomposition operation (Section 4.1) and
the decomposition rules (Section 5.1) to the �rst row of

array 𝑁𝑁𝑅𝑅. Let, for instance, the contribution vector be
[5 8 7 0 6 0 3 2 4 4]. e vector exhibits complete
state blocks in block 1 (2nd state) and block 3 (3rd,
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T 3: Recomposition example: set of bicontribution vectors.

𝐋𝐋𝑖𝑖 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7 𝑏𝑏8 𝑏𝑏9 𝑏𝑏10
24 + 26 O O O I I O O I O O I O I I O I O I O I I I O
28 O O O I I O O I O O I O I O I I O I O I I I O
21 I O O O I O I I I O I O I I O I O I O I O I O
25 I O O O I O I I I O I O I I O I O I O O I I O
11 O O O I I O O I O I O I O I I I O I O I I I O
…

T 4: Recomposition example: subset of bicontribution vectors including only 𝑏𝑏6, 𝑏𝑏7, 𝑏𝑏8, and 𝑏𝑏9 as complete blocks.

𝐋𝐋𝑖𝑖 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7 𝑏𝑏8 𝑏𝑏9 𝑏𝑏10
i O O O I I O O O I O I I O I I I I I I I I I O
ii O O O I I O O O I I O O I I I I I I I I I I O
iii O O O I I O O O I I O I O I I I I I I I I I O
iv O O O I I O I O O O I I O I I I I I I I I I O
v O O O I I O I O O I O O I I I I I I I I I O I
vi O O O I I O I O O I O O I I I I I I I I I I O
vii O O O I I O I O O I O I O I I I I I I I I O I
viii O O O I I O I O O I O I O I I I I I I I I I O

4th states). e rules indicate that the decomposition is
�rst applied to block 1 and later to block 3. �ccording
to Section 5.1, the vector [5 8 7 0 6 0 3 2 4 4]
is decomposed into the Cartesian contribution vector
[0 8 4 0 4 0 2 2 2 2] and the remaining contribution
vector [5 0 3 0 2 0 1 0 2 2].

Step 5. Update system arrays. ere are 1 + 𝑅𝑅 working arrays
where contribution vectors (and their outcome) are stored.
e�rst one is𝑁𝑁𝑅𝑅.e others are denoted by𝑁𝑁

󵰓󵰓𝑖𝑖 and store the
Cartesian vectors generated during Step 4 for each response

𝑚𝑚, starting from 𝑖𝑖 𝑖 𝑖. Each row of 𝑁𝑁𝑅𝑅 treated during Step
4 is replaced by the remaining contribution vector. In our

example, during the �rst iteration𝑁𝑁𝑅𝑅 and𝑁𝑁
󵰓󵰓1 become

𝑁𝑁𝑅𝑅 = 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

5 0 3 0 2 0 1 0 2 2 1
3 8 0 5 0 6 2 2 4 3 2
5 0 0 3 0 2 2 2 0 1 3
3 0 1 0 2 0 1 2 0 0 4

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

,

𝑁𝑁
󵰓󵰓1

= [0 8 4 0 4 0 2 2 2 2] .

(12)

Note that, there is no need to store outcome information in
the arrays𝑁𝑁

󵰓󵰓𝑖𝑖.
Steps 4 and 5 are repeated until a decomposition oper-

ation leads to two Cartesian vectors. en, both vectors are
added to𝑁𝑁

󵰓󵰓𝑖𝑖, the �rst row of𝑁𝑁𝑅𝑅 is removed, and 𝑖𝑖 is replaced
by 𝑖𝑖 𝑖𝑖 .

Step 6. Decompose 𝑁𝑁
󵰓󵰓𝑖𝑖. e array 𝑁𝑁

󵰓󵰓𝑖𝑖 is further decomposed
to get an array𝑁𝑁

≈ 𝑖𝑖
of implicit contribution vectors. Since the

vectors have only Cartesian entries, the operations can be

easily applied on the bicontribution vectors of 𝑁𝑁
󵰓󵰓𝑖𝑖 and 𝑁𝑁

≈ 𝑖𝑖
,

denoted by 𝐿𝐿
󵰑󵰑𝑖𝑖
and 𝐿𝐿

≈𝑖𝑖
, respectively. e arrays referring to the

contribution vector [5 8 7 0 6 0 3 2 4 4] are

𝐿𝐿
󵰑󵰑1

= 󶀄󶀄

󶀜󶀜

0 1 1 0 1 0 1 1 1 1
1 1 0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0 0 0

󶀅󶀅

󶀝󶀝
(13)

and, aer further decomposition,

𝐿𝐿
≈1

=

󶀄󶀄󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔󶀔

󶀜󶀜

0 1 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1
1 0 1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 1
1 0 1 0 0 0 1 0 0 0

󶀅󶀅󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕󶀕

󶀝󶀝

. (14)

Step 6 supports the following recomposition actions.

Step 7. Apply recomposition actions. is step applies the
recomposition operation (Section 4.2) and the recomposition
rules (Section 5.2) to the parts of 𝐿𝐿

≈𝑖𝑖
sharing the same

outcome. Note that, the example considered here is too small
and simple to offer potential for recomposition.

Steps 4–7 are repeated until the array𝑁𝑁𝑅𝑅 is empty.

Step 8. Algorithm termination. e �nal output of the pro-
cedures described here is the arrays 𝐿𝐿

≈𝑚𝑚
, which represent

implicit partitions of signi�cantly reduced cardinality com-
pared to the size of the system event table. Note that, the
decomposition and the recomposition operations developed
here ensure that the consistency of the data is preserved
throughout the vector processing.
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T 5: Recomposition example: subset of bicontribution vectors including only the vectors appearing in Table 4.

𝐋𝐋𝑖𝑖 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7 𝑏𝑏8 𝑏𝑏9 𝑏𝑏10
i O O O I I O O O I O I I O I I I I I I I I I O
iv O O O I I O I O O O I I O I I I I I I I I I O
v + vii O O O I I O I O O I O I I I I I I I I I I O I
vi + viii O O O I I O I O O I O I I I I I I I I I I I O
ii + iii O O O I I O O O I I O I I I I I I I I I I I O

e Matlab environment is chosen as suitable for the
fast manipulation of matrices using the built-in matrix
operations. For instance, the decomposition when there are
no Cartesian entries requires knowledge of the exact event
subspace that corresponds to the processed contribution
vector. e algorithm can either keep track of the events
contributing in each vector or go through the original event
table to isolate the subspace relating to each vector. e
former, though it is more sophisticated, takes up a lot of
memory even for relatively small problems. Matlab takes
advantage of its built-in matrix operations for sort and �nd,
to reduce signi�cantly the execution time.

6. Case Studies

6.1. Case Study 1. e �rst case study is taken from Papa-
zoglou [10] and concerns the development of an event tree for
a boiling water nuclear reactor. e system involves 10 state
blocks with 2 to 4 block states each. e event space consists
of 3072 complete events and the system has 5 outcomes.
Papazoglou [10] provided a set of Boolean equations and
developed functional block diagrams that embedded infor-
mation on the dependencies between the blocks. He �nally
presented a reduced event tree of 41 branches. Note that,
if the reactor system is treated in BowTieBuilder [12, 13]
without providing dependency information, the resulting
event tree has 110 branches. is con�rms that the efficiency
of functional block diagram applications in reducing the size
of event trees depends on the structure of the Booleanmodel,
that dictates the dependencies between the blocks.

e methodology proposed here takes as input the orig-
inal 3072 × 11 event table and produces the results reported
in Table 6. Note that

(i) the states {1, 2, 3, 4} of block I correspond to
{L,M,N,T}, and

(ii) the outcomes {1, 2, 3, 4, 5} correspond to {CI, CII,
CIII, CIV, Success}

of Papazoglou [10]. Each row of Table 6 gives a Cartesian
vector (or an implicant) corresponding to a branch of the
event tree. In this sense, the reduced tree described here
has only 38 branches. e proposed algorithm identi�es an
inconsistency in the partition of block C of the original
data. Resolving it leads to different results for outcome CIV,
and this explains the three branches difference between 41
and 38. e rest of the branches/implicants are notably the
same, with a single exception, involving the choice to expand
block U rather than block Q (see bold cells of Table 6, lines

12–15). While both choices yield four branches/implicants,
this differentiation shows that the procedure proposed here
is not biased by the order of the blocks in the event table data.

6.2. Case Study 2. e proposed methodology is tested
against a large problem involving 16 blocks, including one
block having four state instances, four blocks with three states
and eleven binary. e original event table has 663552 ×
17 cells. e system has 5 possible outcomes. e initial
event table is constructed via recursive partitions of the event
subspace.

e resulting implicit partition has totally 273 vectors; in
particular 86, 115, 34, 28, and 71 for the �ve outcomes. e
recomposition stage requires 1.08 CPU seconds. en, the
�nal implicit partitions have totally 178 vectors; in particular
31, 54, 16, 20, and 57 for the respective partitions of the �ve
outcomes.

CPU times can give an idea of the relative effort invested
in the different activities taking place during a run. In this
relatively large problem, the preparatory Steps 1–3 of Section
5.3 require 1.27 CPU seconds. e decomposition steps
require only 0.0469CPU seconds for a total of 86 decom-
positions using rule (a) and 124CPU seconds for a total of
52 decompositions using rule (b) of Section 5.1. erefore,
the application of decompositions on the basis of Cartesian
entries reduces the computational effort by almost 4 orders of
magnitude. Clearly, an intelligent reduction of the frequency
of visiting the event table would bring signi�cant bene�ts in
the computational times. Note that, CPU times refer to an
Intel Core Quad 2.50GHz processor with 1.95GBRAM.

Finally, the proposed procedure manages to reduce the
expanded event tree to just 0.0268% of its original size. e
�nal partitions are easily translated into a set of implicants.
ere is no proof that this is a prime set, since there is lack
of theoretical background on sufficient and necessary mini-
mality conditions. In any case, the proposed methodology is
a fast, effective, and intelligent way to reduce substantially a
large event tree and facilitate the quanti�cation of risk.

7. Conclusions

is work presents a new methodology for the reduction
of event trees without the use of structural or functional
information on the system. e work applies a holistic
approach based on the concept of contribution vectors, to
generate a minimal set of implicants representative of the
system behavior. e method inherits the advantages and
limitations of event tree representation. In this sense, the
method is not hindered by component interdependences
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T 6: Final reduced event table for case study 1.

No. of event tree branch (or implicant) Blocks states Outcome 𝑟𝑟𝑖𝑖I C M Q U X E I V W
1 — 2 — — — — — — — — 4
2 1 1 — — — — 1 1 — 1 5
3 1 1 — — — — 1 1 — 2 2
4 1 1 — — — — 1 2 — — 3
5 1 1 — — — — 2 — — — 3
6 2 1 — 1 — — — — — 1 5
7 2 1 — 1 — — — — — 2 2
8 2 1 — 2 1 — — — — 1 5
9 2 1 — 2 1 — — — — 2 2
10 2 1 — 2 2 1 — — 1 1 5
11 2 1 — 2 2 1 — — 1 2 2
12 2 1 — 2 2 1 — — 2 — 1
13 2 1 — 2 2 2 — — — — 1
14 3 1 — — 1 — — — — 1 5
15 3 1 — — 1 — — — — 2 2
16 3 1 — — 2 1 — — 1 1 5
17 3 1 — — 2 1 — — 1 2 2
18 3 1 — — 2 1 — — 2 — 1
19 3 1 — — 2 2 — — — — 1
20 4 1 1 1 — — — — — — 5
21 4 1 1 2 1 — — — — 1 5
22 4 1 1 2 1 — — — — 2 2
23 4 1 1 2 2 1 — — 1 1 5
24 4 1 1 2 2 1 — — 1 2 2
25 4 1 1 2 2 1 — — 2 — 1
26 4 1 1 2 2 2 — — — — 1
27 4 1 2 — — — 1 1 — 1 5
28 4 1 2 — — — 1 1 — 2 2
29 4 1 2 — — — 1 2 — — 3
30 4 1 2 — — — 2 — — — 3
31 4 1 3 — 1 — — — — 1 5
32 4 1 3 — 1 — — — — 2 2
33 4 1 3 1 2 — — — — 1 5
34 4 1 3 1 2 — — — — 2 2
35 4 1 3 2 2 1 — — 1 1 5
36 4 1 3 2 2 1 — — 1 2 2
37 4 1 3 2 2 1 — — 2 — 1
38 4 1 3 2 2 2 — — — — 1

and noncoherent behavior in the considered systems. e
proposed representation framework stems from Cartesian
products to de�ne partitions using composition vectors.
e representation provides the basis for the application
of decomposition and recomposition operations on sin-
gle composition vectors and composition vector partitions.
Implementation issues for the efficient use of these operations
within an iterative algorithmic framework are discussed
thoroughly.

e proposed method is tested against two case studies,
one found in the literature and a �ctitious large scale problem.

In the former, the method provides a set of prime implicants
very similar to the one reported in the literature. e latter
illustrates the efficiency of themethod in handling large-scale
problems and proves the computational advantages from the
proposed representation and operations.

Future work considers the use of the theoretical back-
ground presented here to develop necessary and sufficient
conditions for the minimality of the �nal set of implicants.
ese conditions could then be incorporated in the recom-
position stage to guide an optimal search algorithm towards
the set of prime implicants.
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Nomenclature

𝐾𝐾: Number of system blocks
𝑏𝑏𝑘𝑘: System block, 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘
𝐒𝐒𝑘𝑘: Set of internal states of block

𝑏𝑏𝑘𝑘, 𝐒𝐒𝑘𝑘 = {𝑠𝑠1𝑘𝑘, 𝑠𝑠
2
𝑘𝑘,…,  𝑠𝑠

𝐾𝐾S𝑘𝑘
𝑘𝑘 }

𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘 : 𝑖𝑖𝑘𝑘th internal state of block
𝑏𝑏𝑘𝑘, 𝑖𝑖𝑘𝑘 ∈{1,2,…,   𝐾𝐾𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘

}
𝐄𝐄: System event space
̂𝑒𝑒: Complete joint event, ̂𝑒𝑒 𝑒𝑒𝑒
𝐑𝐑: Set of the all possible system outcomes
𝑟𝑟𝑗𝑗: System outcome, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    𝑗𝑗𝑗𝑗𝑗
𝑇𝑇: Event table mapping 𝑇𝑇 𝑇 ̂𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒  𝑒 ̂𝑒𝑒𝑒,

where ̂𝑒𝑒 𝑒𝑒𝑒  and 𝑟𝑟 𝑟𝑟𝑟
𝐀𝐀𝐀𝐀𝐀: Nonempty subspaces of 𝐄𝐄
|𝐗𝐗𝐗𝐗𝐗𝐗 𝐗𝐗: Number of elements (cardinality) of set𝐗𝐗
𝐐𝐐𝐐𝐐𝐐𝐐: Partition applied over 𝐀𝐀
𝐪𝐪𝑄𝑄𝑖𝑖 (𝐀𝐀𝐀: 𝑖𝑖th subset of 𝐀𝐀 according to

𝐐𝐐𝐐𝐐𝐐𝐐, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝐐𝐐𝐐𝐐𝐐𝐐}
𝐐𝐐𝑇𝑇(𝐀𝐀𝐀: Outcome-based partition of 𝐀𝐀

(according to mapping 𝐓𝐓)
𝐒𝐒𝐀𝐀𝑘𝑘 : Set of 𝑏𝑏𝑘𝑘-block states, 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘, in

the events comprising 𝐀𝐀
𝐂𝐂𝐂𝐂𝐂𝐂: Cartesian product 𝐒𝐒𝐀𝐀1 × 𝐒𝐒

𝐀𝐀
2 × ⋯ × 𝐒𝐒𝐀𝐀𝐾𝐾

𝐀𝐀󵰒󵰒: Cartesian subspace
𝐀𝐀
≈
: Implicit subspace

𝐐𝐐
󵰒󵰒
(𝐀𝐀𝐀: Cartesian partition over subspace 𝐀𝐀

𝐪𝐪
󵰑󵰑
𝐐𝐐
󵰑󵰑𝑖𝑖 (𝐀𝐀𝐀: 𝑖𝑖th subset of𝐐𝐐

󵰒󵰒
(𝐀𝐀𝐀, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝐐𝐐

󵰑󵰑
(𝐀𝐀𝐀}

𝐐𝐐
≈
(𝐀𝐀𝐀: Implicit partition over 𝐀𝐀

𝐪𝐪
≈

𝐐𝐐
󵰑󵰑
𝑖𝑖
(𝐀𝐀𝐀: 𝑖𝑖th subset of𝐐𝐐

≈
(𝐀𝐀𝐀, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝐐𝐐

≈
(𝐀𝐀𝐀}

𝐍𝐍𝐍𝐍𝐍𝐍: Contribution vector of 𝐀𝐀
𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀: Entry of 𝐍𝐍𝐍𝐍𝐍𝐍, 𝑛𝑛𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀𝐀  𝐀+ and

𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘, 𝑖𝑖𝑘𝑘 ∈{1,2,…,   𝐾𝐾𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘
}

𝐋𝐋𝐋𝐋𝐋𝐋: Bicontribution vector of subspace 𝐀𝐀
𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀: Entry of 𝐋𝐋𝐋𝐋𝐋𝐋, 𝑙𝑙𝑖𝑖𝑘𝑘𝑘𝑘 (𝐀𝐀𝐀𝐀𝐀  O, I} and

𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘, 𝑖𝑖𝑘𝑘 ∈{1,2,…,   𝐾𝐾𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘
}

𝐍𝐍
󵰒󵰒
(𝐀𝐀𝐀: Cartesian contribution vector of 𝐀𝐀

𝑛𝑛
󵰑󵰑
𝑖𝑖𝑘𝑘
𝑘𝑘 (𝐀𝐀𝐀: Entry of 𝐍𝐍

󵰒󵰒
(𝐀𝐀𝐀, 𝑛𝑛

≈
𝑖𝑖𝑘𝑘
𝑘𝑘
(𝐀𝐀𝐀𝐀  𝐀+ and

𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘, 𝑖𝑖𝑘𝑘 ∈{1,2,…,   𝐾𝐾𝑠𝑠𝑖𝑖𝑘𝑘𝑘𝑘
}

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍: Contribution vector partition of𝐐𝐐𝐐𝐐𝐐𝐐
𝐍𝐍𝐍𝐍𝐍𝐐𝐐𝑖𝑖 (𝐀𝐀𝐀𝐀: 𝑖𝑖th member of

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝐐𝐐𝐐𝐐𝐐𝐐}
𝜆𝜆: Vector length
𝑌𝑌: Vector
𝑌𝑌: Vector partition (i.e., set of vectors)
𝑌𝑌󵰒󵰒: Entity obeying the Cartesian property
𝑌𝑌
≈
: Entity obeying the property of

implicitness
Λ[𝐍𝐍𝐍𝐍𝐍𝐍𝐍: Operation applied on 𝐍𝐍𝐍𝐍𝐍𝐍 to obtain

𝐋𝐋𝐋𝐋𝐋𝐋
Ξ[𝐋𝐋𝐋𝐋𝐋𝐋𝐋: Operation applied on 𝐋𝐋𝐋𝐋𝐋𝐋 to obtain

𝐍𝐍
󵰒󵰒
(𝐀𝐀𝐀

𝜎𝜎𝑘𝑘: Subset of 𝐒𝐒𝑘𝑘
𝐀𝐀𝜎𝜎𝑘𝑘 : Subset of𝐀𝐀 such that 𝐀𝐀𝜎𝜎𝑘𝑘 = { ̂𝑒𝑒 𝑒𝑒𝑒  𝑒 𝑒𝜎𝜎𝑘𝑘}
Δ𝜎𝜎𝑘𝑘
𝐀𝐀 : Event subspace such that

Δ𝜎𝜎𝑘𝑘
𝐀𝐀 = {𝐒𝐒𝐀𝐀1 × 𝐒𝐒

𝐀𝐀
2 × ⋯ × 𝜎𝜎𝑘𝑘 ×⋯ × 𝐒𝐒𝐀𝐀𝐾𝐾}.

Glossary

Complete set of block states: Set of all the possible states
of a certain system block

Complete joint event: Joint event containing an
instance of each one of the
system blocks

Cartesian property: Event subspaces and
contribution vectors that can
be generated by a Cartesian
product. Also, subspaces
partitions and partition
contribution vectors that can
be generated by a set of
Cartesian products

Property of implicitness: Cartesian entities (i.e.,
subspaces, vectors,
partitions) whose associated
Cartesian products contain
only complete or singleton
sets of block states

Cartesian entries: Nonzero entries of a
contribution vector equal to
their relative Cartesian
contribution vector entries.
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