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On the Lifshitz black brane geometry of an Einstein-Maxwell-dilaton gravity, we holographically investigate electric DC
conductivities and the role of impurity in a nonrelativistic Lifshitz mediumwith two different charge carriers, impurity and Lifshitz
matter. The conductivity carried by Lifshitz matter is proportional to the square of temperature, while that carried by impurity
crucially depends on the bulk coupling parameter 𝛾. For 𝛾 < −2, impurity at high temperature can change the electric property of
the Lifshitz medium significantly so that the Lifshitz matter with impurity can show a totally different electric property from the
pure Lifshitz matter.

1. Introduction

TheAdS/CFT correspondence is a very useful and fascinating
tool for understanding the strongly interacting system [1–4].
In the last decade, it has been widely used in studying some
universal properties of Quantum Chromodynamics (QCD)
and condensed matter systems in the strong coupling regime
[5–15].The asymptotic AdS geometry plays an important role
in such investigations because its dual theory is described by
the conformal symmetry. Can we generalize the AdS/CFT
correspondence to the non-AdS geometry? It is an interesting
and also important question in understanding the nonconfor-
mal or nonrelativistic condensed matter systems through the
holographic methods [16–30]. In this paper, we will study the
electric conductivities in the nonrelativistic Lifshitz theory
with two kinds of charge carriers.

Following the gauge/gravity duality it was shown that
the Einstein-dilaton theory with a Liouville potential cor-
responds to a relativistic nonconformal theory [31, 32]. In
addition, it was also found that the DC conductivity of the
dual system can show different behaviors depending on what
kind of vector fluctuation is turned on. If a vector fluctuation
is not coupled to dilaton, the corresponding DC conductivity
in a 2 + 1-dimensional relativistic nonconformal theory
is temperature independent, while it can have a nontrivial
temperature dependence for the vector fluctuation coupled to

dilaton.These facts were also checked by using themembrane
paradigm [33]. In the similar setup without a Liouville
potential, the exact gravity solution has been known as the
Lifshitz geometry [17, 18]. Although the Lifshitz geometry
has different scaling in the temporal and spatial coordinates,
the generalized scaling symmetry, the so-called hyperscaling
symmetry, is still preserved. Due to such a nontrivial scaling,
it has been believed that the Lifshitz geometry is dual to
a Lifshitz field theory. In particular, when the dynamical
exponent is 𝑧 = 2, the corresponding dual theory becomes
nonrelativistic. In the holographicQCDmodels for a strongly
interacting quark-gluon plasma [34–43], the asymptotic AdS
space has been used as the dual geometry. These works
were further generalized to the charged AdS geometry, for
example, the thermal charged AdS and Reissner-Nordström
black brane geometry [36–39]. In these cases, a bulk vector
field was identified with matter of the dual theory. Similarly,
the bulk vector field of the Lifshitz geometry might be
regarded as matter of the Lifshitz field theory. Here, we will
simply call it Lifshitz matter or Lifshitz medium. The string
theory construction of the nonrelativistic Lifshitz medium
was studied in [44] and the binding energy and drag force
of external quarks were investigated in [45].

There were many studies on the DC conductivity and
superconductivity of the nonrelativistic Lifshitz medium
without a dilaton coupling [46–54]. We further investigate
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the DC conductivities of the Lifshitz medium with a non-
trivial dilaton coupling, which providesmore information for
the charge carrier. In this paper, a new vector fluctuation is
turned on in the Lifshitz black brane geometry to describe
impurity in the nonrelativistic Lifshitz medium. This new
vector fluctuation can have a different dilaton coupling from
the background gauge field. If we parameterize the different
dilaton coupling with 𝛾, there exists a discrepancy between
the results of the membrane paradigm and the Kubo formula
for 𝛾 ≥ 1. This is due to the change of the asymptotic bound-
ary condition. While the membrane paradigm does not care
about the change of the asymptotic boundary condition [55,
56], the Kubo formula crucially depends on it [57–59]. On the
other hand, the fluctuation of the background gauge field cor-
responds to the Lifshitz matter. The DC conductivity carried
by it shows totally different behavior from that of impurity
because it is coupled to the metric fluctuation through the
background gauge field even at quadratic order. The Kubo
formula says that the DC conductivity carried by the Lifshitz
matter is proportional to the square of temperature. In certain
condensed matter systems like semiconductor, impurity is
important to explain their electric property. Therefore it is
interesting to understand the role of impurity in themedium.
We find that at high temperature impurity with 𝛾 < −2 can
change the electric property of the nonrelativistic Lifshitz
medium significantly.

The rest of the paper is organized as follows. In Section 2,
we represent the Lifshitz black brane solution including the
manifest hyperscaling symmetry and its thermodynamics
with explaining our conventions. In Section 3, the DC
conductivities carried by two different charge carriers in
the nonrelativistic Lifshitz medium are studied. The results
show that impurity with 𝛾 < −2 significantly changes the
electric property of the Lifshitz medium at high temper-
ature. Finally, we finish this work with some concluding
remarks.

2. Thermodynamic Properties

There exist many scale-invariant field theories without the
Lorentz invariance near the critical points [13, 15]. One of
such examples is the Lifshitz theory

𝑆 [𝜒] = ∫𝑑
3
𝑥 [(𝜕
𝑡
𝜒)
2
− 𝐾(∇

2
𝜒)
2

] , (1)

which describes a fixed line parameterized by 𝐾 with a
dynamical exponent 𝑧 = 2 [19]. Following the gauge/gravity
duality, such a nonrelativistic theory can be mapped to a
Lifshitz geometry as a dual gravity.There are several bottom-
up models, gravity with higher form fields [17] and gravity
with a massive gauge field and nondynamical scalar field.
These models have been widely investigated by many authors
[19, 47, 60]. Another example appears as a geometric solution
of the Einstein-Maxwell-dilaton theory. In this paper we will
concentrate on the latter case.

Our starting action is the Einstein-Maxwell-dilaton the-
ory with a negative cosmological constant Λ

𝑆EMd =
1

16𝜋𝐺
∫𝑑
𝐷
𝑥√−𝑔
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2
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4
𝑒
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) ,

(2)

with

𝐹
𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇, (3)

where 𝜆 is a constant describing the coupling between the
gauge field and dilaton. From this action, the black brane
geometry satisfying all equations of motion is given by [18,
48, 49]

𝑑𝑠
2
= −𝑟
2𝑧
𝑓 (𝑟) 𝑑𝑡

2
+

𝑑𝑟
2

𝑟2𝑓 (𝑟)
+ 𝑟
2
(𝑑𝑥
2
+ 𝑑𝑦
2
) ,

𝜙 (𝑟) = −
4

𝜆
log 𝑟,

𝐹
𝑟𝑡
= 𝜕
𝑟
𝐴
𝑡
= 𝑞𝑟
𝑧+1
,

(4)

with

𝑓 (𝑟) = 1 −
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ℎ
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, (5)

𝜆 =
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Λ = −
(𝑧 + 1) (𝑧 + 2)

2
,

(6)

where 𝑟
ℎ
implies the black brane horizon. It is worthwhile

noting that the Lifshitz black brane is not a charged but
uncharged solution because the charge 𝑞 is not a free param-
eter describing a hair of the black brane. In other words, once
the intrinsic parameters of the theory, Λ and 𝜆, are given,
the dynamical exponent 𝑧 and the charge 𝑞 are automatically
determined. In that sense, the Lifshitz black brane geometry
might be corresponding to the microcanonical ensemble
while the charged black branes are described by a grand-
canonical or canonical ensemble. For 𝑧 = 1, dilaton and bulk
gauge field automatically vanish and the Lifshitz geometry
simply reduces to an ordinary AdS geometry where the
conformal symmetry is restored. In [61–63], this uncharged
Lifshitz black brane was further generalized to the charged
case by adding additional gauge fields and their electric and
thermodynamic properties were studied.

Note that the above Einstein-Maxwell-dilaton theory
preserves a scaling symmetry. When 𝑟 scales as Ω𝑟, other
variables should scale like

𝑟
ℎ
→ Ω𝑟

ℎ
, 𝑡 → Ω

−𝑧
𝑡, 𝑥 → Ω

−1
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𝑒
𝜙
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0
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𝐹
𝑟𝑡
, 𝐴

𝑡
→ Ω

𝑧+2
𝐴
𝑡
.

(7)
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These scaling behaviors are different from those of the
different Lifshitz models. Then, the time component gauge
field satisfying the above scaling is given by

𝐴
𝑡
=

𝑞

𝑧 + 2
(𝑟
𝑧+2
− 𝑟
𝑧+2

ℎ
) , (8)

where the last term corresponds to a new integration constant
and we choose a specific value such that the norm of 𝐴

𝑡

is regular even at the black brane horizon. The energy and
temperature of this system should scale as the inverse of time,
𝐸 → Ω

𝑧
𝐸 and 𝑇 → Ω

𝑧
𝑇. After expanding the metric near

the horizon and requiring that there is no conical singularity,
the Hawking temperature is determined to be

𝑇 =
𝑧 + 2

4𝜋
𝑟
𝑧

ℎ
, (9)

which shows the correct scaling behavior mentioned previ-
ously. The Bekenstein-Hawking entropy is

𝑆 =
𝑉
2

4𝐺
𝑟
2

ℎ
, (10)

where 𝑉
2
implies a spatial volume of the boundary space and

scales like 𝑉
2
→ Ω
−2
𝑉
2
. Therefore, the Bekenstein-Hawking

entropy is invariant under the scaling transformation.
Using the first law of thermodynamics together with

the above Hawking temperature and Bekenstein-Hawking
entropy, the internal energy 𝐸 and the free energy 𝐹 are given
by

𝐸 =
𝑉
2

8𝜋𝐺
𝑟
𝑧+2

ℎ
,

𝐹 = −
𝑧𝑉
2

16𝜋𝐺
𝑟
𝑧+2

ℎ
.

(11)

Using the definition of pressure 𝑃 = −𝜕𝐹/𝜕𝑉
2
, we can easily

evaluate the equation of state parameter of the Lifshitz black
brane

𝑤 =
𝑃𝑉
2

𝐸
=
𝑧

2
. (12)

This implies, according to the gauge/gravity duality, that the
dual theory is not conformal except the AdS case with the
dynamical exponent 𝑧 = 1. Note that it was shown, in the
gravity theory with a massive gauge field and nondynamical
scalar field (In [19], only the 𝑧 = 2 case has been considered
and the black brane factor is given by 𝑓(𝑟) = 1 − 𝑟2

ℎ
/𝑟
2 in our

notations, which is different from the present one, 𝑓(𝑟) = 1 −
𝑟
4

ℎ
/𝑟
4 in (5). Although the asymptotic geometries of these two

different theories are exactly same, the Hawking temperature
due to the difference of inside geometry can have different
values. For example, 𝑇 = 𝑟2

ℎ
/2𝜋 in [19] and 𝑇 = 𝑟2

ℎ
/𝜋 in our

case.), that the equation of state parameter is given by 1 for
𝑧 = 2. The specific heat of this system becomes in terms of
temperature

𝐶V =
𝑉
2

2𝑧𝐺
(
4𝜋

𝑧 + 2
)

2/𝑧

𝑇
2/𝑧
. (13)

Since it is positive for 𝑧 > 0, the dual Lifshitz theory is
always thermodynamically stable. In the zero temperature
limit 𝑟

ℎ
→ 0, the internal and free energies in (11) become

zero. Comparing them with the results at finite temperature,
since the free energy at finite temperature is always negative
for 𝑧 > 0, the Lifshitz black brane is always preferable.
This fact implies that there is no Hawking-Page transition. A
similar situation also occurs in the relativistic nonconformal
theory [32].

3. DC Conductivities in the Nonrelativistic
Lifshitz Medium

In order to understand macroscopic properties of a non-
relativistic Lifshitz medium, it is useful to investigate the
holographic linear response of various fluctuations. Here, we
will concentrate on the electric properties of a nonrelativistic
Lifshitz theory with two different charge carriers. To do so,
we consider a more general Einstein-Maxwell-dilaton theory

𝑆
𝑔

=
1
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𝑒
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(14)

with

𝐹
𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇,

𝐻
𝜇] = 𝜕𝜇𝐵] − 𝜕]𝐵𝜇,

(15)

where 𝐴
𝜇
and 𝐵

𝜇
are two different 𝑈(1) vector fields with

different dilaton couplings. In this model, the previous
Lifshitz black brane geometry appears as a specific solution
for 𝐵
𝜇
= 0. In the dual Lifshitz theory point of view, these two

different vector fields correspond to two different matters.
Now, let us turn on vector and metric fluctuations on

the Lifshitz black brane geometry. If we denote 𝑎
𝜇
and 𝑏
𝜇
as

fluctuations of 𝐴
𝜇
and 𝐵

𝜇
respectively, they are governed by

the following action at quadratic order:

𝑆fluc = 𝑆𝑎 + 𝑆𝑏, (16)

with

𝑆
𝑎
=

1
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𝑆
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where 𝑓
𝜇] = 𝜕

𝜇
𝑎] − 𝜕]𝑎𝜇 and ℎ𝜇] = 𝜕

𝜇
𝑏] − 𝜕]𝑏𝜇. There is

no mixing term between 𝑎
𝜇
and 𝑏
𝜇
at quadratic order, so one

can describe those two fluctuations independently. Note that
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since the fluctuation 𝑎
𝜇
, which is called Lifshitz matter, is

coupled to the metric fluctuations through the background
gauge field even at quadratic order, one should take into
account the metric fluctuations simultaneously. As will be
shown, the coupling to the metric fluctuations dramatically
changes the DC conductivity carried by the Lifshitz matter.
The other fluctuation, 𝑏

𝜇
, is a new one which corresponds to

impurity in the dual Lifshitz field theory. Since impurity has
nothing to do with the background gauge field at quadratic
order, there is no mixing with the metric fluctuation [49, 64].
In addition, the coupling parameter 𝛾 can have an arbitrary
number, which may depend on the kind of impurity. From
now on we concentrate on the 𝑧 = 2 case, which provides an
interesting example for a nonrelativistic Lifshitz theory, and
take the zero momentum limit because the DC conductivity
is well defined even in this limit. In the following sections,
we will investigate the DC conductivities carried by impurity
and Lifshitz matter with the Kubo formula and show that
the different charge carriers lead to the different electric
properties.

3.1. DC Conductivity Carried by Impurity. First, let us study
the DC conductivity carried by impurity with the Kubo
formula. From the action (18) for impurity, the transverse
mode, 𝑏

𝑖
(𝑖 = 𝑥 or 𝑦), is governed by

0 = 𝜕
𝜇
[√−𝑔𝑒

𝛾𝜙
𝑔
𝜇𝜌
𝑔
𝑖𝜎
(𝜕
𝜌
𝑏
𝜎
− 𝜕
𝜎
𝑏
𝜌
)] . (19)

For 𝑧 = 2 and in the zero momentum limit, under the
following Fourier mode expansion:

𝑏
𝑖
(𝑡, 𝑟) = ∫

𝑑𝜔

2𝜋
𝑒
−𝑖𝜔𝑡
𝑏
𝑖
(𝜔, 𝑟) , (20)

the governing equation simply reduces to

0 = 𝑏


𝑖
+ (

3 − 2𝛾

𝑟
+
𝑓


𝑓
)𝑏


𝑖
+
𝜔
2

𝑟6𝑓2
𝑏
𝑖
. (21)

At the horizon, 𝑏
𝑖
has two independent solutions

𝑏
𝑖
(𝑟) = 𝑐

1
𝑓
±]
, (22)

with ] = 𝑖(𝜔/4𝑟2
ℎ
), where 𝑐

1
is an appropriate normalization

constant and the minus or plus sign satisfies the incoming or
outgoing boundary condition at the horizon. After choosing
an incoming solution, the solution of (21) in the hydrody-
namic limit (𝜔 ≪ 𝑇) can be perturbatively expanded to

𝑏
𝑖
(𝑟) = 𝑓

−]
[𝐺
0
(𝑟) + 𝜔𝐺

1
(𝑟)] + O (𝜔

2
) . (23)

In this hydrodynamic expansion, 𝐺
0
(𝑟), 𝐺
1
(𝑟), and all higher

order terms should be regular at the horizon which is called
a regularity condition. In addition, the above perturbative
solution should be reduced to (22) at the horizon, so 𝐺

0
(𝑟)

should be a normalization constant 𝑐
1
at the horizon and

at the same time the other terms, 𝐺
1
(𝑟
ℎ
) and higher order

terms, should vanish. We call such a constraint a vanishing
condition. Using these two conditions, the perturbative

solutions can be exactly determined up to one integration
constant
𝐺
0
(𝑟) = 𝑐

1
,

𝐺
1
(𝑟) = 𝑐

3
−
𝑖𝑐
1
[4 log 𝑟 − log (𝑟4 − 𝑟4

ℎ
)]

4𝑟2
ℎ

− ((𝑐
4
[
2𝐹1 (1 + 𝛾, 1, 2 + 𝛾, −

𝑟
2
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ℎ

)

+
2𝐹1 (1 + 𝛾, 1, 2 + 𝛾,

𝑟
2

𝑟2
ℎ

)] 𝑟
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)

× (4 (1 + 𝛾) 𝑟
4

ℎ
)
−1

) ,

(24)

with

𝑐
3
= (𝑖𝑐
1
[−PG(0, 1 +

𝛾

2
) + PG(0,

1 + 𝛾

2
)

+2 {EG − log 2 + PG (0, 1 + 𝛾)} ]) × (8𝑟2
ℎ
)
−1

,

𝑐
4
= −𝑖𝑐
1
𝑟
−2𝛾

ℎ
,

(25)

where PG and EG mean the poly gamma and Euler gamma
function, respectively. In order to determine the remaining
integration constant 𝑐

1
, we should impose another boundary

condition. At the asymptotic boundary, the vector fluctuation
𝑏
𝑖
has the following asymptotic expansion:

𝑏
𝑖
(𝑟) = 𝑏

1
+ 𝑏
2
𝑟
2𝛾−2

, (26)

where 𝑏
1
(or 𝑏
2
) is a constant determined by the asymptotic

boundary condition.

3.1.1. For 𝛾<1. If 𝛾 is smaller than 1, the asymptotic behavior
of 𝑏
𝑖
(𝑟) is determined by the first term 𝑏

1
. According to the

usual gauge/gravity duality, the first coefficient corresponds
to the source while the second describes the vacuum expec-
tation value (vev) of the dual operator. In this case, it is natural
to impose the Dirichlet boundary condition like

𝑏
0
≡ lim
𝑟0→∞

𝑏
𝑖
(𝑟
0
) , (27)

where 𝑟
0
implies an appropriate UV cutoff of the dual theory

and 𝑏
0
corresponds to the boundary value of 𝑏

𝑖
which is equal

to 𝑏
1
for 𝛾 < 1. Comparing the asymptotic expansion of the

perturbative solution (23) with the above boundary condition
(27), the remaining integration constant 𝑐

1
can be rewritten in

terms of the boundary value 𝑏
0
as

𝑐
1
= 8𝑖𝑟
2

ℎ
𝑏
0

×(8𝑖𝑟
2

ℎ
+ 𝜔 [HN(

𝛾

2
) −HN(

−1 + 𝛾

2
)

−2HN (𝛾)+ 2 log 2 + 2𝜋 tan(
𝜋𝛾

2
) ])

−1

,

(28)

where HN means a harmonic number.
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Theboundary action corresponding to the on-shell action
of (18) is given by

𝑆
𝐵
= −

1

16𝜋𝐺
∫
𝑟=𝑟0

𝑑
3
𝑥√−𝑔𝑒

𝛾𝜙
𝑔
𝑟𝑟
𝑔
𝑖𝑖
𝑏
𝑖
𝑏


𝑖

≈ −
1

16𝜋𝐺
∫𝑑
3
𝑥𝑟
−2𝛾

ℎ
𝑟
3−2𝛾

0
𝑏
0
𝑏


𝑖
.

(29)

This result shows that the finite contributions to the boundary
action can come from 𝑏



𝑖
∼ 𝑟
−3+2𝛾

0
when 𝑟

0
→ ∞. Since the

asymptotic expansion of 𝑏
𝑖
from (23) has

𝑏


𝑖
= −

𝑖𝑐
1
𝜔

𝑟
2𝛾

ℎ

1

𝑟
3−2𝛾

0

+ O(
1

𝑟5
) , (30)

the current-current retarded Green function [58, 59] results
in

⟨𝐽
𝑖
𝐽
𝑖
⟩ =

𝑖𝜔

16𝜋𝐺

1

𝑟
2𝛾

ℎ

+ O (𝜔
2
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where (28) is used. Finally, the DC conductivity from the
Kubo formula reads

𝜎DC ≡ lim
𝜔→0

⟨𝐽
𝑖
𝐽
𝑖
⟩

𝑖𝜔
=

1

16𝜋𝛾+1𝐺

1

𝑇𝛾
. (32)

3.1.2. For 𝛾 ≥ 1. Let us take into account the case with 𝛾 ≥ 1.
In this case, the DC conductivity carried by impurity shows
a totally different behavior compared with the previous case
because the interpretation of the asymptotic solution should
be modified. From now on, we will concentrate on the case
with 𝛾 = 2 for later comparison with the DC conductivity
carried by Lifshitz matter.

Similar to (23), the perturbative expansion of solution in
the zero momentum limit is given by

𝑏
𝑖
(𝑟) = 𝑓

−]
[𝐺
0
(𝑟) + 𝜔𝐺

1
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2
𝐺
2
(𝑟)] + O (𝜔

3
) ,

(33)

where ] = 𝑖(𝜔/4𝑟
2

ℎ
). In this case, 𝜔2𝐺

2
(𝑟) is important to

determine the DC conductivity unlike the previous case.
The solutions, 𝐺

0
(𝑟) and 𝐺

1
(𝑟), satisfying the regularity and

vanishing condition at the horizon are

𝐺
0 (𝑟) = 𝑐1,

𝐺
1
(𝑟) = − [

𝑖

2𝑟4
ℎ

𝑟
2
−
𝜋 + 2𝑖 (1 − log 2)

4𝑟2
ℎ

+
𝑖

𝑟2
ℎ

log 𝑟 − 𝑖

2𝑟2
ℎ

log (𝑟2 + 𝑟2
ℎ
)] 𝑐
1
.

(34)

After inserting these two solutions into (21), we can find the
analytic formof𝐺

2
(𝑟)whichhas the following expansionnear

the horizon:

𝐺
2
(𝑟)

=
12𝑐
6
𝑟
6

ℎ
− 𝑐
1
(6 log 2 − 10 − 3𝜋𝑖)
48𝑟ℎ4

log (𝑟 − 𝑟
ℎ
)

+ 𝑐
5
+
𝑟
2

ℎ
(2 + 𝜋𝑖 − log 𝑟

ℎ
)

4
𝑐
6

+
5𝜋
2
+ 8 (9 − 10 log 2 + 3(log 2)2) + 12𝜋𝑖 (3 + 2 log 2)

96𝑟4
ℎ

𝑐
1

+
(−20 + 42𝜋𝑖 + 60 log 2) log 𝑟

ℎ
+ 48(log 𝑟

ℎ
)
2

96𝑟4
ℎ

𝑐
1
+O(𝑟 − 𝑟

ℎ
).

(35)

Again, imposing the regularity and vanishing condition at the
horizon, 𝑐

5
and 𝑐
6
are fixed to be

𝑐
5
=−[

32 + 4𝜋𝑖 + 11𝜋
2
− 56 log 2 + 36𝜋𝑖 log 2 + 24(log 2)2

96𝑟4
ℎ

+
48 (𝜋𝑖 + log 2) log 𝑟

ℎ

96𝑟4
ℎ

+
(log 𝑟
ℎ
)
2

2𝑟4
ℎ

] 𝑐
1
,

𝑐
6
=
6 log 2 − 10 − 3𝜋𝑖

12𝑟
6

ℎ

𝑐
1
.

(36)

Before calculating the conductivity, it is worth to note
that for 𝛾 ≥ 1 the second terms in (26) are more dominant
when determining the asymptotic behavior of impurity. This
implies that the previous Dirichlet boundary condition in
(27) cannot fix 𝑏

1
, so we need to modify the asymptotic

boundary condition. A natural choice is choosing the second
coefficient 𝑏

2
as a source rather than the first and then

fixing it by an appropriate boundary condition. Following this
strategy, the appropriate asymptotic boundary condition for
𝛾 ≥ 1 should be [57]

𝑏
0
= lim
𝑟0→∞

𝑏
𝑖
(𝑟
0
)

𝑟
0
2𝛾−2

. (37)

Especially, for 𝛾 = 2 the boundary condition reduces to

𝑏
0
= lim
𝑟→∞

𝑏
𝑖
(𝑟
0
)

𝑟2
0

. (38)

Using (34) and (36) together with the exact solution for𝐺
2
(𝑟),

we can easily find the asymptotic expansion of 𝑏
𝑖
(𝑟) up to

𝜔
2 and comparing it with the boundary condition in (38)

determines 𝑐
1
in terms of 𝑏

0

𝑐
1
=

24𝑖𝑟
4

ℎ

𝜔 [12𝑟2
ℎ
+ 𝑖𝜔 (6 log 2 − 10 − 3𝜋𝑖)]

𝑏
0
. (39)
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At first glance, it looks extraordinary because 𝑐
1
is propor-

tional to 𝜔−1. However, near the horizon it still becomes
a solution whose normalization constant is proportional to
𝜔
−1.
Since the boundary action for 𝛾 = 2 is given by

𝑆
𝐵
= −

1

16𝜋𝐺
∫𝑑
3
𝑥 𝑟
0
𝑏
0
𝑏


𝑖
, (40)

only 𝑏
𝑖
∼ 𝑟
−1

0
can provide the finite contribution to the

boundary action. If (𝜕/𝜕𝑟)(𝑓
−]
𝐺
0
) or (𝜕/𝜕𝑟)(𝑓

−]
𝜔𝐺
1
)

contains such a term, the DC conductivity diverges with 𝜔−2
or 𝜔−1, respectively, because 𝑐

1
∼ 1/𝜔. This fact says that the

finite contribution to the DC conductivity is determined not
by 𝜔𝐺

1
but by 𝜔2𝐺

2
. In the asymptotic region (𝑟

0
→ ∞),

the expansion of 𝑏
𝑖
has the following form:

𝑏


𝑖
= #𝑟
0
+

#
𝑟
3

0

+ O(
1

𝑟
5

0

) , (41)

where # implies a certain number. This result shows that 𝑏
𝑖

has no term proportional to 𝑟−1
0

so that the finite part of the
resulting boundary action becomes zero. Consequently, the
DC conductivity carried by impurity for 𝛾 = 2 vanishes:

𝜎DC = 0 for 𝛾 = 2. (42)

Before concluding this section, there is an important
remark. The result in (42) is totally different from that of the
membrane paradigm. In the membrane paradigm, the DC
conductivity especially for impurity can be represented only
by the horizon quantities. The resulting form for 𝑧 = 2 is
[33, 55, 56]

𝜎DC =
𝑒
𝛾𝜙

16𝜋𝐺
√

𝑔

𝑔
𝑡𝑡
𝑔
𝑟𝑟

𝑔
𝑖𝑖

𝑟ℎ

=
1

16𝜋𝛾+1𝐺

1

𝑇𝛾
. (43)

This is exactly the form obtained in the previous section
for 𝛾 < 1. However, it is not consistent with the result
for 𝛾 = 2. The reason is that in the Kubo formula the
asymptotic boundary condition is modified for 𝛾 ≥ 1 while
the membrane paradigm does not care about the asymptotic
behavior of the solution. Because of that, the membrane
paradigm is consistent with the Kubo formula only for 𝛾 < 1.
Following the spirit of theAdS/CFT correspondence, physical
quantities like the correlation functions of the dual field
theory should be holographically governed by bulk field
fluctuations near the asymptotic region. In this sense, the
Kubo formula results seem to be more fundamental.

3.2. DC Conductivity Carried by Lifshitz Matter. Now, con-
sider Lifshitz matter instead of impurity. Generally, if there
exists a background gauge field, the transverse mode of its
fluctuation should be coupled to the shear mode of the
metric fluctuations [40]. Therefore, in order to study the
linear response of such an 𝑈(1) gauge field, we should also
consider themetric shear mode.The equations governing the

transverse and shear modes can be derived from (17). After
the Fourier mode expansion

𝑔
𝑖

𝑡
(𝑡, 𝑟) = ∫

𝑑𝜔

2𝜋
𝑒
−𝑖𝜔𝑡
𝑔
𝑖

𝑡
(𝜔, 𝑟) ,

𝑎
𝑖
(𝑡, 𝑟) = ∫

𝑑𝜔

2𝜋
𝑒
−𝑖𝜔𝑡
𝑎
𝑖
(𝜔, 𝑟) ,

(44)

the governing equations for shear modes reduce to

0 = 𝑔
𝑖


𝑡
+

𝑞

𝑟5−𝑧
𝑎
𝑖
, (45)

0 = 𝑔
𝑖


𝑡
+
(5 − 𝑧)

𝑟
𝑔
𝑖


𝑡
+

𝑞

𝑟5−𝑧
𝑎


𝑖
, (46)

where 𝑔𝑖
𝑡
and 𝑎
𝑖
imply 𝑔𝑖

𝑡
(𝜔, 𝑟) and 𝑎

𝑖
(𝜔, 𝑟). The first equation

(45) is a constraint which automatically satisfies the second
equation (46). The equation governing the transverse modes
leads to

0 = 𝑎


𝑖
+
𝑟𝑓

+ (𝑧 − 3) 𝑓

𝑟𝑓
𝑎


𝑖
+
𝑞𝑟
3−𝑧

𝑓
𝑔
𝑖


𝑡
+

𝑤
2

𝑟2+2𝑧𝑓2
𝑎
𝑖
. (47)

Inserting the constraint into (47), the decoupled differential
equation of the transverse mode becomes

0 = 𝑎


𝑖
+
𝑟𝑓

+ (𝑧 − 3) 𝑓

𝑟𝑓
𝑎


𝑖
+ (

𝑤
2

𝑟2𝑧+2𝑓2
−
𝑞
2

𝑟2𝑓
)𝑎
𝑖
. (48)

At the horizon, due to vanishing of 𝑓, 𝑎
𝑖
should have

the following two independent solutions up to an overall
normalization constant

𝑎
𝑖
∼ 𝑓
±𝑖(𝜔/4𝑟

2

ℎ
)
, (49)

where the plus or minus sign again implies the outgoing or
incomingmode. In the hydrodynamic limit, after taking only
the incoming part, the near horizon solution of 𝑎

𝑖
can be

expanded into

𝑎
𝑖
= 𝑓
−𝑖(𝜔/4𝑟

2

ℎ
)
[𝐺
0 (𝑟) + 𝜔𝐺1 (𝑟)] + O (𝜔

2
) , (50)

where 𝐺
0
(𝑟) and 𝐺

1
(𝑟) should be regular functions at the

black brane horizon. After substituting the perturbative
expansion into (48), one can solve it order by order. For 𝑧 = 2,
𝐺
0
has the following exact solution at 𝜔0 order:

𝐺
0
= 𝑐
1
(𝑟
4
+ 𝑟
4

ℎ
) −

𝑐
2
𝑟
2

8𝑟4
ℎ

+
𝑐
2
(𝑟
4
+ 𝑟
4

ℎ
)

8𝑟
6

ℎ

arctanh(𝑟
2

𝑟2
ℎ

) ,

(51)

where 𝑐
1
and 𝑐

2
are two integration constants. Imposing

the regularity condition at the horizon, 𝑐
2
= 0 because

arctanh(𝑟2/𝑟2
ℎ
) diverges. Consequently,

𝐺
0
= 𝑐
1
(𝑟
4
+ 𝑟
4

ℎ
) . (52)
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Using this result, at next order of 𝜔 the solution of𝐺
1
is given

by

𝐺
1
= 𝑐
3
(𝑟
4
+ 𝑟
4

ℎ
) −

𝑐
4
𝑟
2

8𝑟4
ℎ

−
𝑖𝑐
1
(𝑟
4
+ 𝑟
4

ℎ
) log 𝑟

𝑟2
ℎ

+
(𝑟
4
+ 𝑟
4

ℎ
) (𝑐
4
+ 𝑖4𝑐
1
𝑟
4

ℎ
) log (𝑟2 + 𝑟2

ℎ
)

16𝑟
6

ℎ

−
(𝑟
4
+ 𝑟
4

ℎ
) (𝑐
4
− 𝑖4𝑐
1
𝑟
4

ℎ
) log (𝑟2 − 𝑟2

ℎ
)

16𝑟
6

ℎ

.

(53)

Since the last term diverges at the horizon, the regularity
condition determines

𝑐
4
= 𝑖4𝑐
1
𝑟
4

ℎ
. (54)

In addition, the vanishing condition fixes the rest integration
constant as

𝑐
3
= −

𝑖𝑐
1
(2 log 2 − 1)
4𝑟2
ℎ

. (55)

Now, let us consider the asymptotic behavior of the
solution. Unlike the impurity case, the asymptotic behavior
of 𝑎
𝑖
is totally different from that of 𝑏

𝑖
due to the nontrivial

mixing with the shear mode. From (48), the asymptotic
behavior for 𝑧 = 2 is governed by

0 = 𝑎


𝑖
−
1

𝑟
𝑎


𝑖
−
8

𝑟2
𝑎
𝑖
, (56)

where the last term is originated from the shear mode. At
the asymptotic boundary, 𝑎

𝑖
has the following perturbative

solution:

𝑎
𝑖
= 𝑎
1
𝑟
4
+
𝑎
2

𝑟2
, (57)

where 𝑎
1
is a constant to be determined by the asymptotic

boundary condition. One can identify the coefficients of
the nonnormalizable and normalizable modes, 𝑎

1
and 𝑎

2
,

with the source and expectation value of the dual operator,
respectively. In order to fix the boundary value of 𝑎

𝑖
, we

impose the following boundary condition at the asymptotic
boundary:

𝑎
0
≡ lim
𝑟→∞

𝑎
𝑖
(𝑟)

𝑟4
. (58)

Then, the integration constant 𝑐
1
is fixed in terms of the

boundary value 𝑎
0
to be

𝑐
1
=

4𝑟
2

ℎ
𝑎
0

4𝑟2
ℎ
− 𝑖𝜔 (2 log 2 − 1)

. (59)

From the action (17), the boundary term of the Lifshitz
matter becomes

𝑆
𝐵
= −

1

16𝜋𝐺
∫𝑑
3
𝑥√−𝑔𝑒

𝜆𝜙
𝑔
𝑟𝑟
𝑔
𝑖𝑖
𝑎
𝑖
𝜕
𝑟
𝑎
𝑖

= −
1

16𝜋𝐺
∫𝑑
3
𝑥𝑟
3

0
𝑎
0
𝜕
𝑟
𝑎
𝑖
,

(60)

where one can see that the finite part of the retarded
Green function comes from 𝜕

𝑟
𝑎
𝑖
∼ 𝑟
−3

0
. When ignoring the

divergent parts corresponding to the contact terms, the DC
conductivity carried by the Lifshitz matter leads to

𝜎DC =
𝜋

12𝐺
𝑇
2
. (61)

This result shows that the DC conductivity carried by a
Lifshitz matter is totally different from that carried by
impurity for 𝛾 = 2.

Impurity in semiconductor dramatically changes the elec-
tric property of matter from an insulator at low temperature
to a conductor at high temperature. In many condensed
matter systems like a semiconductor, impurity plays a crucial
role in physics so that it is important to understand the effect
of such impurity. In this paper, we holographically realize
impurity by turning on a different bulk vector fluctuation in
the Lifshitz black brane geometry. In the dual theory point
of view, it corresponds to inserting impurity into the Lifshitz
medium. Depending on the kind of impurity parameterized
by 𝛾, it can dramatically change the electric property of the
Lifshitz matter. For instance, if impurity is characterized by
𝛾 < −2, the DC conductivity of the Lifshitz matter is not
affected by impurity at low temperature. However, at high
temperature the DC conductivity of impurity is dominant so
that the electric property of the Lifshitz matter with impurity
can show totally different behavior from the pure Lifshitz
matter.

4. Discussion

We have investigated thermodynamics and hydrodynamics
of the nonrelativistic Lifshitz medium with two types of
charge carriers. To do so, we considered Lifshitz black
brane solutions of the Einstein-Maxwell-dilaton gravity.
There are several models describing the same asymptotic
Lifshitz geometry. Although all models give rise to the same
thermodynamic relation and the equation of state parameter,
the details of the thermodynamic quantities are different due
to the different interior metric. In this paper, we clarified the
scaling behaviors of all fields and thermodynamic quantities
of the Lifshitz black brane geometry derived from the
Einstein-Maxwell-dilaton gravity.

After that, we have studied the holographic responses
of two types of vector fluctuations which describe the DC
conductivities carried by two different charge carriers, impu-
rity and the Lifshitz matter, in the nonrelativistic Lifshitz
medium. In this case, to realize impurity on the dual gravity
we have turned on another vector fluctuation in the Lifshitz
black brane geometry. For the DC conductivity carried by
impurity, there are two different methods, the Kubo formula
and membrane paradigm. In the nonrelativistic Lifshitz
medium, these two formulas give the same result for 𝛾 <

1 but we found that there exists a marked discrepancy for
𝛾 ≥ 1. For 𝛾 ≥ 1, one should change the asymptotic
boundary condition to find the DC conductivity. This fact
can be consistently imposed in the Kubo formula, while
the membrane paradigm, because it is described by only
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information at the horizon, cannot know this fact. In that
sense, the Kubo formula looks more fundamental.

For the DC conductivity carried by the Lifshitz matter,
its dual vector fluctuation is coupled to the metric fluctuation
through the background gauge field. The coupling with the
metric fluctuation leads to a nontrivial DC conductivity
proportional to the square of temperature for 𝑧 = 2. Like
an example of semiconductor, we found that impurity with
𝛾 < −2 can crucially modify the electric property of the
nonrelativistic Lifshitz matter at high temperature.

Finally, the Einstein-Maxwell-dilaton theory studied in
this paper has a negative cosmological constant and allows
the Lifshitz geometry with a hyperscaling symmetry. If one
modifies this negative cosmological constant to a Liouville-
type of the dilaton potential, the deformed theory gives
rise to the hyperscaling violation geometry in which both
the scaling and boundary Lorentz symmetries are broken.
In this set-up, it is interesting to investigate the various
thermodynamic and hydrodynamic properties of the dual
nonrelativistic theory without a scaling symmetry. We hope
to report some interesting results on these issues in future
works.
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