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A novel method of singularity analysis for redundant space robot with the structure of Canadarm2 is proposed in this paper. This
kind of structure has the characteristics of three consecutive parallel axes. First, the “virtual manipulator” method is employed
to transfer the singularity problem of a space robot to that of a ground one. By choosing an appropriate reference system and
a reference point of the end-effector, Jacobian matrix is greatly simplified and then it is reconstructed according to a new standard.
On this basis, the Jacobianmatrix can be partitioned into four submatrixeswhose degradation conditions are put forward; thereafter,
the singularity conditions and singular directions of the redundant space robot are obtained. The effectiveness of the proposed
singularity analysis method is verified through simulation.

1. Introduction

Singularity is the inherent characteristic of robots. At a
singular configuration, the end-effector of the robot loses
the ability to move along a certain direction, which is called
the singular direction. In this case, if there is still a velocity
component of the end-effector in singular direction, the
joint angular velocities will become unacceptably large, and
the end-effector will deviate from its expected trajectory.
Moreover, it is possible that a robotwill be out of control [1, 2].
Therefore, in order to ensure the stability and reliability of
robot, it is necessary to do the research on singularity analysis.

Robot singularity analysis, as the basis of singularity
avoidance, is used to determine the singularity conditions.
For nonredundant robots, the determinant value of Jacobian
matrix can directly determine robot singularity conditions.
However, for redundant robots, because its Jacobian matrix
is not square, the singularity analysis becomes much more
complex. Much effort in research community has been paid
on dealing with singularity analysis of redundant robots.
Whitney [3] determined singularity conditions by calculating
the determinant value of matrix JJT. The pseudoinverse of
Jacobian matrix J is given by J† = JT(JJT)−1. Singular config-
urations occur when the determinant value of the JJT portion

of J† is equal to zero. Although the matrix formed by JJT
is a square matrix, the determinant expression could be
quite complicated, making it very difficult to obtain the
analytical solution. Chou et al. [4] defined the concept
of null motion differential dynamic system, and then the
local topology and singularity avoidability of redundant
robots are studied according to nonlinear singularity theory.
Podhorodeski et al. [5] proposed using six-joint subgroups
of Jacobian matrix to determine the singularity conditions
of redundant robots. Conditions that cause the determinant
values of all possible six-joint subgroups to simultaneously
equal zero are singularity conditions. The method works
well, but the entire solving process is much complicated.
Nokleby and Podhorodeski [6, 7] used the properties of
reciprocal screws to determine the single-DOF-loss and
the multi-DOF-loss conditions of redundant robots and
also work out the singular directions. This method is also
used in the singularity analysis of Canadian Space Agency
(CSA) Canadarm2 [8]. The reciprocal method is effective
for the singularity analysis of all redundant serial manip-
ulators. However, with the increase of DOF, its calculation
amount is little large. For a 7-DOF robot with the struc-
ture of the last, three axes perpendicular to each other,
Waldron et al. [9, 10], based onmatrix partitioning, converted

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 735030, 9 pages
http://dx.doi.org/10.1155/2014/735030



2 Mathematical Problems in Engineering

the segmented 3 × 4 submatrix to a 4 × 4 submatrix with
an additional relationship between joint angular velocities.
And then the singularity conditions can be achieved through
the determinant value of square submatrixes. Due to the
introduction of an additional relationship, the method may
encounter algorithm singular problems. Cheng et al. [11]
suggested decomposing singularities into position singular-
ities and orientation singularities by partitioning the 6 ×
7 Jacobianmatrix.Thismethod only needs to determine each
singularity condition of the submatrixes including two 3 ×
4 matrixes, one 3 × 3 matrix, and one 3 × 3 zero matrix to
obtain the singularity conditions. It can greatly reduce the
computation complexity, but it can only be applied to the
singularity analysis of the 7-DOF robots with the structure
of the last three axes perpendicular to each other.

All the singularity analysis methods mentioned above
are aiming at ground robots or space robots in fixed-base
mode. For free-floating or free-flying space robots, some
scholars utilized the method in [2], only replacing the
Jacobian matrix J by J𝑔 in J† = JT(JJT)−1; here, J𝑔 is called
the generalized Jacobian matrix. Similarly, it is very difficult
to obtain the analytical solution. Xu et al. [12] presented a
singularity separationmethodwhich separates the singularity
parameters from the inverse of the Jacobian to simplify the
analysis. However, sometimes the parameters separation is
hard. Nenchev et al. [13] utilized the singular-value decom-
position (SVD) of the Jacobian matrix to judge whether the
singularity happens, and it is really effective for numerical
computation not for analytical solution.

A novel method of singularity analysis for redundant
space robots with the structure of Canadarm2 is proposed
in this paper. First, the “virtual manipulator” method is
employed to transfer the singularity problem of a space
robot to that of a ground one. Second, Jacobian matrix is
reconstructed according to a new standard on the basis of
simplification. Thereafter, the Jacobian matrix can be parti-
tioned into four submatrixes whose degradation conditions
are put forward. Finally, the singularity conditions and sin-
gular directions of redundant space robots with the structure
of Canadarm2 are obtained.

This paper is organized as follows. Section 1 gives a brief
overview of the research on singularity analysis. Section 2
employs the “virtual manipulator” method to transfer the
singularity problem of a space robot to that of a ground
one. The Jacobian matrix is simplified and the equivalence of
singularity is analyzed in detail in Section 3. Section 4 obtains
the singularity conditions and singular directions. Section 5 is
a simulation example and Section 6 concludes the paper.

2. Virtual Manipulator

For a free-floating space robot as shown in Figure 1, the
linear momentum of the system is conserved, which is the
holonomic constraint. According to “virtual manipulator”
concept proposed in [14, 15], the kinematic problem in this
mode can be simplified to that belonging to a ground robot.
By this concept, the base of free-floating manipulator is
regarded as a rod linked to the virtual ground by a passive

sphere joint. The relationship between system mass center
and the each link’s mass center is as follows (without special
instruction, all variables are expressed in inertial frame):

𝑀𝑟𝑔 =

𝑛

∑

𝑖=0

𝑚𝑖𝑟𝑖. (1)

And the base’s mass center is

𝑟0 = 𝑟𝑔 −

(𝑚1 + ⋅ ⋅ ⋅ + 𝑚𝑛) (𝑏0 + 𝑎1)

𝑀

− ⋅ ⋅ ⋅ −

𝑚𝑛 (𝑏𝑛−1 + 𝑎𝑛)

𝑀

.

(2)

The position of the end-effector is

𝑝𝑒 = 𝑟𝑔 +
̂
𝑏0 +

𝑛

∑

𝑖=1

(𝑎𝑖 +
̂
𝑏𝑖) , (3)

where 𝑎𝑖 = ((∑

𝑖

𝑘=0
𝑚𝑘)/𝑀)𝑎𝑖, ̂𝑏𝑖 = ((∑

𝑖

𝑘=0
𝑚𝑘)/𝑀)𝑏𝑖, 𝑖 =

1, . . . 𝑛. Vectors 𝑎𝑖 and ̂𝑏𝑖 are called “virtual link vectors,”
which are parallel to vectors 𝑎𝑖 and 𝑏𝑖, respectively.

Differentiating two sides of (3), (4) can be obtained as
follows:

V𝑒 = V𝑔 +
̇
̂
𝑏0 +

𝑛

∑

𝑖=1

(
̇
�̂�𝑖 +

̇
̂
𝑏𝑖) , (4)

where V𝑔 represents the linear velocity of the system’s mass
center. Assuming that the initial momentum is zero, V𝑔 =
0 can be obtained due to the holonomic constraint.Moreover,

̇
�̂�𝑖 =

𝑑 (𝑎𝑖)

𝑑𝑡

=

𝑑 (A𝑖
𝑖
𝑎

𝑖
)

𝑑𝑡

=

𝑑 (A𝑖)
𝑑𝑡

(

𝑖
𝑎

𝑖
)

= (𝜔𝑖 × A𝑖) (
𝑖
𝑎

𝑖
) = 𝜔𝑖 × 𝑎𝑖.

(5)

In the same way,

̇
̂
𝑏𝑖 = 𝜔𝑖 ×

̂
𝑏𝑖,

(6)

where A𝑖 is the rotation matrix from frame 𝑖 to the inertial
frame and 𝜔𝑖 is the angular velocity of 𝑖th body, and combin-
ing (4), (5), and (6),

V𝑒 = 𝜔0 × ̂𝑏0 +
𝑛

∑

𝑖=1

𝜔𝑖 × (𝑎𝑖 +
̂
𝑏𝑖) . (7)

Meanwhile, the angular velocity of link 𝑖 is

𝜔𝑖 = 𝜔0 +

𝑖

∑

𝑘=1

𝑘𝑘
̇
𝜃𝑘. (8)

Substituting (8) into (7),

V𝑒 = −p̃𝑔𝑒𝜔0 +
𝑛

∑

𝑘=1

[𝑘𝑘 × (𝑝𝑒 − 𝑝𝑘)]
̇
𝜃𝑘, (9)

where p̃𝑔𝑒 is the antisymmetric matrix of vector (𝑝𝑒 − 𝑟𝑔).
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Figure 1: A general model of free-floating space robot. Σ𝐼, Σ𝐸: the inertia frame and the end-effector frame, respectively. Σ𝑖 (𝑖 = 1, . . . , 𝑛):
the frame of link 𝑖. 𝐶𝑖 (𝑖 = 1, . . . , 𝑛): the mass center position of link 𝑖. 𝐽𝑖 (𝑖 = 1, . . . , 𝑛): the position of joint 𝑖. 𝑎𝑖, 𝑏𝑖 (𝑖 = 1, . . . , 𝑛): the position
vectors from 𝐽𝑖 to 𝐶𝑖 and 𝐶𝑖 to 𝐽𝑖+1, respectively. 𝑟𝑖 (𝑖 = 1, . . . , 𝑛): the position vector of 𝐶𝑖. 𝑟𝑔: the position vector of the system’s mass center.
𝑝𝑖 (𝑖 = 1, . . . , 𝑛): the position vector of 𝐽𝑖. 𝑝𝑒: the position vector of the end-effector. Θ: the joint angle vector. 𝑚𝑖 (𝑖 = 1, . . . , 𝑛): the mass of
link 𝑖.𝑀: the total mass of the system. E3: 3 × 3 identity matrix.

Combining (8) and (9), the following relationship can be
obtained:

[

V𝑒
𝜔𝑒

] =
̂J𝑏𝜔0 + ̂J𝑚 ̇Θ, (10)

where

̂J𝑏 = [
−p̃𝑔𝑒
E3
] ∈ R6×3,

̂J𝑚 = [
𝑧1 × (𝑝𝑒 − 𝑝1) ⋅ ⋅ ⋅ 𝑧𝑛 × (𝑝𝑒 − 𝑝𝑛)

𝑧1 ⋅ ⋅ ⋅ 𝑧𝑛

] ∈ R6×𝑛,

(11)

and 𝑧𝑖 is the unit vector of 𝑧-axis of coordinate system 𝑖.
When a space robot is in free-flying mode, its attitude is

kept unchanged; namely, 𝜔0 = [0 0 0]
T; thus

[

V𝑒
𝜔𝑒

] =
̂J𝑚 ̇Θ. (12)

Thereby, the singularity analysis of a free-flying space
robot is only related to ̂J𝑚, which only contains the virtual
link parameters.

When a space robot is in free-floating manipulator, the
base angular velocity can be measured by its carried sensor;
namely, 𝜔0 is a known term, so

[

V𝑒
𝜔𝑒

] −
̂J𝑏𝜔0 = ̂J𝑚 ̇Θ, (13)

[

V̂𝑒
�̂�𝑒

] =
̂J𝑚 ̇Θ, (14)

where [ V̂
𝑒

�̂�
𝑒

] = [

V
𝑒

𝜔
𝑒

] −
̂J𝑏𝜔0.

In the same way, the singularity analysis of a free-floating
space robot is also only related to ̂J𝑚, which only contains the
virtual link parameters.

According to the derivation above, it can be found that the
singularity problem of space robots can be transferred to that
of a ground one through the “virtual manipulator” method.

3. Simplifying the Jacobian Matrix

For a 7-dof space robot with the structure of Canadarm2,
its axis 3, axis 4, and axis 5 are parallel to each other. Link-
pole coordinate system based on the method of Denavit-
Hartenberg is established in Figure 2. The relevant parame-
ters of the space robotic system are given in Table 1, and the
corresponding parameters of virtual manipulator are shown
in Table 2.
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Figure 2: DH coordinate system of the studied robot.

Table 1: The relevant parameters of the space robotic system.

Base Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
Mass/kg 𝑚0 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7

𝑎𝑖/m 𝑎/2 𝑐/2 𝑑/2 𝑒/2 𝑓/2 ℎ/2 𝑘/2

𝑏𝑖/m 𝑙 𝑎/2 𝑐/2 𝑑/2 𝑒/2 𝑓/2 ℎ/2 𝑘/2

Table 2: The corresponding parameters of virtual manipulator of the space robotic system.

Base Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
Mass/kg 𝑚0 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7

𝑎𝑖/m
(𝑚0 + 𝑚1)𝑎

2𝑀

∑

2

𝑘=0
𝑚𝑘𝑐

2𝑀

∑

3

𝑘=0
𝑚𝑘𝑑

2𝑀

∑

4

𝑘=0
𝑚𝑘𝑒

2𝑀

∑

5

𝑘=0
𝑚𝑘𝑓

2𝑀

∑

6

𝑘=0
𝑚𝑘ℎ

2𝑀

∑

7

𝑘=0
𝑚𝑘𝑘

2𝑀

̂
𝑏𝑖/m

𝑚0𝑙

𝑀

(𝑚0 + 𝑚1)𝑎

2𝑀

∑

2

𝑘=0
𝑚𝑘𝑐

2𝑀

∑

3

𝑘=0
𝑚𝑘𝑑

2𝑀

∑

4

𝑘=0
𝑚𝑘𝑒

2𝑀

∑

5

𝑘=0
𝑚𝑘𝑓

2𝑀

∑

6

𝑘=0
𝑚𝑘ℎ

2𝑀

∑

7

𝑘=0
𝑚𝑘𝑘

2𝑀

The Jacobian matrix of the studied robot is very com-
plicated in inertial coordinate system, making it very
tough to analyze the singularity characteristics using matrix
̂J𝑚 directly; therefore, it is necessary to simplify the analytical
form of ̂J𝑚. Usually, the Jacobian matrix can be simplified
greatly by choosing an appropriate reference system and
a proper reference point of the end-effector [8, 10]. For

the robot configuration studied in this paper, the fifth
joint coordinate system Σ4 in Figure 2 is chosen as the
reference system Σref and select the intersection formed by
the enlarged end-effector and the origin of Σref as the end-
effector reference point. And the simplified Jacobian matrix
can be obtained as follows:

̂Jrefref =

[

[

[

[

[

[

[

[

[

[

[

𝐶2 (𝑎𝐶345 + 𝑒𝑆5 +
̂
𝑑𝑆45) − (𝑐 +

̂
𝑓) 𝑆2𝑆345 − (𝑐 +

̂
𝑓)𝐶345 𝑒𝑆5 +

̂
𝑑𝑆45 𝑒𝑆5 0 0 −

̂
ℎ𝐶6

− (𝑐 +
̂
𝑓) 𝑆2𝐶345 + 𝐶2 (−𝑎𝑆345 + 𝑒𝐶5 +

̂
𝑑𝐶45) (𝑐 +

̂
𝑓) 𝑆345 𝑒𝐶5 +

̂
𝑑𝐶45 𝑒𝐶5 0 0 0

−𝑆2 (𝑎 −
̂
𝑑𝑆3 − 𝑒𝑆34)

̂
𝑑𝐶3 + 𝑒𝐶34 0 0 0 0 −

̂
ℎ𝑆6

𝐶345𝑆2 −𝑆345 0 0 0 0 −𝑆6

−𝑆2𝑆345 −𝐶345 0 0 0 −1 0

𝐶2 0 1 1 1 0 𝐶6

]

]

]

]

]

]

]

]

]

]

]

, (15)
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where 𝐶𝑖, 𝑆𝑖, 𝐶𝑖𝑗, 𝑆𝑖𝑗, 𝐶𝑖𝑗𝑘, and 𝑆𝑖𝑗𝑘 represent Cos(𝜃𝑖), Sin(𝜃𝑖),
Cos(𝜃𝑖 + 𝜃𝑗), Sin(𝜃𝑖 + 𝜃𝑗),Cos(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘), and
Sin(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘), respectively. 𝑎 = ((𝑚0 + 𝑚1)𝑎)/𝑀, 𝑐 =
(∑

2

𝑘=0
𝑚𝑘𝑐)/𝑀, ̂𝑑 = (∑3

𝑘=0
𝑚𝑘𝑑)/𝑀, 𝑒 = (∑4

𝑘=0
𝑚𝑘𝑒)/𝑀, ̂𝑓 =

(∑

5

𝑘=0
𝑚𝑘𝑓)/𝑀, ̂ℎ = (∑

6

𝑘=0
𝑚𝑘ℎ)/𝑀, and ̂𝑘 = (∑

7

𝑘=0
𝑚𝑘𝑘)/

𝑀.
In the following, the singular consistency between

̂Jrefref and ̂J𝑚 is proved in detail. With respect to the reference
frame, the actual end point vector 𝑝ref

𝑒
and the end reference

point vector 𝑝refref have the following relationship (superscript
“ref ” means vectors described in reference system):

𝑝

ref
𝑒
= 𝑝

ref
ref + 𝑝

ref
𝑒ref
, (16)

where 𝑝ref
𝑒ref

is the vector from the end reference point to the
actual end point.

On this basis, the relationship between the end reference
point velocity Vrefref and actual end point velocity Vref

𝑒
can be

expressed as

Vref
𝑒
= Vrefref + 𝜔

ref
ref × 𝑝

ref
𝑒ref
= Vrefref − p̃

ref
𝑒ref
⋅ 𝜔

ref
ref , (17)

where 𝜔ref
ref is the angular velocity of the end reference point.

Since the end reference point and the actual end point
attach to the same rigid body, their angular velocities are the
same:

𝜔

ref
ref = 𝜔

ref
𝑒
. (18)

Combining (17) with (18), the actual end point velocity is

�̇�

ref
𝑒
= [

Vref
𝑒

𝜔

ref
𝑒

] = [

E3 −p̃ref𝑒ref
O3 E3

][

Vrefref
𝜔

ref
ref
] = Jref
𝑒ref
⋅ �̇�

ref
ref . (19)

Combining (12) with (19), the relationship between the
original Jacobian matrix ̂J𝑚 and the simplified Jacobian
matrix ̂Jrefref can be represented as

̂J𝑚 = Jref ⋅ ̂J
ref
𝑚
= Jref ⋅ J

ref
𝑒ref
⋅
̂
𝐽

ref
ref , (20)

where Jref = [

Rref O
3

O
3
Rref
], Rref is the rotation matrix from

Σref to Σ𝐼, and ̂Jref𝑚 is the Jacobian matrix expressed in ref-
erence system. Because both the determinant values of Jref
and Jref
𝑒ref

are 1, the singularity of ̂J𝑚 is equivalent to that of
̂Jrefref. The simplification will provide the foundation for robot
singularity analysis in the following section.

4. Singularity Analysis

On the basis of the Jacobian matrix simplification, it can be
found that a 3 × 3 zero matrix exists in ̂Jrefref. The zero matrix
resulted from the structure with three consecutive parallel
axes.

4.1. The Characteristics of the Structure of Canadarm2. For
the structure of Canadarm2, which has three consecutive

parallel axes, the orientations of the joint coordinate axes cor-
responding to three consecutive parallel axes are consistent.
Without any loss of generality, take the structure of axis 3,
axis 4, and axis 5 parallel to each other as an example; the
orientations of coordinate axes 𝑧2, 𝑧3 , and 𝑧4 are the same
as shown in Figure 2. Since reference system Σref and joint
coordinate system Σ4 coincide with each other, the vector of
axes 𝑧2, 𝑧3 , and 𝑧4 can be represented as {0, 0, 1}T in Σref.
Generally speaking, the first three rows of ̂Jrefref are called
linear velocity Jacobian matrix, and the last three rows
are called angular velocity Jacobian matrix. Therefore,
the angular velocity Jacobian submatrix corresponding to
the three consecutive parallel axes can be obtained as
follows:

J𝜔
345
=
[

[

0 0 0

0 0 0

1 1 1

]

]

. (21)

As for the linear velocity Jacobian submatrix correspond-
ing to the three consecutive parallel axes, vector (𝑝𝑒 − 𝑝𝑖) in
(10) needs to be replaced by (𝑝refref − 𝑝

ref
𝑖
). Both the vectors

(𝑝

ref
ref − 𝑝

ref
2
), (𝑝

ref
ref − 𝑝

ref
3
) are in the 𝑋𝑂𝑌 plane of Σref, so

there are no components in 𝑧-axis direction. Then assume
that (𝑝refref − 𝑝

ref
2
) = {𝑎𝑥, 𝑎𝑦, 0}

T, (𝑝refref − 𝑝
ref
3
) = {𝑏𝑥, 𝑏𝑦, 0}

T, and
(𝑝

ref
ref − 𝑝

ref
4
) = {0, 0, 0}

T are obvious. Meanwhile, considering
the expression 𝑧ref

2
= 𝑧

ref
3
= 𝑧

ref
4
= {0, 0, 1}

T, the linear velocity
Jacobian submatrix corresponding to the three consecutive
parallel axes is as follows:

JV
345
=
[

[

−𝑎𝑦 −𝑏𝑦 0

𝑎𝑥 𝑏𝑥 0

0 0 0

]

]

. (22)

Thus, by merging (21), (22) and (23) can be constructed:

J345 =
[

[

[

−𝑎𝑦 𝑎𝑥

−𝑏𝑦 𝑏𝑥

0 0

0 0 0

0 0 0

0 0 0

1

1

1

]

]

]

T

. (23)

Through the derivation above, it can safely draw the
conclusion that a 3 × 3 zero matrix exists in the simpli-
fied Jacobian matrix of any robot with the structure of
Canadarm2.

4.2. The Reconstruction of Jacobian Matrix. The charac-
teristics of the structure of Canadarm2 can be used to
simplify the singularity analysis. In order to decompose
the Jacobian matrix to simplify the singularity analysis,
matrix ̂Jrefref is reconstructed according to a novel stan-
dard, whose basic idea is to put the 3 × 3 zero matrix
in the corner. And the new Jacobian matrix is shown as
follows:
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̂Jref


ref =

[

[

[

[

[

[

[

[

[

[

[

𝐶2 0 𝐶6 0 1 1 1

𝐶2 (𝑎𝐶345 + 𝑒𝑆5 +
̂
𝑑𝑆45) − (𝑐 +

̂
𝑓) 𝑆2𝑆345 − (𝑐 +

̂
𝑓)𝐶345 −

̂
ℎ𝐶6 0 𝑒𝑆5 +

̂
𝑑𝑆45 𝑒𝑆5 0

− (𝑐 +
̂
𝑓) 𝑆2𝐶345 + 𝐶2 (−𝑎𝑆345 + 𝑒𝐶5 +

̂
𝑑𝐶45) (𝑐 +

̂
𝑓) 𝑆345 0 0 𝑒𝐶5 +

̂
𝑑𝐶45 𝑒𝐶5 0

−𝑆2 (𝑎 −
̂
𝑑𝑆3 − 𝑒𝑆34)

̂
𝑑𝐶3 + 𝑒𝐶34 −

̂
ℎ𝑆6 0 0 0 0

𝐶345𝑆2 −𝑆345 −𝑆6 0 0 0 0

−𝑆2𝑆345 −𝐶345 0 −1 0 0 0

]

]

]

]

]

]

]

]

]

]

]

. (24)

Since the elementary transformation of matrix does not
change its singularity, the singularity characteristic of the
matrix ̂Jref



ref will be analyzed instead in the following discus-
sion. According to (12) and (14), the relationship between
the velocity of the end reference point and the joint angular
velocity can be described as

�̇�

ref
ref =

̂Jref


ref ⋅
̇
𝜃


,

(25)

where, �̇�ref


ref = {�̂�
ref
𝑧
, 𝜐

ref
𝑥
, 𝜐

ref
𝑦
, 𝜐

ref
𝑧
, �̂�

ref
𝑥
, �̂�

ref
𝑦
}

Tand ̇
𝜃


= {

̇
𝜃1,

̇
𝜃2,

̇
𝜃7,

̇
𝜃6,

̇
𝜃3,

̇
𝜃4,

̇
𝜃5}

T.

4.3. Singularity Analysis. On the basis of matrix reconstruc-
tion, ̂Jref



ref can be decomposed to facilitate the singularity
analysis. Considering (24) having a 3 × 3 zero matrix in the
right bottom corner, the decomposed matrix can be written
as

̂Jref


ref = [
J11 J12
J21 O3

] . (26)

And the joint angular velocities can be obtained accord-
ing to (26):

̇
𝜃



(5,6,7)
= (J12)

−1
[�̇�

ref
ref(1,2,3) − 𝐽11

̇
𝜃



(1,2,3,4)
] ,

̇
𝜃



(1,2,3,4)
= (J21)

†
�̇�

ref
ref(4,5,6).

(27)

Now we know that the robot singularity is only relevant
to matrixes J12 and J21. In this way, singularity analysis of
redundant space robots with the structure of Canadarm2
will be simplified greatly. Consequently, in the following,
the singularity conditions of matrixes J12 and J21 will be
discussed.

4.3.1.The Singularity Condition ofMatrix J12. Becausematrix
J12 is a 3 × 3 square matrix, the singularity condition can be
directly obtained through its determinant value ̂𝑑𝑒𝑆4. Hence,
Cond1: 𝑆4 = 0 is the singularity condition of J12.

Substituting 𝑆4 = 0 into matrix ̂Jref


ref , we can get the base
solution vector.Then, the singular direction corresponding to
the singularity condition is

𝑈

ref
𝑠1
= {0, −𝐶5𝑆6, 𝑆5𝑆6, 𝑁𝑎, −

̂
ℎ𝑁𝑎 +

̂
ℎ𝐶5𝐶6, 0}

T
, (28)

where𝑁𝑎 = (−(𝑐+ ̂𝑓)𝐶34𝑆6+̂ℎ𝑆345𝐶5𝐶6)/(̂ℎ𝑆345+𝑒𝐶34+ ̂𝑑𝐶3).

4.3.2. The Singularity Condition of Matrix J21. Since J21 ∈
R3×4 is not square and the determinant value expression of
matrix J21 ⋅ J𝑇21 is very complicated, the singularity condition
of matrix J21 will be analyzed by using its four 3 × 3
submatrixes [16]. All the four submatrix determinant values
are listed in the following:

Det (𝐽21(1,2,3)) = 𝑆2𝑆6 (̂ℎ + 𝑎𝐶345 + 𝑒𝑆5 + ̂𝑑𝑆45) ,

Det (𝐽21(1,2,4)) = 𝑆2 (𝑒𝐶5 + ̂𝑑𝐶45 − 𝑎𝑆345) ,

Det (𝐽21(1,3,4)) = − 𝑆2𝑆6 (𝑎 +
̂
ℎ𝐶345 −

̂
𝑑𝑆3 − 𝑒𝑆34) ,

Det (𝐽21(2,3,4)) = 𝑆6 ( ̂𝑑𝐶3 + 𝑒𝐶34 + ̂ℎ𝑆345) ,

(29)

where J21(𝑖,𝑗,𝑘) represents the matrix composed of column
𝑖, 𝑗, 𝑘 of J21.

Set each determinant value of (29) to zero simultaneously,
and the singularity conditions are

Cond2: 𝑆2 = 0, 𝑆6 = 0,

Cond3: 𝑆2 = 0, ̂
𝑑𝐶3 + 𝑒𝐶34 +

̂
ℎ𝑆345 = 0,

Cond4: 𝑆6 = 0, 𝑒𝐶5 +
̂
𝑑𝐶45 − 𝑎𝑆345 = 0,

Cond5: ̂𝑑𝐶3 + 𝑒𝐶34 + ̂ℎ𝑆345 = 0,

𝑎 +
̂
ℎ𝐶345 −

̂
𝑑𝑆3 − 𝑒𝑆34 = 0.

(30)

All the conditions except Cond5 can be easily obtained.
Considering the multiplication factors except 𝑆2 and 𝑆6 in
(29), the following relationships can be found:

̂
ℎ + 𝑎𝐶345 + 𝑒𝑆5 +

̂
𝑑𝑆45 = 𝑆345 (

̂
𝑑𝐶3 + 𝑒𝐶34 +

̂
ℎ𝑆345)

+𝐶345 (𝑎 +
̂
ℎ𝐶345 −

̂
𝑑𝑆3 − 𝑒𝑆34) ,

𝑒𝐶5 +
̂
𝑑𝐶45 − 𝑎𝑆345 = 𝐶345 (

̂
𝑑𝐶3 + 𝑒𝐶34 +

̂
ℎ𝑆345)

− 𝑆345 (𝑎 +
̂
ℎ𝐶345 −

̂
𝑑𝑆3 − 𝑒𝑆34) .

(31)

Clearly, the linear combination condition of ̂ℎ + 𝑎𝐶345 +
𝑒𝑆5 +

̂
𝑑𝑆45 = 0 and 𝑒𝐶5 + ̂𝑑𝐶45 − 𝑎𝑆345 = 0 is equivalent to the

condition of ̂𝑑𝐶3+𝑒𝐶34+̂ℎ𝑆345 = 0 and 𝑎+̂ℎ𝐶345− ̂𝑑𝑆3−𝑒𝑆34 =
0. Thus, Cond5 can be obtained.
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Table 3: The summary of examples.

Number Singularity condition Joint angle Det(̂J𝑚 ⋅ (̂J𝑚)
T
)

Cond1
𝑆4 = 0

{25

∘
, 0

∘
, 90

∘
, 0

∘
, 45

∘
, 90

∘
, 0

∘
} −1.06608 × 10−14

Cond2
𝑆2 =, 𝑆6 = 0

{25

∘
, 0

∘
, 34

∘
, 30

∘
, 45

∘
, 0

∘
, 0

∘
} −6.80933 × 10−14

Cond3
𝑆2 = 0,

̂
𝑑𝐶3 + 𝑒𝐶34 +

̂
ℎ𝑆345 = 0

{25

∘
, 0

∘
, 20

∘
, 140

∘
, −139.1

∘
, 45

∘
, 0

∘
} 2.43766 × 10−30

Cond4
𝑆6 = 0, 𝑒𝐶5 +

̂
𝑑𝐶45 − 𝑎𝑆345 = 0

{25

∘
, 10

∘
, −132.9

∘
, 140

∘
, 20

∘
, 0

∘
, 0

∘
} 2.97193 × 10−12

Cond5
̂
𝑑𝐶3 + 𝑒𝐶34 +

̂
ℎ𝑆345 = 0,

𝑎 +
̂
ℎ𝐶345 −

̂
𝑑𝑆3 − 𝑒𝑆34 = 0

{25

∘
, 10

∘
, 24

∘
, 180

∘
, −44.9

∘
, 45

∘
, 0

∘
} −1.60952 × 10−16

Z
X

Y Σref

Us5 �

Figure 3: The singular configuration corresponding to Cond1.

Z

X

Y

ΣrefUs1 � Us1 𝜔

Figure 4: The singular configuration corresponding to Cond2.

Substituting the four singularity conditions above into
matrix ̂Jref



ref , respectively, we can get the base solution vectors.
Then, the singular direction corresponding to each singular-
ity condition is listed as

𝑈

ref
𝑠1
= {0, 0, 0, 𝑆345,

̂
𝑑𝐶3 + 𝑒𝐶34, 0}

T
,

𝑈

ref
𝑠2
= {0, 0, 0, 1, −

̂
ℎ, 0}

T
,

𝑈

ref
𝑠3
= {0, 0, 0, 𝑆345,

̂
𝑑𝐶3 + 𝑒𝐶34, 0}

T
,

𝑈

ref
𝑠4
= {0, 0, 0, 1, −

̂
ℎ, 0}

T
.

(32)

5. Simulation Results

In order to verify the effectiveness of the singularity analysis
method proposed in this paper, the following verifications are

Z

X
Y Σref

Us2 �

Us2 𝜔

Figure 5: The singular configuration corresponding to Cond3.

carried out. Assign the robot parameters in Figure 2: 𝑎 = 𝑐 =
𝑓 = ℎ = 𝑘 = 𝑙 = 0.5m, 𝑑 = 𝑒 = 2.5m, 𝑚0 = 1000 kg, 𝑚1 =
𝑚2 = 𝑚5 = 𝑚6 = 𝑚7 = 30 kg, and 𝑚3 = 𝑚4 = 100 kg. The
corresponding parameters of virtual manipulator are 𝑎 =

0.38m, 𝑐 = 0.39m, ̂𝑑 = 2.15m, 𝑒 = 2.33m, ̂𝑓 = 0.48m, ̂ℎ =
0.49m, and ̂𝑘 = 0.5m. List five groups of robot joint angles
satisfying the five singularity conditions above, respectively,
and solve the corresponding determinant values of ̂J𝑚 ⋅ (̂J𝑚)

T.
Then the relative results are shown in Table 3.

From Table 3, it can be found that all the determinant
values of ̂J𝑚 ⋅ (̂J𝑚)

T approach to zero. Thus, it can be judged
that robot singularity happens.

According to the analytical expressions of singular direc-
tions given above, the singular configuration and singular
direction corresponding to each singularity condition are
shown in Figures 3, 4, 5, 6, and 7.

In the process of singularity analysis, because the sim-
plified Jacobian matrix shows the relationship between the
velocity of the end reference point and joint angular velocities
in reference system Σref, the singular direction given in
Figures 3 to 7 describes the degradation direction of the end
reference point expressed in reference system Σref.
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Z

X
Y Σref

Us3 �Us3 𝜔

Figure 6: The singular configuration corresponding to Cond4.

Z

X
Y

Σref

Us4 �

Us4 𝜔

Figure 7: The singular configuration corresponding to Cond5.

The simulation results verify the effectiveness of the
proposed method of singularity analysis for redundant space
robots with the structure of Canadarm2.

6. Summary and Conclusions

A novel singularity analysis method for redundant space
robots with the structure of Canadarm2 is proposed in the
paper. Different from ground robots, the singularity analysis
of space robots needs to consider the dynamic parameters
because of themoving base.Therefore, the “virtualmanipula-
tor” method is employed to transfer the singularity problem
to that of a ground one. As the generalized Jacobian matrix
is very complex, it is greatly simplified by choosing a proper
reference system and an end reference point and the equiva-
lence of singularity is analyzed in detail. Then on the basis of
novel reconstruction, the simplified Jacobian matrix can be
decomposed to reduce the complexity of singularity analysis.
Finally, through the analysis of the submatrixes, singularity

conditions and singular directions of the redundant space
robot with the structure of Canadarm2 are obtained. The
method proposed in the paper is effective and needs less
calculation.
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