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This study reviews the impact of public transit network layout (TNL) on resident mode choice. The review of TNL as a factor uses
variables divided into three groups: a variable set without considering the TNL, one considering TNL from the zone level, and one
considering TNL from the individual level. Using Baoding’s travel survey data, a Multinomial Logit (MNL) model is used, and
the parameter estimation result shows that TNL has significant effect on resident mode choice. Based on parameter estimation,
the factors affecting mode choice are further screened. The screened variable set is regarded as the input data to the BP neural
network’s training and forecasting. Both forecasting results indicate that introducing TNL can improve the performance of mode
choice forecasting.

1. Introduction

With the rapid urban development, traffic congestion has
become an important topic andnumerousmeasures are taken
to solve the problemof congestion. Public transit is one useful
approach to reduce the traffic congestion. The rational for
this study is to determine if the transit network layout (TNL)
affects the traveler’s mode choice. Public transit would be
used in preference to othermodes if the TNL is well designed.
This paper studies the impact of TNL on mode choice by
evaluating different features of TNL as influencing factors.
In addition, individual characteristics and travel features are
taken into consideration. The results reported in this paper
can be applied to public transit travel demand forecasting.

Mode choice is a hot topic in transportation planning
and is often used for traffic demand forecasting. A number
of factors influencing mode choice have been taken into
account, including energy costs [1], transit fare price [2],
parking fees [3–6], urban land utilization [7], congestion
pricing [8], commuters travel time [9], and more. Some
researchers have also paid attention to the TNL, but most
of them incorporated the TNL into variable used to analysis
transit service and in studies on the transit’s effect on mode
choice. Zhu [10] imported two variables related to TNL into
mode choice model. The variables are the distance between

origin/destination and metro station and the number of
stops surrounding the residence. Pan and Ma [11] utilized
GIS Network Analyst functions to reconstruct travel costs
for different modes impacted by facilities or services of a
new transit project. A “Winner-takes-all” mechanism was
applied to assign trips to optimal mode under different traffic
conditions.Mode sharewas calculated based on the estimated
trips in impacted areas. Racca and Ratledge [12] employed
transit level of service and accessibility as variables and
logistic regression was used to forecast the mode choice. The
findings show that both variables have a significant influence
on resident’s mode choice, but it did not tell the degree
influence onmode choice. Jin et al. [13] examined how transit
service factors such as accessibility and connectivity can be
incorporated into mode choice models. The results showed
that importing transit service can improve the model’s fore-
casting performance.

Although a number of mode choice model models have
been introduced and researchers have paid attention to the
transit service’s effect on mode choice, little in depth research
has studied TNL’s (one aspect of transit service) effect on
mode choice. Much of the previous work has limitations: (1)
They considered the transit service as a variable group and
few variables related to TNL are included; (2) The model’
input data for TNL is mostly at a zone level. This paper will
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address these limitation and more fully consider variables
related to TNL.MNLLogitmodel and BPneural networkwill
be employed to estimate parameters and forecast the mode
choice respectively. It is also worth noting that zone-level and
individual-level input data will both used and a comparison
work will also be conducted to determine which data format
will have a better forecasting accuracy.

2. MNL Model and BP Neural Network

MNL model and BP neural network are both widely used to
forecast the mode choice, but only BP neural network will
be used here, because the BP neural network has a better
forecasting performance than MNL model. This conclusion
was drawn by other researchers’ paper. So MNL model will
be only used to estimate the parameters, thus the variables
in three groups will be screened. The screened variables set
will be regarded as the input of BP neural network. A brief
introduction about MNL model and BP neural network will
be given.

2.1.MNLModel. Logitmodel is themostwidely usedmethod
to forecast mode choice. It consists of binary Logit, MNL,
Nested Logit, and Cross-Nested Logit model, of which MNL
model is commonly used. It is assumed in the MNL model
that residents will choose the most efficient travel mode
under certain circumstances (which is known as utility max-
imization). This utility correlates with individual, family, and
travelling characteristics. As a result, the relationship between
these characteristics and the utility can be investigated.

If it is defined that resident 𝑘 has 𝑛 possible mode choices,
then the probability to choose 𝑖 is 𝑝

𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛) and 𝑈

𝑖𝑘

represents utility which according to discrete choice model
is based on random utility theory. 𝑈

𝑖𝑘
is made up of certain

term 𝑉
𝑖𝑛
and stochastic term 𝜀

𝑖𝑛
, where

𝑈
𝑖𝑘
= 𝑉
𝑖𝑘
+ 𝜀
𝑖𝑘
. (1)

𝜀
𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛) is defined to comply with an indepen-

dent Gumbel distribution,. The MNL model expression for k
to choose i is formulated as

𝑃
𝑖𝑘
=

exp (𝑉
𝑖𝑘
)

∑
𝑗∈𝐶𝑘

exp (𝑉
𝑗𝑘
)
, (2)

where 𝑃
𝑖𝑘
is the probability for 𝑘 to choose 𝑖; 𝑗 is the travel

mode; 𝐶
𝑘
is the set of all the possible modes.

𝑉
𝑖𝑘

is usually assumed to be the linear function of
influencing factor 𝑥

𝑖𝑘𝑙
(𝑙 = 1, 2, . . . , 𝐿) as

𝑉
𝑖𝑘
=

𝐿

∑
𝑙=0

𝛽
𝑙
𝑥
𝑖𝑘𝑙
. (3)

𝐿 is the total number of influencing factors.

2.2. BP Neural Network. Artificial neural network (ANN)
is a complex network system formed by numerous simple
neurons connecting to one another to form and extensive

network. Back propagation (BP) neural network, which is
now frequently used in the field of forecasting, is a learning
algorithm of a neural network. The input layer, the interlayer
(which can be expanded further into several layers), and
the output layer constitute the network and the mechanism
is illustrated in Figure 1. In this paper, the input layer
includes values of influencing factors (the total number is
𝐿), represented by [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐿
]; the output layer consists

of mode choices (the total number is 𝑛), represented by
[𝑀𝑜𝑑𝑒 1,𝑀𝑜𝑑𝑒 2, . . . ,𝑀𝑜𝑑𝑒 𝑛].

Procedures of using BP neural network to forecast mode
choice are as follows.

Step 1 (determining the input and output layer of the net-
work). Here, the input layer is the set of influencing factors
and the output layer is the set of mode choices.

Step 2 (normalizing the input data). In order to accelerate
learning speed of the network, the input data is normalized to
equal status. All the values of variables (including input and
output) are normalized into numbers ranging from 0 to 10
([0, 10]).

Step 3 (determining the number of hidden nodes). The
number of the hidden nodes (𝐾) is obtained from the
traditional empirical formula:

𝐾 = √𝑚 + 𝑛 + 𝑎, (4)

where 𝑚 is the number of input node; 𝑛 is the number of
output node; 𝑎 is the integral number between 0 and 10.

Step 4 (training the model and forecasting). A thousand
records of data are assigned to training data set and the
remaining 250 records act as testing data set to verify model’s
accuracy.

3. Analysis of Influencing Factors

3.1. Variables Related to TNL. There is a positive correlation
betweenTNLdensity in origin/destination and the possibility
residents choose transit. Here the density will be considered
from two levels: the zone level and the individual level. The
zone level considers the density of transit network and stops
in each traffic zone to present the TNL of a city or a region.
The individual level considers the number of the bus stops
around the resident’s origin and destination.The details of the
level are next.

3.1.1. Zone Level. At this level, variable names of TNL are the
coverage ratio of bus stops and the density of bus network.
The computational formula is [14] as follows.

(1) Coverage ratio of bus stops (𝐶) is the percentage
between service area of bus stops and the whole area
of the traffic zone:
Coverage ratio of bus stops

=
Service area of bus stops in traffic zone

Area of traffic zone

(5)
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Figure 1: Structure of neural network in forecasting mode choice.

Note that some adjacent stops may have overlapping
service area, but the overlapping area will only be counted
once when all the service area of bust stops is summed.

Usually, 𝐶 is divided into 𝐶 300m (coverage ratio within
300 meters of origin-destination zone) and 𝐶 500m (within
500 meters).

(2) Density of transit line (𝑅) is defined as follows:

Density of normal transit line (𝑅1)

=
Overall length of road axis that contains transit lines

Area of traffic zone
,

Density of running transit lines (𝑅2)

=
Overall length of running transit lines

Area of traffic zone
.

(6)

3.1.2. Individual-Level. At this level, the TNL variable is
the number of bus stops (𝑁) in the vicinity of an origin-
destination area.𝑁 is specifically divided into𝑁 300m (the
number of bus stopswithin 300meters) and𝑁 500m (within
500 meters).

In conclusion, variable names used to characterize the
TNL are as follows.
Zone Level

𝐶 300m 𝑂 (coverage ratio within 300 meters of
origin)

𝐶 500m 𝑂 (coverage ratio within 500 meters of
origin)

𝑅1 𝑂 (density of normal transit line in origin area)

𝑅2 𝑂 (density of running transit lines in origin area)

𝐶 300m 𝐷 (coverage ratio within 300 meters of
destination)

𝐶 500m 𝐷 (coverage ratio within 500 meters of
destination)

𝑅1 𝐷 (density of normal transit line in destination
area)

𝑅2 𝐷 (density of running transit lines in destination
area)

Individual Level

𝑁 300m 𝑂 (the number of bus stops within 300
meters of origin)
𝑁 500m 𝑂 (the number of bus stops within 500
meters of origin)
𝑁 300m 𝐷 (the number of bus stops within 300
meters of destination)
𝑁 500m 𝐷 (the number of bus stops within 500
meters of destination).

3.2. OtherVariables Selection. Ahousehold survey conducted
in Baoding, China, in 2007, reveals that mode choices which
account for 97% of all travel choices are bike, on foot, car,
motorcycle (includingmoped), and transit.Therefore, these 5
modes are chosen as the output choice and their proportions
are shown in Table 1.

Other variables involve city features, individual char-
acteristics, travel features, transportation policies, and so
forth. Based on the survey data, variables in the model are
chosen as shown in Table 2. These variables are divided into
3 groups according to whether or not the TNL is taken
into consideration and from which aspect it is considered as
follows.
Group 1 (Individual Travel). Individual characteristics and
travel patterns.
Group 2 (Individual Travel NetZone). Individual characteris-
tics, travel patterns, and TNL in terms of traffic zones.
Group 3 (Individual Travel NetIndividual). Individual char-
acteristics, travel patterns, and TNL in terms of individuals.

4. Apply the MNL Model and BP
Neural Network

4.1. Data. To avoid sample error during regression, 650
records of data (i.e., 130 records for each mode) are randomly
chosen from the survey data-set. 500 of the records are used
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Table 1: Mode choice proportions.

Mode choice Bike On foot Car Transit Motorcycle Others
Proportion (%) 50.98 24.88 3.81 8.48 9.22 2.63
Mode choice number M2 M5 M4 M1 M3 —

Table 2: Definition of variables.

Group Variable Variable name Note
Individual characteristic

Personal attribute

Gender Gender 1: male; 0: female
Age Age 1: 18–29; 2: 30–45; 3: >45

Income Income
1: <1000 yuan/month;
2: 1000–2500 yuan/month;
3: >2500 yuan/month

Job Job 1: public institution;
2: private business; 3: others

Family attribute
Car ownership CarNum 1: Yes; 0: No
Motorcycle ownership MotorNum 1: Yes; 0: No
Bike ownership BikeNum 1: Yes; 0: No

Travel Feature Travel distance Distance 1: <1500m; 2: 1500–5000 m; 3: >5000m
TNL

Traffic zone

Coverage ratio within 300meters of origin C 300m O 1: [0,0.5]; 2: (0.5,0.8];
3: (0.8,1]

Coverage ratio within 300meters of
destination C 300m D 1: [0,0.5]; 2: (0.5,0.8];

3: (0.8,1]

Coverage ratio within 500meters of origin C 500m O 1: [0,0.9]; 2: (0.9,0.95];
3: (0.95,1]

Coverage ratio within 500meters of
destination C 500m D 1: [0,0.9]; 2: (0.9,0.95];

3: (0.95,1]
Density of normal transit line in origin area R1 O 1: <2 km/km2; 2: 2–4 km/km2; 3: >4 km/km2

Density of normal transit line in destination
area R1 D 1: <2 km/km2; 2: 2–4 km/km2; 3: >4 km/km2

Density of running transit lines in origin
area R2 O 1: <10 km/km2; 2: 10–14 km/km2; 3: >14 km/km2

Density of running transit lines in
destination area R2 D 1: <10 km/km2; 2: 10–14 km/km2; 3: >14 km/km2

Individual

The number of bus stops within 300meters
of origin N 300m O 1: ≦2; 2: 3–5; 3: >5

The number of bus stops within 300meters
of destination N 300m D 1: ≦2; 2: 3–5; 3: >5

The number of bus stops within 500meters
of origin N 500m O 1: ≦2; 2: 3–5; 3: >5

The number of bus stops within 500meters
of destination N 500m D 1: ≦2; 2: 3–5; 3: >5

to train the model and the remaining 150 are used to verify
the model’s accuracy.

In particular, values of 𝑁 300m 𝑂, 𝑁 300m 𝐷,
𝑁 500m 𝑂, and 𝑁 500m 𝐷 depend on the exact location
of the origin-destinations. However, the data of resident’s
origin and destination is recorded in zone level in the survey.
For example, a resident will leave zone 1 for zone 2 to work,
but where is the exact location he leaved in zone 1 and where
is the exact location he arrived in zone 2 are not given;

thus, a random assignment method is used to generate the
exact location for each activity location, and the detailed
description is as follows.

Step 1. Divide the activity into 5 types: home, work, shop,
leisure, and education.

Step 2. Divide the facility which is used these activities
into 5 types. These 5 kinds of facility are used to perform
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Work (previous activity location)

Traffic zone the previous 
activity located

Traffic zone the next 
activity located

Leisure (next)

(1) Located in the same traffic zone (2) Located in a different traffic zone

Figure 2: Principle of assignment.

corresponding activity from Step 1. For example, a shop
facility allows resident perform shop and work activity.

Step 3. Prepare the input data which mainly includes res-
ident’s travel records and the facilities’ exact location. A
resident’s travel records will record his activity and transport
mode throughout a day but for this study only travel records
related to transit is extracted.

Step 4. Nearby principle is employed to randomly assign
each activity to a corresponding facility; thus, each activity’s
exact location can be obtained. The nearby principle means
that every resident will usually choose a nearby facility to
perform his next activity. This is logical since it is common
in daily life that people will likely to choose a close shop
for shopping, a nearby leisure place to play, and so forth. In
order to demonstrate the random assignment, two cases are
considered.

Take a resident’s trip for an example to showhow to assign
an activity to a corresponding facility. We assume that he will
perform leisure activity afterwork, in addition, which zone he
works and plays in is given (these can be found in the survey
data).
Case 1. Two adjacent activities (work and leisure) are per-
formed in the same traffic zone (zone 1). After work, resident
will choose a facility to perform leisure activity. According
to the nearby principle, all leisure facilities within a radius of
𝑅 will have the equal probability to be chosen for performing
the next activity.The value of𝑅 is set to be 500m in this paper.
A resident will randomly choose a facility to perform leisure
within 500m of his workplace, and each facility within the
circlewill have the sameprobability to be chosen.This process
is showed by Figure 2(1). In this case, if a leisure facility is
within 500m of the workplace but out of zone 1, it will not be
chosen.
Case 2. Two adjacent activities are performed in a different
traffic zone (zone 1 for work and zone 2 for leisure). Resident
will simply choose a leisure facility which is nearest to the
workplace in zone 2. This process is showed by Figure 2(2).

Step 5. After assignment, each activity’s location can be
obtained according the corresponding facility’s location.

Thus, using GIS technology, values of 𝑁 300m 𝑂,
𝑁 300m 𝐷,𝑁 500m 𝑂, and𝑁 500m 𝐷 can be calculated
based on the activities’ location.

4.2. Parameter Estimation in MNL Model. Parameters in the
model are estimated by Stata software and are used to verify
model’s accuracy. Three groups of variables are estimated as
shown in Table 3 (variables that did not pass 𝑡-test have been
eliminated) in which the walking mode serves as base group.

Several conclusions can be drawn from Table 3.

(1) TNL has a major impact on mode choice. At the indi-
vidual’s level, parameter estimation displays a positive
correlation between N 300m O and the probability
for residents to choose public transit. At the traffic
zones level, estimation shows that a significant posi-
tive correlation is found between 𝐶 300m 𝐷 and the
probability to choose public transit, while a significant
negative correlation is between 𝐶 500m 𝐷 and the
probability to choose public transit.

(2) For those who own bikes, motorcycle and car, the
estimation result (see Table 3) shows that owners
would use these vehicles to travel. Take bicycles for
example, the estimated values of BikeNum in all 3
groups is positive and high, implying that if someone
owns a bike, there’s a high probability that they would
choose to travel by cycling.

(3) Of all the influencing factors on mode choice, travel
distance has the most significant impact on all the
choices.

Based on the aforementioned, a number of original vari-
ables are screened as input variables for BP neural network.
𝑁 300m 𝑂,𝐶 300m 𝐷 all other variables related to TNL are
eliminated fromTable 2, but there still remain three groups of
variables.

4.3. Results Forecasted by BP Neural Network. After the
screening process, three cases stated in Section 3.1 are trained
and forecasted by BP neural network. Results are shown in
Table 4 (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 represent transit, bike,
motorcycle, car, and on foot, respectively).
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Table 3: Parameter estimation.

Group 1 Group 2 Group 3
(Individual Travel) (Individual Travel NetZone) (Individual Travel NetIndividual)

Variable name Estimated
value 𝑇 test Variable name Estimated

value 𝑇 test Variable
name

Estimated
value 𝑇 test

Variables affecting transit travel Variables affecting transit travel Variables affecting transit travel

Age
Gender
Income
MotorNum

−2.55 −2.89 Age −1.73 −2.02 Age −2.92 −3.25

−2.26 −2.10 Gender −2.14 −2.00 Gender −2.80 −2.34

−3.21 −2.33 Income −3.46 −2.23 Income −3.62 −2.45

4.05 2.34 MotorNum 4.14 2.33 MotorNum 4.56 2.51

CarNum
Distance

8.78 4.79 CarNum 7.95 4.18 CarNum 9.10 4.60

15.30 7.26 C 300m D 4.00 2.74 Distance 15.94 6.67

Constant −27.36 −2.92 C 500m D −2.54 −2.19 Constant −28.76 −2.63

Distance 15.66 6.96

Constant −31.42 −3.07

Variables affecting bike travel Variables affecting bike travel Variables affecting bike travel
Age −2.87 −3.49 Age −2.21 −2.92 Age −3.19 −3.80

Gender −1.86 −1.99 Income −3.99 −2.71 Gender −2.37 −2.23

Income −3.69 −2.80 BikeNum 26.68 11.86 Income −4.11 −2.80

BikeNum 25.56 14.14 MotorNum 3.72 3.29 BikeNum 26.19 12.86

MotorNum 3.85 3.29 C 300m D 2.87 2.25 MotorNum 4.17 3.20

Distance 9.10 4.77 Distance 9.38 4.52 N 300m O 1.92 2.12

Distance 9.79 4.43

Variables affecting motorcycle travel Variables affecting motorcycle travel Variables affecting motorcycle travel
Age −4.27 −3.98 Age −2.93 −2.93 Age −4.23 −4.24

Gender −5.44 −3.55 Gender −4.90 −3.27 Gender −5.16 −3.44

Job 0.76 2.75 Income −8.30 −4.48 Income −7.35 −4.56

Income −6.83 −4.26 MotorNum 18.03 6.31 MotorNum 17.17 6.62

MotorNum 18.39 6.21 C 300m D 4.95 2.92 Distance 15.32 6.45

Distance 14.82 6.95 Distance 15.39 6.61 Constant −23.91 −2.17

Constant −23.17 −2.48 Constant −29.55 −2.84

Variables affecting car travel Variables affecting car travel Variables affecting car travel
Gender −7.48 −4.02 Gender −7.34 −4.06 Gender −8.20 −4.08

MotorNum 6.57 3.69 MotorNum 5.54 3.05 MotorNum 6.90 3.72

CarNum 21.45 6.84 CarNum 21.73 7.18 CarNum 21.49 6.85

Distance 17.37 7.58 Distance 17.60 7.37 Distance 17.89 6.93

Constant −44.51 −4.11 Constant −47.45 −4.12 Constant −43.04 −3.53

Several conclusions can be drawn from Table 4.

(1) The sequence of forecasting level is Group 2
(Individual Travel NetZone) > Group 3
(Individual Travel NetIndividual) > Group 1
(Individual Travel).The finding show that forecasting
level can be improved with the addition of correlated
variables in TNL; moreover, a better level of forecast
accuracy is obtained using variables in Group 2
(Individual Travel NetZone) when the exact location
of origin-destination is not available. Variables in
Group 3 (Individual Travel NetIndividual) may
display a better result if locations in the survey
are more precise. However, a study regarding this

aspect cannot be completed due to the lack of a
high-precision data set.

(2) Forecasting accuracy of transit travel can be increased
by adding correlated variables in TNL. And by doing
so, hit rate of other modes tends to go up; only a few
would go down.

5. Conclusions

Three different variable sets with TNL characteristics are
built, and a comparison among them is conducted to deter-
mine which sets have the best forecasting accuracy. Twomain
conclusions can be drawn.
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Table 4: BP forecasting results

BP Forecasting Results of Training Set BP Forecasting Results of Testing Set
(Individual Travel) (Individual Travel)

M1 M2 M3 M4 M5 Hit rate of
each mode M1 M2 M3 M4 M5 Hit rate of

each mode
M1 71 19 2 7 1 71% M1 22 2 4 0 2 73%
M2 2 72 0 8 18 72% M2 2 19 0 4 5 63%
M3 2 0 93 2 3 93% M3 0 0 28 2 0 93%
M4 7 1 12 77 3 77% M4 8 0 2 20 0 67%
M5 0 0 1 4 95 95% M5 0 0 0 5 25 83%

Average of hit Rate: 82% Average of hit Rate: 76%
BP Forecasting Results of Training Set BP Forecasting Results of Testing Set

(Individual Travel NetZone) (Individual Travel NetZone)

M1 M2 M3 M4 M5 Hit rate of
each mode M1 M2 M3 M4 M5 Hit rate of

each mode
M1 85 6 2 3 4 85% M1 24 0 4 0 2 80%
M2 3 82 4 0 11 82% M2 2 25 1 0 2 83%
M3 4 3 92 1 0 92% M3 0 1 28 1 0 93%
M4 3 0 3 91 3 91% M4 0 0 0 29 1 97%
M5 0 0 4 4 92 92% M5 0 0 0 5 25 83%

Average of hit Rate: 88% Average of hit Rate: 87%
BP Forecasting Results of Training Set BP Forecasting Results of Testing Set
(Individual Travel NetIndividual) (Individual Travel NetIndividual)

M1 M2 M3 M4 M5 Hit rate of
each mode M1 M2 M3 M4 M5 Hit rate of

each mode
M1 75 15 8 2 0 75% M1 24 0 4 0 2 80%
M2 6 77 1 0 16 77% M2 5 21 0 0 4 70%
M3 2 0 87 7 4 87% M3 0 1 29 0 0 97%
M4 6 0 6 84 4 84% M4 3 0 0 27 0 90%
M5 0 0 0 6 94 94% M5 0 0 0 8 22 73%

Average of hit Rate: 83% Average of hit Rate: 82%

(1) When using individual-level or zone-level variable
set, the MNL model’s parameter estimation shows
that TNL has a significant effect on resident’s mode
choice, thereby affecting the whole mode split.

(2) A better result is obtained using variables in Group 2
(Individual Travel NetZone) when the exact location
of origin-destination is not available.

This paper can lay a theoretical foundation to the opti-
mization of public transit network.
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