
Research Article
Fundamental Solutions to Time-Fractional Advection Diffusion
Equation in a Case of Two Space Variables

Y. Z. Povstenko

Institute of Mathematics and Computer Science, Jan Długosz University in Częstochowa, Waszyngtona 4/8, 42-200 Częstochowa,
Poland

Correspondence should be addressed to Y. Z. Povstenko; j.povstenko@ajd.czest.pl

Received 28 December 2013; Accepted 6 February 2014; Published 11 March 2014

Academic Editor: J. A. Tenreiro Machado

Copyright © 2014 Y. Z. Povstenko. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The fundamental solutions to time-fractional advection diffusion equation in a plane and a half-plane are obtained using the Laplace
integral transform with respect to time 𝑡 and the Fourier transforms with respect to the space coordinates 𝑥 and 𝑦. The Cauchy,
source, and Dirichlet problems are investigated.The solutions are expressed in terms of integrals of Bessel functions combined with
Mittag-Leffler functions. Numerical results are illustrated graphically.

1. Introduction

The classical advection diffusion equation

𝜕𝑐

𝜕𝑡
= 𝑎Δ𝑐 − k ⋅ ∇𝑐, (1)

where 𝑎 is the diffusivity coefficient, k is the velocity vector,
has several physical interpretations in terms of Brownian
motion, diffusion or heat transportwith external force orwith
additional velocity field, diffusion of charge in the electrical
field on comb structure, transport processes in porousmedia,
groundwater hydrology, and so forth [1–7].

In the case of one spatial coordinate 𝑥, (1) has the
following form:

𝜕𝑐

𝜕𝑡
= 𝑎

𝜕
2
𝑐

𝜕𝑥
2
− V

𝜕𝑐

𝜕𝑥
. (2)

Investigation of different physical phenomena in media
with complex internal structure has led to considering dif-
ferential equations with derivatives of fractional order. The
space-fractional [8–19], time-fractional [20–31], and space-
time-fractional [32–39] generalizations of the advection dif-
fusion equation were studied by many authors. In the major-
ity of the abovementioned papers, the fractional generaliza-
tions of one-dimensional equation (2)were considered. In the
papers dealing with space-fractional or space-time-fractional

equations, one term with space derivative was substituted
by the corresponding term with the fractional derivative
[8, 9, 11–19, 33, 39] or both terms with space derivatives
had fractional order [32, 35–38]. Several numerical schemes
were proposed: the implicit difference method based on
the shifted Grünwald-Letnikov approximation [14, 37], the
explicit difference scheme [37], transformation of fractional
differential equation into a system of ordinary differential
equations and using the method of lines [15], the random
walk algorithms [16, 17], the spectral regularization method
[28], the Crank-Nicholson difference scheme [29], Adomian’s
decomposition [26], a spatial and temporal discretization
[30, 39], the fractional variational iteration method [31], and
the homotopy perturbation method [27, 38].

In [24, 25], the analytical solution to one-dimensional
time-fractional advection diffusion equation was obtained in
terms of integrals of the𝐻-function.

In this paper, we study the fundamental solutions to time-
fractional advection diffusion equation

𝜕
𝛼
𝑐

𝜕𝑡
𝛼
= 𝑎 Δ𝑐 − k ⋅ ∇𝑐 (3)

in a plane and a half-plane. The Laplace transform with
respect to time and the Fourier transform with respect to
the space coordinates are used. The Cauchy and the source
problems in a plane and theDirichlet problem for a half-plane
are solved. The analytical solutions are expressed in terms of
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integrals of the Mittag-Leffler functions. Numerical results
are illustrated graphically.

In (3) we use the Caputo fractional derivative [40–42]:

d𝛼𝑐 (𝑡)
d𝑡𝛼

=

{{{{{

{{{{{

{

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑛−𝛼−1 d𝑛𝑐 (𝜏)

d𝜏𝑛
d𝜏,

𝑛 − 1 < 𝛼 < 𝑛,

d𝑛𝑐 (𝑡)
d𝑡𝑛

, 𝛼 = 𝑛,

(4)

where Γ(𝛼) is the gamma function. For its Laplace transform
rule, the Caputo fractional derivative requires the knowledge
of the initial values of the function 𝑐(𝑡) and its integer
derivatives of order 𝑘 = 1, 2, . . . , 𝑛 − 1:

L{
d𝛼𝑐 (𝑡)
d𝑡𝛼

} = 𝑠
𝛼
L {𝑐 (𝑡)} −

𝑛−1

∑

𝑘=0

𝑐
(𝑘)

(0
+
) 𝑠
𝛼−1−𝑘

,

𝑛 − 1 < 𝛼 < 𝑛,

(5)

where 𝑠 is the transform variable.

2. The Fundamental Solution to the Cauchy
Problem

Consider the time-fractional advection diffusion equation

𝜕
𝛼
𝑐

𝜕𝑡
𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥
2
+
𝜕
2
𝑐

𝜕𝑦
2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦
,

−∞ < 𝑥 < ∞, −∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(6)

under initial condition

𝑡 = 0 : 𝑐 = 𝑝
0
𝛿 (𝑥) 𝛿 (𝑦) . (7)

In (7) we have introduced the constantmultiplier𝑝
0
to obtain

the nondimensional quantity 𝑐 (see (23)) displayed in Figures.
The zero conditions at infinity are also imposed:

lim
𝑥→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0. (8)

Introducing the new sought function

𝑐 (𝑥, 𝑦, 𝑡) = exp[
V (𝑥 + 𝑦)

2𝑎
] 𝑢 (𝑥, 𝑦, 𝑡) (9)

and taking into account that for the Dirac delta function,
𝑓(𝑥)𝛿(𝑥) = 𝑓(0)𝛿(𝑥), the initial-value problem (6)–(8) is
reduced to the following ones:

𝜕
𝛼
𝑢

𝜕𝑡
𝛼
= 𝑎(

𝜕
2
𝑢

𝜕𝑥
2
+
𝜕
2
𝑢

𝜕𝑦
2
) −

V2

2𝑎
𝑢, (10)

𝑡 = 0 : 𝑢 = 𝑝
0
𝛿 (𝑥) 𝛿 (𝑦) , (11)

lim
𝑥→±∞

𝑢 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑢 (𝑥, 𝑦, 𝑡) = 0. (12)

Next, we use the Laplace transform with respect to time
𝑡 (designated by the asterisk) and the double exponential
Fourier transformwith respect to the space coordinates𝑥 and
𝑦 (marked by the tilde). In the transform domain, we get

̃̃𝑢
∗

=
𝑝
0

2𝜋

𝑠
𝛼−1

𝑠
𝛼
+ 𝑎 (𝜉

2
+ 𝜂
2
) + V2/2𝑎

. (13)

Here, 𝑠 is the Laplace transform variable and 𝜉 and 𝜂 are the
Fourier transform variables.

Inversion of the integral transforms gives

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑝
0

4𝜋
2
∫

∞

−∞

∫

∞

−∞

𝐸
𝛼
{−[𝑎 (𝜉

2
+ 𝜂
2
) +

V2

2𝑎
] 𝑡
𝛼
}

× cos (𝑥𝜉) cos (𝑦𝜂) d𝜉 d𝜂,

(14)

where the formula [40–42]

L
−1
{

𝑠
𝛼−1

𝑠
𝛼
+ 𝑏

} = 𝐸
𝛼
(−𝑏𝑡
𝛼
) (15)

has been used with𝐸
𝛼
(𝑧) being theMittag-Leffler function in

one parameter 𝛼:

𝐸
𝛼
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 1)
, 𝛼 > 0, 𝑧 ∈ 𝐶. (16)

Solution (14) is not convenient for numerical calculations.
To obtain the solution amenable to numerical treatment, we
introduce the polar coordinates in the (𝜉, 𝜂)-plane:

𝜉 = 𝜌 cos 𝜃, 𝜂 = 𝜌 sin 𝜃. (17)

Hence,

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑝
0

4𝜋
2
∫

∞

0

∫

2𝜋

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) 𝜌 d𝜌 d𝜃.
(18)

Due to periodic properties of the integrand

∫

2𝜋

0

cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) d𝜃

= 4∫

𝜋/2

0

cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) d𝜃.

(19)

Changing variable 𝑤 = sin 𝜃 and taking into account the
following integral [43]:

∫

1

0

cos (𝑝 √1 − 𝑥
2
)

√1 − 𝑥
2

cos (𝑞𝑥) d𝑥

=
𝜋

2
𝐽
0
(√𝑝
2
+ 𝑞
2
) ,

(20)
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Figure 1: Dependence of the fundamental solution to the Cauchy
problem on distance (the classical advection diffusion equation, 𝛼 =

1).

where 𝐽
𝑛
(𝑧) is the Bessel function of the order 𝑛, we arrive at

𝑢 (𝑥, 𝑦, 𝑡) =
𝑝
0

2𝜋
∫

∞

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥
2
+ 𝑦
2
𝜌) 𝜌 d𝜌

(21)

and, returning to the quantity 𝑐(𝑥, 𝑦, 𝑡) according to (9), we
get

𝑐 (𝑥, 𝑦, 𝑡) =
𝑝
0

2𝜋
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥
2
+ 𝑦
2
𝜌) 𝜌 d𝜌.

(22)

The particular case of solution (22) corresponding to the
time-fractional diffusion equation (V = 0) was considered in
[44, 45].

The results of numerical computations for 𝑦 = 0 are
presented in Figure 1 for 𝛼 = 1 and in Figure 2 for 𝛼 = 0.5.

The following nondimensional quantities:

𝑐 =
𝑎𝑡
𝛼

𝑝
0

𝑐, V =
𝑡
𝛼/2

√𝑎
V (23)

and the nondimensional coordinates (the similarity vari-
ables)

𝑥 =
𝑥

√𝑎𝑡
𝛼/2

, 𝑦 =
𝑦

√𝑎𝑡
𝛼/2

(24)

have been introduced.
To calculate the Mittag-Leffler function 𝐸

𝛼
(−𝑥) in solu-

tion (22), we applied the algorithm suggested in [46].
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Figure 2: Dependence of the fundamental solution to the Cauchy
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).

3. The Fundamental Solution to the Source
Problem

Consider the time-fractional advection diffusion equation
with the source term

𝜕
𝛼
𝑐

𝜕𝑡
𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥
2
+
𝜕
2
𝑐

𝜕𝑦
2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦

+ 𝑞
0
𝛿 (𝑥) 𝛿 (𝑦) 𝛿 (𝑡) ,

− ∞ < 𝑥 < ∞,

−∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(25)

under zero initial condition,

𝑡 = 0 : 𝑐 = 0 (26)

and conditions (8) at infinity.
The integral transform technique leads to

̃̃𝑢
∗

=
𝑞
0

2𝜋

1

𝑠
𝛼
+ 𝑎 (𝜉

2
+ 𝜂
2
) + V2/2𝑎

, (27)

𝑐 (𝑥, 𝑦, 𝑡) =
𝑞
0
𝑡
𝛼−1

2𝜋
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥
2
+ 𝑦
2
𝜌) 𝜌 d𝜌.

(28)

Here,𝐸
𝛼,𝛽

(𝑧) is the generalizedMittag-Leffler function in two
parameters 𝛼 and 𝛽:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
, 𝛼 > 0, 𝛽 > 0, 𝑧 ∈ 𝐶, (29)
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and the formula [40–42]

L
−1
{

𝑠
𝛼−𝛽

𝑠
𝛼
+ 𝑏

} = 𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝑏𝑡
𝛼
) (30)

for the inverse Laplace transform has been used.
The particular case of solution (28) corresponding to the

time-fractional diffusion equation with V = 0 was considered
in [45, 47]. Solutions (22) and (28) coincide for 𝛼 = 1.

The results of numerical computations for 𝑦 = 0 are
presented in Figure 3 for 𝛼 = 0.5 with

𝑐 =
𝑎𝑡

𝑞
0

𝑐. (31)

4. The Fundamental Solution to the Dirichlet
Problem

In this case the time-fractional advection diffusion equation,

𝜕
𝛼
𝑐

𝜕𝑡
𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥
2
+
𝜕
2
𝑐

𝜕𝑦
2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦
,

0 < 𝑥 < ∞, −∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(32)

is considered under zero initial condition

𝑡 = 0 : 𝑐 = 0 (33)

and the Dirichlet boundary condition

𝑥 = 0: 𝑐 = 𝑔
0
𝛿 (𝑦) 𝛿 (𝑡) . (34)

The zero conditions at infinity are imposed as follows:

lim
𝑥→∞

𝑐 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0. (35)

As above, the new sought function 𝑢 is introduced (see
(9)), and, for (10) in the half-plane 𝑥 > 0, the Laplace
transform with respect to time 𝑡, the exponential Fourier
transform with respect to the spatial coordinate 𝑦, and the
sin-Fourier transform with respect to the spatial coordinate
𝑥 are used. In the transform domain, we get

̃̃𝑢
∗

=
𝑎𝑔
0
𝜉

√2𝜋

1

𝑠
𝛼
+ 𝑎 (𝜉

2
+ 𝜂
2
) + V2/2𝑎

(36)

and, after inversion of the integral transforms,

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎𝑔
0
𝑡
𝛼−1

𝜋
2

∫

∞

−∞

∫

∞

0

𝐸
𝛼,𝛼

{−[𝑎 (𝜉
2
+ 𝜂
2
) +

V2

2𝑎
] 𝑡
𝛼
}

× sin (𝑥𝜉) cos (𝑦𝜂) 𝜉 d𝜉 d𝜂.
(37)
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Figure 3: Dependence of the fundamental solution to the source
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).

Introducing the polar coordinates in the (𝜉, 𝜂)-plane gives

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎𝑔
0
𝑡
𝛼−1

𝜋
2

∫

∞

0

∫

𝜋

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× sin (𝑥𝜌 cos 𝜃)

× cos (𝑦𝜌 sin 𝜃) 𝜌2 cos 𝜃 d𝜌 d𝜃.

(38)

Changing variables𝑤 = sin 𝜃 and taking into account the
following integral [43]:

∫

1

0

sin (𝑝 √1 − 𝑥
2
) cos (𝑞𝑥) d𝑥

=
𝜋

2

𝑝

√𝑝
2
+ 𝑞
2

𝐽
1
(√𝑝
2
+ 𝑞
2
) ,

(39)

we obtain

𝑢 (𝑥, 𝑦, 𝑡) =
𝑎𝑔
0
𝑡
𝛼−1

𝑥

𝜋√𝑥
2
+ 𝑦
2

∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
1
(√𝑥
2
+ 𝑦
2
𝜌) 𝜌
2d𝜌,

(40)

𝑐 (𝑥, 𝑦, 𝑡) =
𝑎𝑔
0
𝑡
𝛼−1

𝑥

𝜋√𝑥
2
+ 𝑦
2

exp[
V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
1
(√𝑥
2
+ 𝑦
2
𝜌) 𝜌
2d𝜌.

(41)

The particular case of solution (41) corresponding to the
time-fractional diffusion equation (V = 0) was considered in
[48].
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Figure 4: Dependence of the fundamental solution to the Dirichlet
problem on distance (the classical advection diffusion equation, 𝛼 =

1).

The results of numerical computations according to
solution (41) for 𝑦 = 0 are presented in Figure 4 for 𝛼 = 1

and in Figure 5 for 𝛼 = 0.5 with

𝑐 =
√𝑎𝑡
1+𝛼/2

𝑔
0

𝑐. (42)

Other nondimensional quantities are the same as in (23) and
(24).

5. Conclusions

We have considered the time-fractional advection diffusion
equation in a plane and in a half-plane. The fundamental
solutions to theCauchy problem and to the source problem in
a plane have been obtained as well as to the Dirichlet problem
in a half-plane. It should be emphasized that the fundamental
solution to the Cauchy problem in the case 0 < 𝛼 < 1 has the
logarithmic singularity at the origin:

𝑐 (𝑥, 𝑦, 𝑡) ∼ −
𝑝
0

2𝜋Γ (1 − 𝛼) 𝑎𝑡
𝛼

exp[
V (𝑥 + 𝑦)

2𝑎
]

× ln(√1 +
V2𝑡𝛼

2𝑎

√𝑥
2
+ 𝑦
2

√𝑎𝑡
𝛼/2

).

(43)

This result is similar to the case of the time-fractional diffu-
sion equation when V = 0 (see [44, 49]). Such a singularity
disappears only for the classical advection diffusion equation
(𝛼 = 1). Due to singularity of the solution at the origin, in
the case of 0 < 𝛼 < 1, drift caused by the quantity V is less
noticeable than in the case of 𝛼 = 1 (compare Figures 1 and
2).
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Figure 5: Dependence of the fundamental solution to the Dirichlet
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).
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Tur, “Lévy anomalous diffusion and fractional Fokker-Planck
equation,” Physica A, vol. 282, no. 1-2, pp. 13–34, 2000.

[11] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert,
“Application of a fractional advection-dispersion equation,”
Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000.

[12] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “The
fractional-order governing equation of Lévy motion,” Water
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