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A novel attitude tracking control scheme is presented for overactuated spacecraft to address the attitude stabilization problem in
presence of reaction wheel installation deviation, external disturbance and uncertain mass of moment inertia. An adaptive sliding
mode control technique is proposed to track the uncertainty. A Lyapunov-based analysis shows that the compensation control law
can guarantee that the desired attitude trajectories are followed in finite-time.The key feature of the proposed control strategy is that
it globally asymptotically stabilizes the system, even in the presence of reaction wheel installation deviation, external disturbances,
and uncertain mass of moment inertia. The attitude track performance using the proposed finite-time compensation control is
evaluated through a numerical example.

1. Introduction

In present, nearly all of the highly accurate slewing maneu-
vers necessitate the use of nonlinear differential equations
for the kinematics and dynamics during the control system
design [1]. However, the attitude tracking problem is further
complicated by the external disturbance and uncertain mass
of moment inertia. To address these issues, there have been
several important developments in the design of feedback
control laws for spacecraftmaneuvering. A number of control
design approaches using adaptive control [2, 3], sliding mode
control [4–7], 𝐻

∞
[8, 9], optimal control [10–13], and data

driven control [14–16] have been proposed. However, few
of them focus on the reaction wheel installation deviation
that are of great theoretical and practical interest. In fact, the
installation deviation is a widespread phenomenon, such as
the actuatormisalignment which is limited by the installation
technique or generated by materials deforms the vehicle
violent vibration during the launching process. In the area
of actuatormisalignment compensation, there currently exist
few unified frameworks for the design of simple control
structures.

Several solutions to actuator installation deviation have
been presented in the literature [17–20]. In [17], the authors

presented a general adaptive tracking attitude controller
design framework for a spacecraft subject to the actuator
installation minor angle deviation. In [18], an adaptive
attitude tracking method is proposed to compensate the
actuator misalignment of nearly 15 degree. And in [19],
a novel algorithm is employed precisely to estimate the
information, such as installation angle of wheel and CMG
alignments. And then the controller design can be on for
the estimation information. Moreover, another recent paper
in [20] proposed an adaptive control approach for satellite
formation flying, in which backstepping technique is used
to synthesize a controller to handle thrust magnitude error
and misalignment. However, the torque is different between
thruster and reaction wheel, one is literal and the other is
time-variable. That is to say that this control strategy is not
suitable for reaction wheel installation deviation compensa-
tion for overactuated spacecraft attitude control.

Treating the uncertain mass of moment inertia caused
by the reaction wheel misalignment is another impossi-
bly avoided problem. In practice, in order to ensure the
reliability of on-orbit spacecraft operation, especially under
high altitude sever external environment, overactuatation is
widely employed to guarantee the control system reliability
service. And finite-time is meanwhile necessary for time
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Figure 1: Structure of the attitude compensation controller.

critical missions. As a result, more and more investigations
also have focused on attitude control design with finite-time
convergence. In [21–23], the finite-time control technique
was applied to design an attitude controller. Feng et al. [24]
proposed a terminal sliding mode controller to solve the sin-
gular problem for a second-order nonlinear dynamic system.
A terminal sliding mode and the Chebyshev neural network
were used in [25] to guarantee that the attitude manoeuvre
was accomplished in finite time, even in the presence of an
unknown inertia matrix, external disturbances, and control
input constraints. Furthermore, two robust sliding mode
controllers were proposed in [26] to realize attitude tracking
in finite-time. Similar finite-time fault tolerant controllers for
spacecrafts were investigated in [27–29].

This work focuses on developing a control scheme to
perform attitude compensation for an overactuated space-
craft with reaction wheel installation deviation, external
disturbances, and uncertain inertia parameters. More specif-
ically, the attitude tracking error is required to be zero in
finite time. The proposed approach is illustrated in Figure 1.
The compensation control module is added to the output
of the nominal controller to compensate for the reaction
wheel misalignment, disturbances, and uncertain moment
of inertia. The proposed scheme solves a difficult problem
of reliable and high accuracy attitude tracking control in
finite time that rejects external disturbances and, at the same
time, compensates for actuator misalignment and system
uncertainties so that the control objective is met.

The remainder of this paper is organized as follows. In
Section 2, we summarize the mathematical model for the
rigid spacecraft attitude and control problem. A compensa-
tion control solutionwith themisalignment, disturbance, and
mass moment of inertia is presented in Section 3. Simulation
results are presented in Section 4. Some conclusions are given
in Section 5.

2. Mathematical Model and
Problem Formulation

The notation adopted throughout this paper is introduced as
follows.The symbol ‖⋅‖ denotes the standard Euclidean norm

or its induced norm; the symbol ‖ ⋅ ‖
∞

denotes the infinite
norm of a vector or matrix. For any given matrix A ∈ R𝑝×𝑞
with full row rank, A† denotes its pseudoinverse.

2.1. Dynamic Model of Rigid Spacecraft. Consider a rigid
space system described by the following attitude kinematics
and dynamics equations [30]:

q̇ = 1

2
(q× + 𝑞

0
I
3
)𝜔, (1)

̇𝑞
0
= −

1

2
q𝑇𝜔, (2)

J𝜔̇ + 𝜔×J𝜔 = u + d, (3)

where𝜔 ∈ R3 is the angular velocity of a body-fixed reference
frame expressed in the body-fixed reference frame, J ∈

R3×3 (positive and definite) is the total inertia matrix of the
spacecraft, u = [𝑢

1
𝑢
2
𝑢
3
]
𝑇

∈ R3 denotes the combined
control torque produced by the actuators, and d(𝑡) =

[𝑑
1
𝑑
2
𝑑
3
]
𝑇

∈ R3 denotes the external disturbance torque
from the environment, which is assumed to be unknown
but bounded; 𝑞

0
, q are the scalar and vector components of

the unit quaternion, respectively, with q = [𝑞
1
𝑞
2
𝑞
3
]
𝑇

∈

R3, satisfying the constraint 𝑞2
0
+ q𝑇q = 1; I

3
represents

the identity matrix with proper dimensions, and for ∀a =

[𝑎
1
𝑎
2
𝑎
3
]
𝑇, a× denotes a skew-symmetric matrix, more

precisely,

a× = [

[

0 −𝑎
3

𝑎
2

𝑎
3

0 −𝑎
1

−𝑎
2

𝑎
1

0

]

]

. (4)

2.2. ReactionWheel Configuration with InstallationDeviation.
For orbiting spacecraft, loosely speaking, they havemore than
three reaction wheels aligned with the spacecraft body axes.
However, in practice, the configuration of actuators will never
be perfect; that is, to say, whether due to finite manufacturing
tolerances or warping of the spacecraft structure during
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launch, some alignment errors can always exist. Thus, in
this section, the reaction wheels misalignment is taken into
consideration; the faulty dynamics can be described by

J𝜔 = −𝜔
×J𝜔 + (D + ΔD) 𝜏 + d, (5)

where D ∈ R3×𝑁 denotes the actuator distribution matrix,
ΔD denotes the actuator distribution matrix induced by
misalignment, and 𝜏 = [𝜏

1
, . . . , 𝜏

𝑁
]
𝑇

∈ R𝑁 denotes the actual
output torque of the𝑁 reaction wheels.

Due to the rotation of the payload or the existence of
the flywheel installation deviation, the moment of inertia
J is uncertain but positive definite symmetric matrices and
record J = J

0
+ ΔJ, where J

0
denotes the nominal rotational

inertia and ΔJ denotes the uncertain rotational inertia. Here
set 0 < ‖ΔJ‖ ≤ ‖J‖ ≤ 𝐽max < ∞ and 𝐽max is a positive constant.

2.3. Attitude Tracking Model. Assume that the desired atti-
tude to be followed is described with a desired frameT with
respect to I. It is specified by the desired unit quaternion
Qd = (𝑞

𝑑0
, q𝑇d ) ∈ R × R3. The desired angular velocity is

denoted by 𝜔d ∈ R3. Let the error quaternionQe = (𝑒
0
, e𝑇) ∈

R×R3 denote the attitude betweenB andT, and let𝜔e ∈ R3
represent the corresponding error angular velocity. One has

𝜔e = 𝜔 − R̃𝜔d, (6)

where R̃ ∈ R3×3 denote the corresponding rotation matrix
that bringsT ontoB, and

R̃ = (𝑒
2

0
− e𝑇e) I

3
+ 2ee𝑇 − 2𝑒

0
e×. (7)

With (1)–(5), the attitude tracking error dynamics is given
by:

J𝜔̇e + (𝜔̇e + R̃𝜔d)
×

J (𝜔e + R̃𝜔d) − J (𝜔×e R̃𝜔d − R̃𝜔d)

= (D + ΔD)E (𝑡) 𝜏 (𝑡) + d (𝑡) ,
(8)

̇𝑒
0
= −

1

2
e𝑇𝜔e, (9)

ė = 1

2
(e× + 𝑒

0
I
3
)𝜔e. (10)

2.4. Control Objective. The control objective of this work
can be stated as considering the uncertain attitude tracking
system (8)–(10) and design a control law to guarantee that the
attitude tracking error converges to zero in finite-time, even
in the presence of actuator misalignment, uncertain inertia
matrix, and external disturbance d(𝑡).

We present now the main results of this study.

3. Finite-Time Attitude Compensation Control

For the proposed control approach shown in Figure 1, the
nominal control power and the compensation control effort
are presented in this section. First, a finite-time sliding mode
surface is proposed. Then, based on the finite-time sliding

mode surface, a compensation controller is synthesized and
added to the nominal controller to guarantee the global
asymptotic stability of the resulting closed-loop attitude
tracking system with finite-time convergence.

3.1. Finite-Time Sliding Mode Surface Design. We first intro-
duce some lemmas which will be utilized in the subsequent
control development and analysis.

Lemma 1 (see [31]). If 𝑝 ∈ (0, 1), then the following inequality
holds for any vector x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛:

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

1+𝑝

≥ (

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

2

)

(1+𝑝)/2

. (11)

Lemma 2 (see [32]). Suppose that V(x) is a 𝐶
1 smooth

positive-definite function such that

V̇ (x) + 𝜆
1
V (x) + 𝜆

2
V𝛽 (x) ≤ 0, (12)

where 𝜆
1
∈ R+, 𝜆

2
∈ R+, 𝛽 ∈ R+ and 0 < 𝛽 < 1. Then for any

initial value 𝑥(0) = 𝑥
0
, it follows that V(x(𝑡)) = 0 for all the

time 𝑡 ≥ 𝑡
𝐹
1

,

𝑡
𝐹
1

≤
1

𝜆
1
(1 − 𝛽)

ln
𝜆
1
V1−𝛽 (𝑥

0
) + 𝜆
2

𝜆
2

. (13)

To this end, in this work, a sliding mode surface is
introduced as

s = 𝜔e + 𝜇1e + 𝜇2 sgn (e)
𝑟

, (14)

where s = [𝑠
1
𝑠
2
𝑠
3
]
𝑇

∈ R3, 𝜇
1
> 0, 𝜇

2
> 0, and 0 < 𝛾 < 1 are

the design parameters and sgn(e) is the sign function defined by

sgn (e)𝑟 = (
󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨

𝑟 sgn (𝑒
1
) ,
󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

𝑟 sgn (𝑒
2
) ,
󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

𝑟 sgn (𝑒
3
))
𝑇

.

(15)

Theorem 3. If an controller u(𝑡) is appropriately designed to
let the states reach the sliding surface s, then it has e(𝑡) ≡ 0,
𝑒
0
(𝑡) ≡ 1, and 𝜔e(𝑡) ≡ 0 for all the 𝑡 ≥ 𝑡

𝐹1
.

Proof. From the sliding mode theory [33], it is known that
once the state trajectories of the attitude tracking system
reach the sliding surface, that is, s = 0, it follows that

𝜔e = −𝜇
1
e − 𝜇
2
sgn (e)𝑟. (16)

Consider a candidate Lyapunov function as

𝑉
1
= (1 − 𝑒

0
)
2

+ e𝑇e. (17)

Because the inequality ∑
3

𝑖=0
|𝑒
𝑖
|
𝑟+1

≥ (∑
3

𝑖=0
|𝑒
𝑖
|
2

)
(𝑟+1)/2

holds for 0 < 𝑟 < 1, it is obtained from (15) that

𝑉̇
1
= −2 ̇𝑒

0
= e𝑇𝜔e = −𝜇

1
e𝑇e − 𝜇

2

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖
󵄨󵄨󵄨󵄨

𝑟+1 (18)
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which implies that 𝑉̇
1

= 0 if and only if e = 0. Thus,
𝑉
1
is really a Lyapunov function such that the signal e will

converge to zero and, accordingly, 𝑒
0
tends to±1 as 𝑡 → ∞ by

using the constraint in (18). Note that the equilibrium point
(𝑒
0
, e) = (−1, 0) is not a stable equilibrium point [34]. Then,

by Lemma 1, we obtain

𝑉̇
1
≤ −𝜇
1
e𝑇e − 𝜇

2
(e𝑇e)

(𝑟+1)/2

. (19)

Because e = (−1, 0)
𝑇 is not the stable equilibrium point,

the signal e will converge to zero. Thus, lim
𝑡→∞

𝑒
0
(𝑡) = 1 can

be obtained from the constraint e𝑇e + 𝑒
2

0
= 1. There exists a

finite time 𝑡 ≥ 0 such that 𝑒
0
(𝑡) > 0 for 𝑡 ≥ 𝑡. Then, for 𝑡 ≥ 𝑡,

one has

(1 − 𝑒
0
)
2

= 2𝑒
2

0
+ e𝑇e − 2𝑒

0

= 2𝑒
0
(𝑒
0
− 1) + e𝑇e − 2 ≤ e𝑇e.

(20)

Then,

𝑉
1
≤ 2e𝑇e. (21)

Using (21), (19) can be further bounded by

𝑉̇
1
≤ −

1

2
𝜇
1
𝑉
1
− (

1

2
)

(𝑟+1)/2

𝜇
2
𝑉
1

(𝑟+1)/2

. (22)

Using 0.5 < (𝑟+1)/2 < 1 and Lemma 2, one has𝑉
1
(𝑡) ≡ 0

for all 𝑡 ≥ 𝑡
𝐹1
. According to definition of 𝑉

1
(𝑡) in (17), 𝑒

0
(𝑡) ≡

1, e(𝑡) ≡ 0, and 𝜔e(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡
𝐹1

are concluded.
Thereby, the proof is completed here.

3.2. Attitude Compensation Controller Design. Considering
the reaction wheel installation deviation and external distur-
bance, it is obtained from the sliding surface (14) that

J ̇s = D𝜏 + ΔD𝜏 + L − 𝛽q
𝑒
− 0.5 ̇Js. (23)

Because J is unknown but bounded, then ̇J = 0 is
established. Then, L can be represented to be bounded by
‖L‖ ≤ 𝛼

0
+ 𝛼
1
‖𝜔‖ + 𝛼

2
‖𝜔‖
2, where 𝛼

𝑖
, 𝑖 = 1, 2, 3 are positive

constants [35].
In order to facilitate analysis and proof, firstly, define

𝜅 = 𝜆min(DD𝑇), 3‖ΔD‖∞‖D†‖∞ = 𝜀 < 1, and D† is the
pseudoinverse of D. Now, we are ready to present the main
result in Theorem 4.

Theorem 4. Considering the uncertainty attitude tracking
dynamics described by (5) with actuator misalignment ΔD
and external disturbance torque d(𝑡), design an attitude
compensation control law as

𝜏 = 𝜏nom (𝑡) + 𝜏adp (𝑡) + 𝜏mis (𝑡) , (24)

where

𝜏nom (𝑡) = −𝑘
1
𝛽
D𝑇 󵄩󵄩󵄩󵄩q𝑒

󵄩󵄩󵄩󵄩 s
‖s‖

− 𝐾
D𝑇s
‖s‖2

, (25)

𝜏adp (𝑡) =
D𝑇 (−𝑘̂

3
− 𝑘̂
4
‖𝜔‖ − 𝑘̂

5
‖𝜔‖
2

) s
‖s‖

, (26)

𝜏mis (𝑡) = −
(𝜋̂
1
− 1) 𝜑 (𝑡)D†s
‖s‖
∞

, (27)

where 𝐾 ∈ R+ is control parameter and 𝑘
1
is carefully chosen

such that 𝑘
1
𝜅 − 1 > 0; 𝜋̂

1
is the estimate of 𝜋

1
= 1/(1 − 𝛿); 𝑘̂

3

is the estimate of 𝑘
3
= 𝛼
0
/𝜅; 𝑘̂
4
is the estimate of 𝑘

4
= 𝛼
1
/𝜅;

𝑘̂
5
is the estimate of 𝑘

5
= 𝛼
2
/𝜅. Moreover, ̇̂𝜋

1
, 𝑘̂
𝑖
, 𝑖 = 3, 4, 5

are adaptively updated by ̇̂
𝑘
2
= (‖s𝑇‖/ℓ

4
)𝑘̂
𝑖
, ̇̂
𝑘
3
= ‖𝜔‖‖s‖/ℓ

5
,

̇̂
𝑘
4
= ‖𝜔‖

2

‖s‖/ℓ
6
, and ̇̂𝜋

1
= 𝑙
1
𝜑(𝑡)‖s‖

∞
, respectively. Then the

system states reach the sliding mode surface s(𝑡) = 0 in finite-
time for any initial state Q(0) and 𝜔(0).

Proof. When s ̸= 0, consider a candidate Lyapunov function:

𝑉
2
=
1

2
s𝑇Js + (1 − 𝜀)

2𝑙
1

𝜋̃
2

1
+
1

2
𝑙
3
𝑘̃
2

3
+
1

2
𝑙
4
𝑘̃
2

4
+
1

2
𝑙
5
𝑘̃
2

5
, (28)

where 𝜋̃
1
= 𝜋
1
− 𝜋̂
1
, 𝑘̃
𝑖
= 𝑘
𝑖
− 𝑘̂
𝑖
, 𝑖 = 3, 4, 5, and 𝑙

1
, 𝑙
3
, 𝑙
4
, 𝑙
5
are

the positive constants.
Calculating the time-derivative of 𝑉

2
, it yields

𝑉̇
2
≤ s𝑇J ̇s − (1 − 𝜀)

𝑙
1

𝜋̃ ̇̂𝜋 − 𝑙
3
𝑘̃
3

̇̂
𝑘
3
− 𝑙
4
𝑘̃
4

̇̂
𝑘
4
− 𝑙
5

̇̂
𝑘
3

= s (D𝜏nom − 𝛽q
𝑒
) + s (D𝜏adp + L) + s (D𝜏mis + ΔD𝜏)

−
(1 − 𝜀)

𝑙
1

𝜋̃ ̇̂𝜋 − 𝑙
3
𝑘̃
3

̇̂
𝑘
3
− 𝑙
4
𝑘̃
4

̇̂
𝑘
4
− 𝑙
5

̇̂
𝑘
3
.

(29)

With (25), it follows that

s (D𝜏nom − 𝛽q
𝑒
) ≤ sD𝜏nom + 𝛽

󵄩󵄩󵄩󵄩q𝑒
󵄩󵄩󵄩󵄩 ‖s‖

≤ −𝜅𝑘
1
𝛽 ‖s‖ 󵄩󵄩󵄩󵄩q𝑒

󵄩󵄩󵄩󵄩 + 𝛽
󵄩󵄩󵄩󵄩q𝑒

󵄩󵄩󵄩󵄩 ‖s‖ − 𝐾𝜅

= − (𝑘
1
𝜅𝛽 − 𝛽)

󵄩󵄩󵄩󵄩q𝑒
󵄩󵄩󵄩󵄩 − 𝜅𝐾

≤ −𝜅𝐾.

(30)

In the same way, with (26), the following equality is
yielded:

s (D𝜏adp + L) ≤ sD𝜏adp + ‖s‖ ‖L‖

≤ −𝜅 (𝑘̂
3
−
𝛼
0

𝜅
) ‖s‖ − 𝜅 (𝑘̂

4
−
𝛼
1

𝜅
) ‖s‖ ‖𝜔‖

− 𝜅 (𝑘̂
5
−
𝛼
2

𝜅
) ‖s‖ ‖𝜔‖2

= 𝜅𝑘̃
3
‖s‖ + 𝜅𝑘̃

4
‖s‖ ‖𝜔‖ + 𝜅𝑘̃

5
‖s‖ ‖𝜔‖2.

(31)
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Define 𝜑(𝑡) = ‖D†(𝜏nom + 𝜏adp)‖
∞

. If the choice of the
control gains is such that 3‖ΔD‖

∞
‖D−1‖

∞
= 𝜀 < 1, using the

inequality xy ≤ 3‖x‖
∞
‖y‖
∞
> 0 for any vector x, y ∈ R𝑛 and

applying (29) lead to

s (D𝜏mis + ΔD𝜏)

= sΔD (𝜏nom + 𝜏adp + 𝜏mis) + sD𝜏mis

≤ 3‖ΔD‖
∞

󵄩󵄩󵄩󵄩󵄩
D†󵄩󵄩󵄩󵄩󵄩∞𝜑 (𝑡) ‖s‖∞ + sΔD𝜏mis + sD𝜏mis

≤ 𝜀𝜑 (𝑡) ‖s‖
∞
− (𝜋̂
1
− 1) 𝜑 (𝑡) ‖s‖

∞

+ sΔD[−
(𝜋̂
1
− 1) 𝜑 (𝑡)D†s
‖s‖
∞

]

= (1 − 𝜀) 𝜋̃
1
𝜑 (𝑡) ‖s‖

∞
.

(32)

Substituting (30)–(32) into (29), consequently, it follows
that

𝑉̇ ≤ −𝜅𝐾. (33)

And then,

∫

𝑡

0

𝑉̇
2
(𝜇) 𝑑𝜇 ≤ −𝜅𝐾∫

𝑡

0

𝑑𝜇; that is,

𝑉
2
(𝑡) − 𝑉

2
(0) ≤ −𝜅𝐾𝑡.

(34)

Due to 𝑉
2
(𝑡) ≥ 0, solving (34) leads to 𝑉

2
(𝑡) ≡ 0, for 𝑡 ≥

𝑡
𝐹2
,

𝑡
𝐹2
≤ −

𝑉
2
(𝑡) − 𝑉

2
(0)

𝜅𝐾
. (35)

Then, it can be concluded that the system states reach the
surface s(𝑡) = 0 in finite time.Thereby, the proof is completed
here.

Remark 5. The controller (24) includes three parts: 𝜏adp(𝑡)
is used to compensate for system uncertainty caused by the
external disturbance and moment inertia, 𝜏mis(𝑡) is used
to accommodate actuator misalignment, and 𝜏nom(𝑡) is the
nominal control.

Theorem6. Consider the attitude tracking system given by (5),
(9), and (10). If the control scheme (24) is implemented, then
the attitude tracking maneuver can be accomplished in a finite
time 𝑡

𝐹
= 𝑡
𝐹1

+ 𝑡
𝐹2
; that is, 𝜔e(𝑡) ≡ 0 and e(𝑡) ≡ 0 are

guaranteed for all the time 𝑡 ≥ 𝑡
𝐹
.

Proof. It is obtained from Theorem 4 that all the states of
the attitude tracking system reach the sliding mode surface
s(𝑡) = 0 in finite-time 𝑡

𝐹2
and maintain the motion state on

the slide mode surface. Furthermore, from Theorem 3, it is
obtained that once the system state reaches the slide mode
surface (14) the system state can reach the equilibrium point
(𝑒
0
, e) = (1,0) in finite time 𝑡

𝐹1
. Therefore, for any initial state

Q(0) and𝜔(0), the desired attitude trajectory can be followed
in a finite time 𝑡

𝐹
; that is, e(𝑡) ≡ 0, 𝑒

0
(𝑡) ≡ 1, and 𝜔e(𝑡) ≡ 0

are achieved for all the time 𝑡 ≥ 𝑡
𝐹
. Thereby, the proof is

completed here.
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Figure 2: Configuration of four reaction wheels.

4. Numerical Simulation Results

4.1. ReactionWheel Configuration. To demonstrate the effec-
tiveness and performance of the proposed compensation
control scheme, numerical simulations have been carried out
using the rigid spacecraft system (3) and (6) in conjunction
with the developed compensation control law (24). The
spacecraft is activated by four reaction wheels with a limited
control torque 𝑢max = 0.1N⋅m. The configuration of those
four actuators is shown in Figure 2. 𝛼

𝑖
= 35.26

∘ and 𝛽
𝑖
= 45
∘

are the nominal alignment angles, 𝑖 = 1, 2, 3, 4. Δ𝛼
𝑖
and Δ𝛽

𝑖

are the misalignment angles.
With the configuration shown in Figure 2, the relation

between the actual output torque of reaction wheel and the
total torque acting on the spacecraft is to be calculated as

u (𝑡) = 𝜏
1
(

cos (𝛼
1
+ Δ𝛼
1
) sin (𝛽

1
+ Δ𝛽
1
)

− sin (𝛼
1
+ Δ𝛼
1
)

cos (𝛼
1
+ Δ𝛼
1
) cos (𝛽

1
+ Δ𝛽
1
)

)

+ 𝜏
2
(

− cos (𝛼
2
+ Δ𝛼
2
) cos (𝛽

2
+ Δ𝛽
2
)

− sin (𝛼
2
+ Δ𝛼
2
)

cos (𝛼
2
+ Δ𝛼
2
) sin (𝛽

2
+ Δ𝛽
2
)

)

+ 𝜏
3
(

− cos (𝛼
3
+ Δ𝛼
3
) sin (𝛽

3
+ Δ𝛽
3
)

− sin (𝛼
3
+ Δ𝛼
3
)

− cos (𝛼
3
+ Δ𝛼
3
) cos (𝛽

3
+ Δ𝛽
3
)

)

+ 𝜏
4
(

cos (𝛼
4
+ Δ𝛼
4
) cos (𝛽

4
+ Δ𝛽
4
)

− sin (𝛼
4
+ Δ𝛼
4
)

− cos (𝛼
4
+ Δ𝛼
4
) sin (𝛽

4
+ Δ𝛽
4
)

) .

(36)

Although the misalignment angles exist due to finite-
manufacture technique and vehicle vibration, those angles
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Δ𝛼
𝑖
, Δ𝛽
𝑖
(𝑖 = 1, 2, 3, 4) are small values. They can be

approximated by
cosΔ𝛼

𝑖
≈ 1, sinΔ𝛼

𝑖
≈ Δ𝛼
𝑖
, cosΔ𝛽

𝑖
≈ 1,

sinΔ𝛽
𝑖
≈ Δ𝛽
𝑖
, sinΔ𝛼

𝑖
sinΔ𝛽

𝑖
≈ 0

(𝑖 = 1, 2, 3, 4) .

(37)

Hence, (36) can be re written as
u (𝑡) = D𝜏 (𝑡) + ΔD𝜏 (𝑡) , (38)

whereD and ΔD = (ΔD
1
, ΔD
2
, ΔD
3
, ΔD
4
) are calculated as

D = (

cos𝛼
1
sin𝛽
1
− cos𝛼

2
sin𝛽
2
− cos𝛼

3
sin𝛽
3

cos𝛼
4
sin𝛽
4

− sin𝛼
1

− sin𝛼
2

− sin𝛼
3

− sin𝛼
4

cos𝛼
1
cos𝛽
1

cos𝛼
2
cos𝛽
2
− cos𝛼

3
cos𝛽
3
− cos𝛼

4
cos𝛽
4

)

=(

√3

3
−
√3

3
−
√3

3

√3

3

−
√3

3
−
√3

3
−
√3

3
−
√3

3
√3

3

√3

3
−
√3

3
−
√3

3

),

ΔD
1
= (

Δ𝛽
1
cos𝛼
1
cos𝛽
1
− Δ𝛼
1
sin𝛼
1
sin𝛽
1

−Δ𝛼
1
cos𝛼
1

−Δ𝛽
1
cos𝛼
1
sin𝛽
1
− Δ𝛽
1
sin𝛼
1
cos𝛽
1

)

ΔD
2
= (

−Δ𝛽
2
cos𝛼
2
cos𝛽
2
+ Δ𝛼
2
sin𝛼
2
sin𝛽
2

−Δ𝛼
2
cos𝛼
2

−Δ𝛽
2
cos𝛼
2
sin𝛽
2
− Δ𝛽
2
sin𝛼
2
cos𝛽
2

)

ΔD
3
= (

−Δ𝛽
3
cos𝛼
3
cos𝛽
3
+ Δ𝛼
3
sin𝛼
3
sin𝛽
3

−Δ𝛼
3
cos𝛼
3

Δ𝛽
3
cos𝛼
3
sin𝛽
3
+ Δ𝛽
3
sin𝛼
3
cos𝛽
3

)

ΔD
4
= (

Δ𝛽
4
cos𝛼
4
cos𝛽
4
− Δ𝛼
4
sin𝛼
4
sin𝛽
4

−Δ𝛼
4
cos𝛼
4

Δ𝛽
4
cos𝛼
4
sin𝛽
4
+ Δ𝛼
4
sin𝛼
4
cos𝛽
4

).

(39)
Remark 7. Theorem 4 gives out the sufficient condition
3‖ΔD‖

∞
‖D†‖
∞

= 𝜀 < 1 of efficacious processes on reaction
wheel installation deviation ΔD for guaranteeing the attitude
controller (24). Particulary, according to the definition ΔD
and matrix norm, then ‖ΔD‖

∞
≤ max

𝑖=1,2,3
𝜃
𝑖
, where

𝜃
1
=

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖 sin𝛼𝑖 sin𝛽𝑖
󵄨󵄨󵄨󵄨 +

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛽𝑖 cos𝛼𝑖 cos𝛽𝑖
󵄨󵄨󵄨󵄨

=
√6

6

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖
󵄨󵄨󵄨󵄨 +

√3

3

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛽𝑖
󵄨󵄨󵄨󵄨 ,

𝜃
2
=

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖 cos𝛼𝑖
󵄨󵄨󵄨󵄨 =

√6

3

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖
󵄨󵄨󵄨󵄨 ,

𝜃
3
=

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖 sin𝛼𝑖 cos𝛽𝑖
󵄨󵄨󵄨󵄨 +

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛽𝑖 cos𝛼𝑖 sin𝛽𝑖
󵄨󵄨󵄨󵄨

=
√6

6

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛼𝑖
󵄨󵄨󵄨󵄨 +

√3

3

4

∑

𝑖=1

󵄨󵄨󵄨󵄨Δ𝛽𝑖
󵄨󵄨󵄨󵄨 .

(40)

On the other hand, inequality 3‖ΔD‖
∞
‖D†‖
∞

= 𝜀 < 1

means that ‖ΔD‖
∞
= 𝜀/(3‖D†‖

∞
) < 1/(3‖D†‖

∞
). Therefore,

the establishment conditions max
𝑖=1,2,3,4

𝜃
𝑖
< 1/3‖D†‖

∞
=

0.2566 rad ofTheorem 4 from (40) can be obtained, that is to
say, the installation deviation angle of any two reactionwheels
is not larger than 0.2566 rad. Relying on this, this largest
installation deviation angle, that is max

𝑖=1,2,3,4
𝜃
𝑖
= 14.7021∘, of

the reaction wheel installation structure is considered in this
paper.

4.2. Simulation Results. The nominal inertia matrix of the
considered spacecraft is specified by [36]

J
0
= (

35 3 −1.5

3 28 2

−1.5 2 30

) kg ⋅m2, (41)

ΔJ = (1 + 𝑒
−0.1𝑡

+ 2𝜗 (𝑡 − 10) − 4𝜗 (𝑡 − 20)) diag (3, 2, 1)
(42)

which incorporated into the model, where 𝜗(⋅) is defined as
𝜗(𝑡 ≥ 0) = 1 and 𝜗(𝑡 < 0) = 0. External disturbance d(𝑡) is
chosen as [35]

d (𝑡) = (‖𝜔‖
2

+ 0.05) (sin 0.8𝑡, cos 0.5𝑡, cos 0.3𝑡)𝑇. (43)

The reactionwheelmisalignment angleΔ𝛼
𝑖
(𝑖 = 1, 2, 3, 4)

can be selected randomly between −4.5∘∼+4.5∘, and Δ𝛽
𝑖
(𝑖 =

1, 2, 3, 4) can be selected randomly between −5.5∘∼+5.5∘.
In this simulation, spacecraft initial parameter

is set as follows: initial angular velocity 𝜔
𝑖
(0) =

[0.1 −0.1 −0.05]
∘

/𝑠, 𝑖 = 1, 2, 3; initial attitude quaternary
q
𝑖
(0) = [0.181 −0.287 0.792 −0.524]

𝑇, 𝑖 = 0, 1, 2, 3; the
corresponding initial roll angle, pitch angle, and yaw angle
are set 0.2∘, −0.4∘ and −0.3∘ respectively. The control gains
are selected by the following list: 𝛽 = 0.7, 𝐾 = 0.05, 𝜅 = 1.05,
𝑘
𝑖
= 1.5 (𝑖 = 1, 3, 4, 5), as 𝑙

𝑖
= 1.5 (𝑖 = 1, 3, 4, 5); moreover,

the initial of the adaptive update laws are ̇̂𝜋
1
(0) = 1.25,

̇̂
𝑘
3
(0) = 0.68, ̇̂

𝑘
4
(0) = 0.42, ̇̂

𝑘
5
(0) = 0.22.

To demonstrate the effectiveness of the proposed mis-
alignment compensation and disturbance rejection scheme,
a spacecraft is numerically simulated using the proposed
control compensation strategy (24).

We see in Figures 3–8 the controller managed to stabi-
lize the origin equilibrium point in 30 seconds with great
pointing accuracy. Indeed, since the knowledge of spacecraft
inertia parameters was not required and an implicit integral
item was incorporated in the control law design, external
disturbance effect on the attitude control performance can be
compensated efficiently, and also great robustness to system
uncertainties, such as misalignment, can be guaranteed.

We can see in Figures 3 and 4 the time responses
of angle velocity and attitude angle; the proposed control
scheme surely realized the high precision stable control in
the presence of external disturbance, uncertain moment of
inertia, and reaction wheel misalignment, and the pointing
accuracy is superior to 0.01∘; the attitude stable precision
is superior to 0.001∘/s. Meanwhile, from Figures 5 and 6,
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we can see that for compensating the misalignment and
other uncertainties, the designed control commandof control
redundancy configuration for 4 reaction wheels 𝜏 is allocated
to the three-actual-output torque u, and then the purpose of
compensation, attitude high precision control is realized. In
addition, the finite-time control validity is shown in Figure 8.
And from Figure 8, we can see that the spacecraft attitude
control system status has realized the tracking control at
𝑡
𝐹
= 30.5. Thereinto, the spacecraft attitude has arrived at

slide mode surface s at 𝑡
𝐹1

= 25.9; afterwards, the statuses
converge to equilibrium point at 𝑡

𝐹2
= 5.4 under the normal

control 𝜏nom(𝑡). The same validity of finite-time attitude
compensation control strategy proposed in this paper can be
further proved from the time response of the quaternion as
shown in Figure 7.

From the above illustrated simulation results, it is shown
that the proposed scheme can accomplish the attitude stabi-
lization in finite-time in presence of time-varying external
disturbances, uncertain inertial parameters, and even reac-
tion wheel installation deviation.

5. Conclusions and Future Works

Considering the spacecraft issues about reaction misalign-
ment, external disturbances, and parameters uncertainty, in
this paper, a finite-time adaptive attitude compensation con-
trol has been proposed. A quantitative installation deviation
angle analysis has been done and given out the value range
of the reaction wheel misalignment angle. In the end the
system stability and engineering practical value have been
discussed from the perspective of theory and engineering.
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Figure 8: Time response of sliding mode surface.

Numerical simulation of this novel control strategy was
also presented to confirm the advantages and improvements
over existing controllers. The case of actuator misalignment
mentioned in Section 4 had only discussed for four reaction
wheel configuration, but this compensation control scheme is
suitable formore than that reactionwheel number.Moreover,
the actuator faults have not been considered. The latter case
should be as one of subjects for future research. Meanwhile,
the method optimal control approach combined robust
control [37, 38] also can be applied in this field.
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