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Testing and maintenance activities of safety equipment have drawn much attention in Nuclear Power Plant (NPP) to risk and
cost control. The testing and maintenance activities are often implemented in compliance with the technical specification and
maintenance requirements. Technical specification and maintenance-related parameters, that is, allowed outage time (AOT),
maintenance period and duration, and so forth, in NPP are associated with controlling risk level and operating cost which need to
be minimized. The above problems can be formulated by a constrained multiobjective optimization model, which is widely used
in many other engineering problems. Particle swarm optimizations (PSOs) have proved their capability to solve these kinds of
problems. In this paper, we adopt PSO as an optimizer to optimize the multiobjective optimization problem by iteratively trying to
improve a candidate solution with regard to a given measure of quality. Numerical results have demonstrated the efficiency of our
proposed algorithm.

1. Introduction

Improvement of the availability performance for safety-
related systems has drawn much attention in Nuclear Power
Plant (NPP) nowadays. One way to increase availability of
these systems is to improve availability of the equipment that
constitutes them. In this way, people often pay attention to
the more efficient testing and maintenance activities. NPPs
often pursuemore efficient testing andmaintenance activities
to control risk and cost. Actually, safety-critical equipment is
normally on standby till occurrence of an accident situation
which requires safety-related systems to prevent or mitigate
the accident process. In order to keep safe-related systems
at a high level of availability or safety, regular testing and
maintenance activities are implemented. Efficient regular
testing andmaintenance strategy can improve the availability
performance of the systems, and meanwhile it will lead to
great expenditure cost. Therefore, both risk controlling and
expenditure effectiveness have drawnmuch attention in NPP
[1, 2].

Technical specifications define the limits and conditions
for operating NPPs which can be seen as a set of safety

rules and criteria required as a part of safety analysis report
of each NPP. Both technical specifications and maintenance
activities are associated with controlling risk and then with
availability of safety-related systems. The resource related
to risk controlling rules and criteria formally enter into
optimization problems. Using a limited expenditure resource
to keep safety-critical equipment at a high level of availability
or safety actually is a constrainedmultiobjective optimization
problem where the cost or the burden, that is, number of
tests conducted, duration, incurred cost, and so forth, is to
be minimized while the unavailability or the performance of
the safety-critical equipment is constrained at a given level.

By now, some researchers have made great achievements
in nuclear technology area. References [3, 4] presented a
constrained multiobjective optimization model to solve this
problem using genetic algorithm (GA); reference [5] first pre-
sented PSA-based techniques to solve risk-cost maintenance
and testing model of an NPP using GA; reference [6] puts
forward using a multiobjective approach to regulate Nuclear
Power Plant (NPP); reference [7] presents using fuzzy-genetic
approach to optimize the test interval of safety systems atNPP
considering parameters uncertainty. In this paper, we put
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forward using PSO to solve the constrained multiobjective
optimization problem which simulates the testing and main-
tenance activities. The PSO method is firstly used to solve
themultiobjective optimization problem described by testing
andmaintenance activities inNPPs. It is a heuristic algorithm
and can offer the solution by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Numerical results have demonstrated the reasonability of
PSO method.

The plan of this paper is the following: Section 2
presents the unavailability and cost models of critical sys-
tems/components of NPP; Section 3 gives the multiobjective
problem model; Section 4 reviews PSO method; Section 5
presents a case study; finally, Section 6 draws a short conclu-
sion.

2. System Risk and Cost Function

2.1. System Unavailability Model. As to nuclear facilities, the
system unavailability is classified into three types: compo-
nent’s unavailability, common failure, and human errors. In
this paper, we just consider the component’s unavailability
which is caused by random failure and test and maintenance
activities which are the functions of the optimization vari-
ables such as test interval, test duration, maintenance period,
allowed outage time, and so on. The system unavailability is
often modeled by fault tree using rare-event approximation
as follows [4]:

𝑈system (𝑋) ≈ ∑

𝑗

∏

𝑖

𝑢𝑗𝑖 (𝑋) , (1)

where 𝑋 is the decision variable vector; the sum in 𝑗 refers
to the number of minimal cut sets generated from the
considered system structure function and the product in 𝑖

represents the number of the basic events belonging to the
corresponding MCS.The 𝑢𝑗𝑖(𝑋) represents the unavailability
of the basic event 𝑖 contained inminimal cut sequence (MCS)
𝑗.

The unavailability expressions of basic events caused by
random failure are written as [4]:

𝑢𝑟 (𝑋, 𝑇) ≈ 𝜌 + 𝜆 ⋅ 𝑇. (2)

𝑢𝑟 (𝑋) ≈ 𝜌 +
1

2
𝜆 ⋅ 𝑇. (3)

Equation (2) is the time-dependent unavailability evalu-
ated at 𝑡 = 𝑇, where 𝜌 denotes per-demand failure probability
and 𝜆 represents the failure rate. Equation (3) is the average
time-dependent over a given time span 𝑇.

To reflect the effect of age, preventive maintenance, and
working conditions, an averaged standby failure rate 𝜆 is
developed [8, 9]:

𝜆 = 𝜆0 +
1

2
𝛼 ⋅ 𝑀 ⋅ (Ψ (𝑍))

2
⋅
1

𝜀
⋅ (2 − 𝜀) (4)

𝜆 = 𝜆0 +
1

2
𝛼 ⋅ 𝑀 ⋅ (Ψ (𝑍))

2
⋅ [1 + (1 − 𝜀) ⋅ (

𝐿

𝑀
− 3)] . (5)

Table 1: Meanings of the parameters used in (4)-(5).

Parameter Meaning
𝜆0 The residual standby failure rate
𝛼 The linear aging factor
Ψ(𝑍) Working condition factor
𝜀 Themaintenance effectiveness factor
𝑀 The period of a preventive maintenance
𝐿 Overhaul period to replace a component

Note that (4) is applicable for proportional age setback
(PAS) mode, and (5) is used for proportional age reduction
PAR.The meanings of the parameters involved in (4) and (5)
are listed in Table 1.

Therefore, one could apply (4) or (5) into (2)-(3) to
account for random failure contributions considering effect
of age, preventive maintenance, and working conditions.

Next, let us consider the models to account for the testing
and maintenance activities effect, [9, 10] developed three
expressions to characterize such effects:

𝑢𝑡 (𝑋) ≈ 𝑓𝑡 (𝑋) ⋅ 𝑡 ⋅ 𝑞𝑡

𝑢𝑚 (𝑋) ≈ 𝑓𝑚 (𝑋) ⋅ 𝑚 ⋅ 𝑞𝑚

𝑢𝑐 (𝑋) ≈ 𝑓𝑐 (𝑋) ⋅ 𝑑 (𝑋) .

(6)

Themeanings of notations used in (6) are listed in Table 2.
Given that a test interval 𝑇 and preventive maintenance

period 𝑀, the 𝑓𝑡(𝑋), 𝑓𝑚(𝑋), 𝑓𝑐(𝑋) can be calculated as
follows:

𝑓𝑡 (𝑋) =
1

𝑇
(7)

𝑓𝑚 (𝑋) =
1

𝑀
(8)

𝑓𝑐 (𝑋) ≈
1

𝑇
⋅ 𝑢𝑟 (𝑋, 𝑇) . (9)

Note that, in (9), 𝑓𝑐(𝑋) can be calculated from (2)
replacing 𝜆 with 𝜆.

Additionally,𝑑(𝑥) is often restricted by the allowedoutage
time (AOT) in the standardPRAand is often calculated by the
following relationships:

𝑑 (𝑋) = 𝜇 ⋅ 𝐺 (𝑋)

𝐺 (𝑋) = 1 − 𝑒
−𝐷/𝑢

,

(10)

where𝐷 represents the alloweddowntime;𝜇 is themean time
to repair.
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Table 2: Meanings of the notations in (6).

Notation Meanings
𝑢𝑡(𝑋) Unavailability caused by testing
𝑢𝑚(𝑋) Unavailability caused by preventive maintenance
𝑢𝑐(𝑋) Unavailability caused by corrective maintenance
𝑓𝑡(𝑋) The rate of testing events
𝑓𝑚(𝑋) The rate of preventive maintenance events
𝑓𝑐(𝑋) The rate of corrective maintenance events
𝑡 Mean time of testing
𝑚 Mean time of preventive maintenance
𝑑(𝑋) Mean downtime of corrective maintenance
𝑞𝑡 Fraction of the total time t with the component down
𝑞𝑚 Fraction of the total time𝑚 with the component down

2.2. System Cost Function. As to equipment, the cost expres-
sions due to implementing test andmaintenance activities are
often expressed as follows [8–10]:

𝑐𝑡 (𝑋) =
1

𝑇
⋅ 𝑐ℎ𝑡

𝑐𝑚 (𝑋) =
1

𝑀
⋅ 𝑐ℎ𝑚

𝑐𝑜 (𝑋) =
1

𝐿
⋅ 𝑐𝑟

𝑐𝑐 (𝑋) = 𝑓𝑐 (𝑋) ⋅ 𝑑 (𝑋) ⋅ 𝑐ℎ𝑐

𝑐𝑠 (𝑋) = 𝑓𝑐 (𝑋) ⋅ [1 − 𝐺 (𝑋)] ⋅ 𝑇𝑠 ⋅ 𝑐ℎ𝑠

𝑐𝑢 = 𝑇𝑠 ⋅ 𝑐ℎ𝑠.

(11)

The meanings of the notations used in (11) are listed in
Table 3.

Then, the system cost model is easily formulated by
summing up the corresponding cost contributions of the
relevant components as follows:

𝐶 (𝑋) =

𝑛

∑

𝑖=1

𝑐𝑖 (𝑋) , (12)

where 𝑛 represents the total number of the components in the
considered system.Obviously, thismodel can be described by
a multiobjective optimization problem.

2.3. Constraints. The presence of constraints significantly
affects the performance of an optimization algorithm, includ-
ing evolutionary search methods. Satisfying constraints is a
difficult problem in itself often. There have been a number
of approaches to impose constraints including rejection of
infeasible solutions, penalty functions and their variants,
repair methods, use of decoders, and so on. A comprehen-
sive review on constraint handling methods is provided by
Michalewicz [11]. All the methods have limited success as
they are problem dependent and require a number of addi-
tional inputs. When constraints cannot be all simultaneously
satisfied, the problem is often deemed to admit no solution.

Table 3: Meanings of the notations in (11).

Notation Meanings
𝑐𝑡(𝑋) Yearly cost due to testing
𝑐𝑚(𝑋) Yearly cost due to preventive maintenance

𝑐𝑜(𝑋) Overhaul cost due to replacing a component with a
new one

𝑐𝑐(𝑋) Yearly cost due to corrective maintenance
𝑐𝑠(𝑋) Outage cost due to technique specification (TS)
𝑐𝑢 Constant cost due to the plant outage
𝑇𝑠 Average time required to start up NPP after shutdown
𝑐ℎ𝑡 Hourly cost for conducting surveillance test
𝑐ℎ𝑚 Hourly cost for preventive maintenance
𝑐ℎ𝑐 Hourly cost for corrective maintenance
𝑐ℎ𝑠 Hourly cost for loss of production for plant downtime
𝑐𝑟 The total cost of replacing a component

The number of constraints violated and the extent to which
each constraint is violated need to be considered in order to
relax the preference constraints. Generally speaking, we can
impose constraints over (1) the objective functions and (2)
the values the decision variables in vector 𝑥 can take. In our
first case, we apply constraints over one of the two possible
objective functions, risk or cost function, which will act as
an implicit restriction function alternatively. For example,
if the selected objective function to be minimized is the
risk, then the constraint is a restriction over the maximum
allowed value to its corresponding cost. In our second case,
we handle constraints directly over the values the decision
variables in vector 𝑥 can take, that is, technical specification
and maintenance requirements (TS&M) parameters, which
are referred to as explicit constraints. Examples of this type
of constraints in optimizing TS&M include limiting the
STIs, AOTs, and the preventive maintenance (PM) period
to take typified values because of practical considerations of
planning, representing each one, for example, an hour, a day,
a month, or any other realistic period in the plant, instead of
only mathematical solutions that are often unpractical.

3. Multiobjective Optimization Model

As to a general multiobjective optimization problem, it
often has 𝑛-dimensions decision variables and 𝑚-dimension
optimizing objectives and can be expressed as follows:

min 𝑌 = 𝐹 (𝑋) = (𝑓1 (𝑋) , 𝑓2 (𝑋) , . . . , 𝑓𝑚 (𝑋))

s.t. 𝑔𝑖 (𝑋) ≤ 0, 𝑖 = 1, 2, . . . , 𝑞

ℎ𝑗 (𝑋) = 0, 𝑗 = 1, 2, . . . , 𝑝

𝑋 ∈ [𝑋min, 𝑋max] ,

(13)

where 𝑋 is an 𝑛-dimension decision space and 𝑌 is an 𝑚-
dimension objective space defining 𝑚 mapping functions
fromdecision space to objective space.The𝑔𝑖(𝑋) represents 𝑞
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inequality constraints and ℎ𝑗(𝑋) represents 𝑝 equalities con-
straints.𝑋min and𝑋max denote the low and upper boundaries
of the decision variables, respectively.

The specific multiobjective optimization model for opti-
mizing testing and maintenance activities at NPP can be
expressed as follows:

min 𝐶 (𝑋)

𝑈system (𝑡) − 𝑈𝑔 ≤ 0

𝑋low ≤ 𝑋 ≤ 𝑋up,

(14)

where 𝑈𝑔 is a given limited unavailability level. In this paper
we are using PSO based techniques to solve the minimization
problem described with (14).

Multiobjective optimization has been applied in many
fields of science, including engineering, economics, and
logistics where optimal decisions need to be taken in the
presence of tradeoffs between two or more conflicting objec-
tives. For a nontrivial multiobjective optimization problem,
there does not exist a single solution that simultaneously
optimizes each objective. When one deals with multiob-
jective optimization problems with conflicting optimization
criteria, there is not only a single solution but also a set
of alternative solutions [12]. None of these solutions can
be said to be better than the others with respect to all
objectives. Since none of them is dominated by the others,
they are called nondominated solutions. The curve formed
by connecting these solutions is known as a Pareto optimal
front and the solutions that lay on this curve are called
Pareto optimal solutions. Classical optimization methods
for multiobjective optimization suggest converting it to a
single-objective optimization problem through emphasizing
one particular Pareto-optimal solution at a time. This is the
disadvantage of classical optimizationmethods, because find-
ing Pareto-optimal solutions set is required often. Recently,
a number of evolutionary algorithms (MOEAs) have been
proposed [13–15].The reason is their ability to obtainmultiple
Pareto-optimal solutions in one single simulation run. In
these algorithms, genetic algorithm (GA) is wisdom and
popular for multiobjective optimization problems and GAs
are adaptive methods that can be used in searching and
optimization problems. Genetic algorithms belong to the
larger class of evolutionary algorithms (EA), which generate
solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance,mutation, selection,
and crossover. The particle swarm optimization (PSO) is one
type of evolutionary algorithms (EAs); PSO shares many
similarities with evolutionary computation techniques such
as genetic algorithms (GAs). The system is initialized with
a population of random solutions and searches for optima
by updating generations. However, unlike GA, PSO has no
evolution operators such as crossover and mutation but its
particles have mnemonic ability of the historical optimal
positions. Thus PSO is of simplicity, flexibility, and easy
operation comparedwithGA. In PSO, the potential solutions,
called particles, fly through the problem space by following
the current optimum particles. As many other EAs such as
genetic algorithm (GA), Ant Colony Optimization (ACO),

and so forth, PSO can find Pareto optimal solutions and
have chances to find near global solutions, only with different
probability and reliability in finding these solutions.Themore
details of PSO will be introduced later on.

4. The Multiobjective Optimization
Algorithm Based on PSO

4.1. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) has been successfully used to optimize non-
linear functions, combinatorial optimization problems and
multiobjective problems [16, 17] because of its simplicity,
flexibility, easy operation, and fast convergence. PSO is
originally attributed to Eberhart et al. [18, 19] and was first
intended for simulating social behaviour, [20] as a stylized
representation of the movement of organisms in a bird flock
or fish school. The algorithm is simplified and it is observed
to be performing optimization. The book by Kennedy and
Eberhart [21] describes many philosophical aspects of PSO
and swarm intelligence. An extensive survey of PSO applica-
tions is made by Poli [22]. The PSO’s basic idea is having a
population of candidate solutions, here dubbed particles, and
moving these particles around in the search-space according
to simple mathematical formula over the particle’s position
and velocity. Each particle’s movement is influenced by its
local best known position and is also guided toward the best
known positions in the search-space, which are updated as
better positions are found by other particles. This is expected
to move the swarm toward the best solutions. However, as
many other metaheuristic methods, PSOs do not guarantee
that an optimal solution is ever found. More specifically, PSO
does not use the gradient of the problem being optimized;
PSO can therefore also be used on optimization problems that
are partially irregular, noisy, change over time, and so forth.

Let 𝑁 be the number of particles in the swarm, each
having a position 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷)

𝑇 in the search-
space and a velocity 𝑉𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝐷)

𝑇. Let 𝑃𝑖 =

(𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝐷)
𝑇 be the best known position of particle 𝑖.

There is the best particle in the swarm labeled by 𝑔 and let
𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝐷)

𝑇 be the best known position of the
entire swarm; that is to say,𝑃𝑔 is the optimal position of search
history before. Particles update their velocity and position as
the following formula:

V𝑘+1𝑖𝑗 = V𝑘𝑖𝑗 + 𝑐1𝑟1𝑗 (𝑝
𝑘
𝑖𝑗 − 𝑥
𝑘
𝑖𝑗) + 𝑐2𝑟2𝑗 (𝑝

𝑘
𝑔𝑗 − 𝑥

𝑘
𝑖𝑗) (15)

𝑥
𝑘+1
𝑖𝑗 = 𝑥

𝑘
𝑖𝑗 + V𝑘+1𝑖𝑗 , (16)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 denotes the 𝑗th dimension of
the particles, 𝑘 is the number of iterations, and 𝑐1, 𝑐2 are
the acceleration constant, whose values are often in [0, 2].
𝑟1 ∼ 𝑢(0, 1) and 𝑟2 ∼ 𝑢(0, 1) are two independent identity
distribution random numbers. Generally, 𝜐𝑖𝑗 is kept within
the range [𝑉min, 𝑉max]. The first part of formula (15) V𝑘𝑖𝑗 is the
particle velocity of the last iteration, the second part 𝑐1𝑟1𝑗(𝑝

𝑘
𝑖𝑗−

𝑥
𝑘
𝑖𝑗) is the cognitive part, and the third part 𝑐2𝑟2𝑗(𝑝

𝑘
𝑔𝑗 − 𝑥

𝑘
𝑖𝑗)
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Begin

Initialize population in hyperspace
(includes position and velocity)

Evaluate fitness of individual particle
(mark the personal best of each particle and

the global best of the whole population)

Modify velocities based on personal best and
global best

Update the position of each individual particle

Satisfy the terminal
condition? No

PSO terminates

Yes

Figure 1: PSO algorithm procedure.

is the momentum part. A basic PSO algorithm is shown in
Algorithm 1.

The summary flow chart of the basic PSO is shown in
Figure 1.

The basic PSO described above has a small number of
parameters that need to be fixed. One parameter is the size
of the population. This is often set empirically on the basis
of the dimensionality and perceived difficulty of a problem.
Values in the range 20–50 are quite common.

Also there are many variant PSOs based on the basic
PSO such as the PSO with inertia weight [19], the PSO with
constriction coefficients [23], and so forth. The PSO with
inertia weight is motivated by the desire to better control
the scope of the search, reduce the importance of 𝑉max, and
perhaps eliminate it altogether. The PSO with constriction
coefficients which is based on some form of damping of the
dynamics of a particle (e.g., 𝑉max) is necessary. These variant
PSOs are applicable in different situations. In this paper, we
only consider the basic PSO version to verify the validity of
PSO forminimizing the testing andmaintenance cost inNPP.

4.2. The Proposed Multiobjective Optimization Algorithm.
The basic idea of multiobjective optimization algorithm
based on PSO in this paper is that through spliting and
merging the dominated set and nondominated set repeatly,
we can reach a better balance between the algorithm effi-
ciency and accuracy. This is based on the idea of fitness
dominance, which is similar with the idea mentioned in
literatures [23–25]. Let the initial population size be 𝑛. 𝑃 𝑆𝑒𝑡

is one nondominated subset of the population whose size is
𝑛1 and 𝑁𝑃 𝑆𝑒𝑡 is another 𝑛2 size dominated subset which

meets 𝑛1 + 𝑛2 = 𝑛 (1 ≤ 𝑛1, 𝑛2 ≤ 𝑛). For any element
𝑋𝑗 ∈ 𝑁𝑃 𝑆𝑒𝑡, there at least exists an element 𝑋𝑖 ∈ 𝑃 𝑆𝑒𝑡

which holds that𝑋𝑖 dominates𝑋𝑗 (1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2). In
each iteration process, only update the elements in 𝑁𝑃 𝑆𝑒𝑡

and then compare them with the elements in 𝑃 𝑆𝑒𝑡 based
on fitness dominance rules. Then the dynamic switching
strategy can be described as follows: for any 𝑋𝑖 ∈ 𝑃 𝑆𝑒𝑡,
if there exist 𝑋𝑗 ∈ 𝑁𝑃 𝑆𝑒𝑡, holds 𝑋𝑗 dominates 𝑋𝑖, then
switch the positions of these two elements. After the previous
preparation, we are now ready to describe the multiobjective
optimization algorithm based on basic PSO (abbreviate it as
MOBPSO (see Algorithm 2)). Let the 𝑗th constraint for the
𝑗th dimension of 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷)

𝑇 be 𝑥𝑖𝑗-lower ≤ 𝑥𝑖𝑗 ≤

𝑥𝑖𝑗-upper (1 ≤ 𝑗 ≤ 𝐷).

5. Case Study

In this section, the high-pressure injection system (HPIS) is
considered a case study; the simplified structure diagram is
shown in Figure 2.

The system consists of 7 valves and 3 pumps.The function
is drawing water from the refueling water storage tank
(PWST) and discharges it into the cold legs of the reactor
cooling system through any of the two inlets, A or B. The
components reliability parameters are listed in Table 4.

The components cost information is shown in Table 5.
The constraints on the test intervals are listed in Table 6.
The constraints on components preventive maintenance

intervals are listed in Table 7.
The decision variables vector is chosen as

𝑋 = {𝑇1, 𝐾2, 𝐾3,𝑀1, 𝑛1,𝑀2, 𝐷1, 𝐷2} where 𝐷1 are 𝐷2 are
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(1) Initialize a population array of particles with random positions and velocities on𝐷

dimensions in the search space.
(2) For loop
(3) For each particle, evaluate the desired optimization fitness function in𝐷 variables.
(4) Compare particle’s fitness evaluation with its 𝑃𝑔. If current value is better than 𝑃𝑔, then

set 𝑃𝑔 equal to the current value, and 𝑃𝑖 equal to the current location 𝑋𝑖 in𝐷-dimensional space.
(5) Identify the particle in the neighborhood with the best success so far, and assign its index to

the variable 𝑔.
(6) Change the velocity and position of the particle according to (15)-(16).
(7) If a criterion is met (usually a sufficiently good fitness or a maximum number of iterations),

exit loop.
(8) end loop

Algorithm 1: Basic PSO [18].

(1) Initialize a population array of particles with random positions and velocities on𝐷

dimensions in the search space and the population size is 𝑛 = Pop Max.
(2) For 𝑖 = 1 to 𝑛

Evaluate the fitness function in𝐷 dimensional variables, namely,
F(𝑋𝑖) = {𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖), . . . , 𝑓𝑚(𝑋𝑖)}.
End for

(3) Divide the initial population into two subsets P Set and NP Set. whose population sizes are
𝑛1 and 𝑛2 respectively.

(4) Update the velocity and position of each particle according to (15)-(16).
Where 𝑝

𝑘
𝑔𝑗 is selected from the subset of P Set randomly. For the constraint-handling

approach, update the 𝑥
𝑘+1
𝑖𝑗 with 𝑥

𝑘
𝑖𝑗 + 𝑥

𝑘+1
𝑖𝑗 if 𝑥𝑘𝑖𝑗 + 𝑥

𝑘+1
𝑖𝑗 is in the constraint interval,

namely 𝑥
𝑘
𝑖𝑗 + 𝑥

𝑘+1
𝑖𝑗 is feasible.

(5) Dynamic switching strategy: Compare each particle in NP Set with that in P Set. Let the
particles in NP Set be𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝑛2

and the elements in P Set be𝑋1, . . . , 𝑋𝑗, . . . , 𝑋𝑛1
.

For 𝑖 = 1 to 𝑛2

For 𝑗 = 1 to 𝑛1

If F(𝑋𝑖) < F(𝑋𝑗)
Switch𝑋𝑖 and𝑋𝑗 then update their index and position in sets.
End if

End for
End for
Update the two sets P Set and NP Set.
If there exist 𝑘 same particles in P Set, delete them and re-initialize 𝑘 particles in NP Set,
and vice versa.
Update 𝑛1 and 𝑛2.
If 𝑛1 ̸= 𝑛 or not reaching the given maximum iterative number, goto Step 3.

Algorithm 2: MOBPSO.

Table 4: Components reliability parameters.

Equipment 𝜆0 (10
−6/h) 𝜌 (10−3) 𝑡/h 𝑢/h 𝑚/h

Valves 5.50 2.00 0.85 0.80 2.5
Pumps 3.50 0.55 5.00 4.5 25
Equipment Age type 𝛼 = 10−10/h2 Ψ(𝑧) 𝜀 𝑞𝑡/𝑞𝑚
Valves PAR 0.45 1 0.5 1
Pumps PAS 0.25 1 0.5 1

the allowed outage time for valves and pumps, respectively.
For the valves, the permitted range is 4 h ≤ 𝐷1 ≤ 24 h. As to
the pumps, the permitted range is 24 h ≤ 𝐷2 ≤ 168 h.

Table 5: Components cost information (RMB/h).

Equipment 𝑐ℎ𝑡 𝑐ℎ𝑐 𝑐ℎ𝑚 𝑐𝑟 𝑐𝑢

Valves 150 115 120 900 11100
Pumps 150 115 120 2700 11100

Our first case of study encompasses two different single
objective optimization problems, considering the optimiza-
tion of the risk function and adopting the cost function as an
implicit constraint or vice versa.

Firstly, we choose the system yearly cost as an objec-
tive function and the system unavailability is treated as
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Table 6: Constraints on test intervals (TI).

Test interval Valves Pumps Constraints Permitted range
𝑇1 V1, V2

PA, PB, PC 𝑇2 = 𝐾2 ⋅ 𝑇1

𝑇3 = 𝐾3 ⋅ 𝐾1 ⋅ 𝑇1

168 h ≤ 𝑇1 ≤ 8670 h
𝑇2 V3, V5 1 ≤ 𝐾2 ≤ 10
𝑇3 V4, V7, V8 1 ≤ 𝐾3 ≤ 10

RSWT

Pump A (PA)

Pump B (PB)

Pump C (PC)

Valve 1 (V1)

Valve 1 (V2)

Valve 3 (V3)

Valve 4 (V4)

Valve 5 (V5)

Valve 6 (V6)

Valve 7 (V7)

Inlet A

Inlet B

Figure 2: HPIS system of a PWR.
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Figure 3: Convergence evolution versus cost function.

a constraint (𝑢𝑔 ≤ 1.0𝑒 − 4). The customized basic PSO
described in previous section has been used as optimizer.The
optimization results are shown in Figure 3. From Figure 3,
we can see the mean value of fitness (cost) in one particle
decreases gradually along with the increasing of the iterative
number.

Then, we choose the system yearly unavailability as the
objective and treat the system yearly cost as a constraint (𝑐𝑔 <
2460RMB). The optimization results are shown in Figure 4.
The results show that the mean value of unavailability also
decreases as the increasing of the iterative number.

The optimized results are shown in Table 8.
As observed in Figures 3-4, objective functions are

becoming convergent with the increase of the iteration num-
ber. PSO optimizer finally presents a valid optimized variable
vector. In case 1, optimized results keep the considered system
nearly at the same risk level, but greatly reduce the cost.
Moreover, optimized solutions notably decrease the system
risk level remaining at almost the same expenditure cost.

In the second case we consider the model as a multi-
objective optimization problem and obtain the nondomi-
nated solutions withMOBPSO algorithm. Figure 5 shows the
obtained nondominated solutions.
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Figure 4: Convergence evolution versus risk function.
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Figure 5: Obtained nondominated solutions with MOBPSO.

6. Conclusions

One important aspect of the nuclear industry is to improve
the availability of safety-related equipment at NPPs to achieve
high safety and low cost levels. In this paper, the multiobjec-
tive optimization algorithm based on PSO has been applied
to solve the constrained multiobjective optimization of test-
ing and maintenance-related parameters of safety-related
equipment. The numerical results indicate that PSO is a
powerful optimizationmethod for findingNPP configuration
resulting in minimal cost and unavailability. Also based on
theMOBPSO, we obtain the nondominated solutions set.The
results successfully verify that the PSO is capable of finding
a nondominated solution of a constrained multiobjective
problem in resource effectiveness and risk control of NPP.
The multiobjective optimization algorithm based on PSO
should attract more attention to apply in optimization of
testing and maintenance activities of safety equipments at
NPPs. Exploring the capacity (including topology structure,
the optimal selection of parameters, and the integration with
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Table 7: Constraint on preventive maintenance intervals.

Maintenance
period Valve Pump Relationship Permitted range

𝑀1

𝑀2

V1–V7
—

—
PA, PB, PC

𝐿1 = 𝑛1 ⋅ 𝑀1

—

2 ≤ 𝑛1 ≤ 20
720 ≤ 𝑀1 ≤ 20280
720 ≤ 𝑀2 ≤ 20280

Table 8: Optimized results.

Variables Initial values Optimized results
Case 1 Case 2

𝑇1 2180 1629 2275
𝐾2 2 10 1
𝐾3 2 5 1
𝑛1 24 3 2
𝑀1 4000 14653 2507
𝑀2 4000 16805 10157
𝐷1 10 5 8
𝐷2 75 115 100
𝑈(𝑋) 4.0𝑒 − 4 1.8665𝑒 − 4 0.97693𝑒 − 5

𝐶(𝑋) 2460 1728.7 5767.2

other EAs, etc.) of PSO for the testing and maintenance cost
model is our future work.

Acronym

ACO: Ant Colony Optimization
AOT: Allowed outage time
GA: Genetic algorithm
HPIS: High-pressure injection system
MCS: Minimal cut sequence
NPP: Nuclear Power Plant
PAR: Proportional age reduction
PAS: Proportional age setback
PSWT: Refueling water storage tank
PSO: Particle swarm optimization.

Notation

𝜆: Failure rate
𝜆: Averaged failure rate
𝜆0: The residual standby failure rate
𝜇: Repair rate
𝑋: Decision variable vector
𝐹(𝑡): Cumulative distribution function
𝛼: Age cofactor
𝜀: The maintenance effectiveness factor
Ψ(𝑍): Working condition factor
𝐿: Overhaul period.
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