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The Maximum Principle [2, 13] is a well known necessary condition for optimality. This
condition, generally, is not sufficient. In [3], the author proved that if there exists regular
synthesis of trajectories, the Maximum Principle also is a sufficient condition for time-
optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza
optimization problems.'
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1. BELLMAN’S DYNAMIC PROGRAMMING
FOR OPTIMIZATION PROBLEM IN LAGRANGE FORM

Consider controlled object
x = f(x,u), (D

where x=(x',...,x)T€R" is the state of the object and u=
(',...,u")7 is the control that can run over a given set UC R":

uel. (2)
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178 V. BOLTYANSKI

The right-hand side f(x,u)=(f"(x,u),...,/"(x,u))” is assumed to
be smooth with respect to x and continuous with respect to x, u.
The upper index T is used, since we consider x, u and f(x,u) as
contravariant vectors (i.e., as column vectors).

A process x(2), u(?), to < t < t1, is said to be admissible if the function
u(r) with values in U is piecewise continuous, x(¢) is a continuous,
piecewise differentiable function, and x(t) = f(x(¢),u(t)), to<t<t,
except for a finite number of discontinuity points of «(¢). The moments
to, 1) are not fixed, i.e., they can vary for different admissible processes.

We assume that a terminal set M;CR" is given. Denote by G the
controllability region, i.e., the set of all initial points xq € R” which can
be transfered to M. In other words, xo € G if either xy € M, or there
exists an admissible process x(¢), u(f), to <t < t;, such that x(z) = x
and x(#,) € M,. In application, M usually is a smooth manifold. But in
this Section, we only assume that M, is closed in G, i.e., for every
compact set P C G, the intersection M;N P is compact, too.

Moreover, a function f°(x,u) is given that also is smooth with
respect to x and continuous with respect to x,u(x€G,ue U). For
every admissible process x(f), u(?), to < t < t,, define Lagrange perfor-
mance index

v " FOe(e), u(t)d. 3)

Let x(f), u(?), to <t <t;, be an admissible process with x(z,) € M;.
We say that the process is realized within G\M, if x(¢) € G\M, for
th<t<Hh.

Lagrange Optimization Problem Find admissible control transferring
a given initial point xo to M, within G\M; such that functional (3)
attains its minimal value. The process that solves the problem is said to
be L-optimal.

In Example 1 (Section 5), we illustrate the requirement that the
control transfers xo to M, within G\M;.

Now we explain Bellman’s idea for solution. Let x(2), u(?),
to <t <1, be the optimal process transferring a point x, to M, within
G\M,. We put

o) = - [ " FO(e(t), ue)) . @
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Assume that w(x) is smooth on G\ M and continuous on G. Starting
from x, and moving under action of a constant control 4y € U during
a time dt >0, we arrive to the point xo+dx where dx =f(xo, up)dt.
Assume, furthermore, that from xo+dx we move optimally to M.
Then, during the whole moving xq— (xo+dx) — M, we realize the
value fO(xo, uo)dt —w(xo+dx) of the functional (3). Evidently, this
value is not less than the optimal value — w(xo):

—w(xg) < £(xq, uo)dt — w(xq + dx).

Since

w(xo + dx) — w(xp) = ~ w(xo) At = i@w(xo) .

“ax —éx—,-—f'(xo,uo)dt,

i=1 i=1

we obtain, replacing xo, ug by x, u, respectively, Bellman inequality

Zgwa—i’f—)f"(x,u) <f%x,u), x€G\Mi, uel. (5)
i=1
Along the optimal process x(f), u(?), to <t < t;, transferring the point
Xo to M, within G\M,, Bellman inequality turns into the equality:
" ow(x(t)) ;
QD) i w(e), ult) = 1 (el u0), o<1 <01

i=1

The aforesaid gives the main idea of Bellman Dynamic Programming
(we don’t consider here the Dynamic Programming Method for
discrete processes and for other extremal problems [1]).

Remark that in the classical Variational Calculus, the set UC R" is
open and (assuming that for every xo€ G\M; the optimal control
exists) the function w(x) is smooth. But for non-classical case (say if U
is a closed subset of R"), in general, Bellman function w(x) is non-
smooth (cf. for example, [10, 11]), i.e., it is impossible to write and to
apply Bellman inequality (5).

2. IMPROVED FORM OF DYNAMIC PROGRAMMING

First we formulate a more general problem:

Auxiliary Optimization Problem Let G C R" be the controllability
region for controlled object (1), (2). Let, furthermore, g(x) be a smooth
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function defined on G. Instead of (3), consider performance index

7= gt + [ " FO(e(e), (). (6)

The problem is: Find an admissible process transferring a given initial
point xo to M; within G\ M, such that functional (6) attains its mini-
mal value. The process solving the problem is said to be 4-optimal.

Certainly, Auxiliary optimization problem and Lagrange one are
equivalent. Indeed, for every fixed initial point x,, functional (6) differs
from (3) only by the constant summand g(xo), and consequently both
the functionals attain their minimal values for the same process u(¢),
x(). Nevertheless, the additional summand g(x¢) in (6) is convenient
for Mayer and Bolza optimization problems considered below.

DerinitioN 1 Let K be a bounded, closed, s-dimensional convex
polyhedron and ¢ be a smooth, nondegenerate, one-to-one mapping
of K onto its image o(K)C R". Then ¢(K) is said to be a curved s-
dimensional polyhedron in R”. Let, furthermore, G C R" be an open set.
A set Q C G is said to be piecewise smooth if Q is representable as the
union of a family of curved polyhedra such that every compact set
M C G has points in common only with a finite number of them. If
each polyhedron in this representation has dimension < g, then Q is a
piecewise smooth set of dimension < gq. It is clear that every piecewise
smooth set @ C G is closed in G.

MAIN LEMMA Let GC R” be an open set and Q C G be a piecewise
smooth set of dimension <n—1. Let, furthermore, w(x) be a continuous
scalar function defined on G such that on G\(M; U Q) the function w(x) is
smooth and satisfies Bellman inequality

i (%f_)—i_ggi—f))fi(x,u)gfo(X,u). (7)

i=1

Then for each admissible process x(t), u(t), to <t<t,, where x(t) is
situated in G\M, for 1ty <t < t,, the following estimate holds:

g(x(t0)) + /,tlfo(X(t), u(f))de 2 w(x(t1)) — w(x(0)) + g(x(t1)).
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Proof Let ¢ be a positive number. The trajectory x(z), to <t < t;—¢,
has no points in common with M. Since M is closed in the open set
G, there exists a neighborhood W of the point xo=x(Zy) such that
every solution X(¢), 7o <t <t —¢, of the equation x = f(x,u(?)) with
any initial condition X(#))€ W has no common points with M;.
Furthermore, by Lemma 3.18 in monograph [4] (cf. also [3]), there is a
point Xy € W such that the solution x(¢), 7o < ¢ <1, —¢, of the equation
x = f(x,u(t)) with X(t)) =X has only a finite number of points in
common with Q. In other words, there are moments 6; <--- <
O, < t;—¢ such that x(f) e G\(M,UQ) for t€ty, t1 —el\{01,...,0k}.
Denote ¢y, t;—¢ by 6y, 0; 1, respectively. Then

x(H)eG\(MUQ) for 0;<t<biy1, i=0,1,... k.

For any moments 7, 7,41 With §; < 7; < 7;,1 < 6; 1 we have

%(w(x(’)) +g(x(1)) = i (a”(x(’)) N 8g(5c(z))) dsi (1)

pave ox’ ox' dt
_ (x(1)) 6g(x(t)) (5(0).
- Z,( il )ri)ut0)
£O((0),ul0)

on the segment [7;, ;1] (¢f. (7)). Integrating, we obtain

(7)) + 85 (ria1))) = (@(F() + (7))
< [ o), u(t))de

Ti

As 7;— 0, Ti4 1 — 6; 11, we conclude (by continuity of the function w)
(W(X(0is1)) + 8(X(0i41))) — (w(X(6:)) + &(x(6:)))
0i1
< / O (x(t),u(t)dt, i=01,... k.
0;

Summing up these inequalities over i=0,1,...,k, we find

n—€

FO(0), u(t))de > (w(x(ty — €)) + g(x(t) — €)))
— (w(x(1)) + g(x(10)))-

lo
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Finally, as X9 — xo (i.e., € — 0 and the neighborhood W becomes less),
we obtain the inequality indicated in the Main Lemma. [ ]

Now we are able to establish a sufficient condition for 4-optimality
in improved form of Dynamic Programming.

THEOREM 1 Assume that the controllability region for the controlled
object (1), (2) with the terminal set M, is an open set GC R" and M, is
closed in G. Assume, furthermore, that a continuous scalar function w(x)
is defined on G such that

(1) w(x)=—g(x) on My;

(ii) for every point xq € G\ M, there exists an admissible control u(t; x,)
transferring xo to My such that the corresponding trajectory x(t, xo)
is situated in G\M, except for the terminal point and the
corresponding value of functional (6) is equal to —w(xo);

(iil) there exists a piecewise smooth set Q C G with dim Q <n—1 such
that on G\(M1UQ) the function w(x) is smooth and for all
x € G\(MUQ), ue U Bellman inequality (7) holds.

Then all controls u(t; xo) are A-optimal.

Proof By Main Lemma, for every admissible control u(?), 1o <t < ty,
transferring xo to M; within G\ M, the estimate

st + [ " Pl u(0)dt > w(x(n)) — w(xo) + glx(t) = —wlxo)

holds, i.e., it is impossible to arrive to M; (within G\ M) with lesser
value of functional (6) than —w(xy). Consequently all controls u(z; xo)
are A-optimal. ]

For g(x)=0, the Auxiliary optimization problem turns
into Lagrange one. Thus, putting g(x)=0 in Theorem 1, we
obtain the following sufficient condition of optimality for Lagrange
problem:

THEOREM 2 Assume that the controllability region for the controlled
object (1), (2) with the terminal set M, is an open set G C R" and M, is
closed in G. Assume, furthermore, that a continuous scalar function w(x)
is defined on G such that
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(1) w(x)=0 on My;

(i) for every point xo € G\M,, there exists an admissible control u(t; xo)
transferring xo to M, such that the corresponding trajectory x(t, Xo)
is situated in G\M, except for the terminal point and the
corresponding value of functional (3) is equal to —w(xo);

(iii) there exists a piecewise smooth set Q C G with dim Q <n—1 such
that on G\(M,UQ) the function w(x) is smooth and for all
x € G\(MUQ), ue U Bellman inequality (5) holds.

Then all controls u(t; x,) are L-optimal. [ ]

In particular, if f°(x,u)=1, then (3) has the form JL=
ft:)' dt =t — ty, ie., Lagrange optimization problem is reduced to
time-optimality. Thus from Theorem 2 we obtain the following result

(proved earlier [3, 4]):

THEOREM 3 Assume that the controllability region for the controlled
object (1), (2) with the terminal set M, is an open set G C R” and M, is
closed in G. Assume, furthermore, that a continuous scalar function w(x)
is defined on G such that

(1) w(x)=0on M;;
(ii) for every point xo € G\ M, there exists an admissible control u(t; x,)
transferring xo to M, in the time —w(xy);
(iil) there exists a piecewise smooth set Q C G with dim Q <n—1 such
that on G\(M,UQ) the function w(x) is smooth and for all
x€G\(M,UQ), ue U satisfies Bellman inequality

i:a;i)’.c)fi(x, u) <l1.

i=1
Then all controls u(t; xy) are time-optimal. n
We now consider one problem more.

Mayer Optimization Problem Let g(x) be a smooth function defined
on G. Instead of (3), consider Mayer performance index

T = g(x(11)). (8)

The problem is: Find an admissible process transferring a given initial
point x, to M, within G\M, such that functional (¥) attains its
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minimal value. The process solving the problem is said to be
M-optimal.

To solve this problem, we replace the function 1 %(x, u) by

50 =28 ). ©)

Then the functional (6) takes the form

h d
I =g) + [ Gear
P t

= g(x0) + (g(x(1)) — g(x0)) = g(x(11)) = J".

Thus, replacing 1 °(x, u) by (9) in Theorem 1, we obtain the following
result:

THEOREM 4 Assume that the controllability region for the controlled
object (1), (2) with the terminal set M, is an open set G C R" and M is
closed in G. Assume, furthermore, that a continuous scalar function w(x)
is defined on G such that

() w(x)= —g(x) on My;

(ii) for every point xo € G\ M, there exists an admissible control u(t; x,)
transferring x to M such that the corresponding trajectory x(t, xo)
is situated in G\M, except for the terminal point and the
corresponding value of functional (8) is equal to —w(xy);

(iii) there exists a piecewise smooth set Q C G with dim Q <n—1 such
that on G\(M,UQ) the function w(x) is smooth and for all
x € G\(M,UQ), ue U satisfies Bellman inequality

S 20 i, <o (10)

i=
Then all controls u(t; xo) are M-optimal.

Finally, consider Bolza optimization problem that is a combination
of Lagrange and Mayer ones.

Bolza Optimization Problem Let g(x) be a smooth function defined
on G. Consider Bolza performance index:

JB =g(x(t1)) + /I“fo(x(t),u(t))dt. (11)
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The problem is: Find an admissible process transferring a given initial
point x, to M, within G\ M; such that functional (11) attains its mini-
mal value. The process solving the problem is said to be B-optimal.

To solve this problem, we replace the function 1 %(x, u) by
7o)+ 3 ) = £ +§:a (12)
Then functional (6) takes the form

A =glx) + / (2 + a0 )
= g(x(t1)) + /10 O x,u)dt = J5.

Thus, replacing f °(x, #) by (12) in Theorem 1, we obtain the following
result:

THEOREM 5 Assume that the controllability region for the controlled
object (1), (2) with the terminal set M, is an open set G C R” and M is
closed in G. Assume, furthermore, that a continuous scalar function w(x)
is defined on G such that

(D) w(x)= —g(x) on My;

(ii) for every point xo € G\ M there exists an admissible control u(t; xg)
transferring xo to My such that the corresponding trajectory x(t, xg)
is situated in G\M, except for the terminal point and the
corresponding value of functional (11) is equal to — w(xo);

(iii) there exists a piecewise smooth set Q C G with dim Q <n—1 such
that on G\(M\UQ) the function w(x) is smooth and for all
x € G\(M1UQ), ue U satisfies Bellman inequality

i%?lf"(x, u) <fO(x,u). (13)

i=1

Then all controls u(t; xo) are B-optimal.

3. REGULAR SYNTHESIS

In general, it is difficult to find w(x) by the Dynamic Programming
Method. In the sequel, we show that the Maximum Principle allows to
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obtain a sufficient condition for optimality without knowledge the
function w(x). Moreover, this sufficient condition helps to construct
w(x).

Recall that in article [5], there is Pontryagin’s conjecture that the
Maximum Principle is a sufficient condition of optimality (in local
sense). This conjecture is completely wrong: in pure form, the
Maximum Principle is not a sufficient condition for optimality (in
general, nonlinear case). We give below a sufficient condition of
optimality, combining the statement of the Maximum Principle (that
was proved in [2] as a correct necessary condition for optimality in
global sense, cf. also [6, 13]) with Feldbaum’s idea of optimal synthesis
[12], and Bellman’s Dynamic Programming Method [1]. We note that
for the case of classical Variational Calculus (when the control region
U is open), the sufficient condition given below is analogous to well
known Weierstrass sufficient condition (using a field of extremal).

Moreover, remark that performance indices (3), (6), (8), (11) have
integral form, i.e., they are connected with the admissible process u(?),
x(?), to <t < t1, in the large. At the same time, the Maximum Principle
(c¢f. condition (E*) below) has a local form, i.e., it is formulated
separately for every ¢ €[t, ¢1]. By this reason, we don’t consider below
the Auxiliary optimization problem, since locally it does not differ
from Lagrange one.

DeriniTION 2 We say that the for the controlled object (1), (2) with
the performance index (3) and the terminal set M,;, the regular
synthesis is realized if (i) the controllability region G is an open set in
R"; (ii) M, is a piecewise smooth set in G; (iii) some piecewise smooth
sets NCG and P°PcP'c.--cP" 'CG are given such that the
following conditions are satisfied:

(A) Each connected component of the set P\ P’ ~!is an i-dimensional
smooth manifold, i=1,...,n—1. These connected components are
said to be i-dimensional cells. The points of the set P° are 0-
dimensional cells. The set N has dimension < (n—1). The set
G\(NUP"~'UM,) is open, and its connected components are n-
dimensional cells. Each cell has no points in common with NU M.

(B) All cells are distributed on cells of the first type or the second type.
All n-dimensional cells are cells of the first type. All 0-dimensional cells
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are cells of the second type. On every cell of the first type a function
v(x) is defined that is smooth with respect to x, u.

(C) If ¢ is an i-dimensional cell of the first type, then through every
point of o, a unique trajectory of the equation

* = f(xv(x)) (14)

passes along o. There is an (i— 1)-dimensional cell II(o) (or an (i—1)-
dimensional curved polyhedron II(c) C M) such that every trajectory
of (14), going along o, leaves ¢ in a finite time and comes to a point of
II(¢) in a nonzero angle.

Even if ¢ is an i-dimensional cell of the second type, then there exists
an (i+1)-dimensional cell ¥(o) of the first type such that for every
point x € o there is a unique trajectory of Eq. (14) which emanates
from x and goes along ¥(0); in this case the function v(x) is smooth on
oUX(0).

(D) The above conditions allow to prolong the trajectories of Eq. (14)
from cell to cell. Each trajectory prolonged in such a way goes along
a finite number of cells and arrives to M. These trajectories are
indicated ones. Thus a unique indicated trajectory emanates from
every point of each cell and arrives to M;. Also from every point of the
set N a trajectory (maybe, non-unique) of the Eq. (14) emanates which
arrives to the terminal set M, and is named indicated, too.

(E%) Introduce the Hamiltonian function

M 0 ) = 3 0 (v, w),

a=0

where 1) is a real number and v = (¢1, . . ., ¥,,) is an auxiliary covariant
vector (i.e., a row vector). Furthermore, write the following conjugate
system:

wL - _ 8HL(%3 /l/)L? x(t)7 v(x(t)))
i Oxt

Z"/’ L of° x(rgx’ D)o (15)
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Every indicated trajectory x(f), to <t<t, satisfies the Maximum
Principle, i.e., there exists a number ¢ <0 and a solution ¥L(t) =
(WE(), ..., () of (15), %™(?) being nontrivial if ¢ = 0, such that
for every t €[ty, t;] the maximum condition

rurga[)](H"(zpoL,wL() x(),u) = H (g, 9" (1), (1), v(x(£))) =0 (16)

holds. Moreover, if the indicated trajectory going along a cell o of the
first type arrives at a moment # to the point x(¢) € II(0) and II(0) has a
positive dimension, then the vector ¢/(t;) is orthogonal to II(0) at the
point x(?) (the transversality condition).

(F) The integral (3) taken along indicated trajectories is a continuous
function of the initial point x,. In particular, if for a point xo € N, there
are several indicated trajectories emanating from x,, then for all these
trajectories, integral (3) takes the same value.

We remark that in condition (E”) there is the upper index (L) which
is related with the specific character of the Lagrange problem. The
statements of the condition (E) for Mayer and Bolza problems are
given below.

For f°=1 and M, ={x;}, the above definition of the regular
synthesis is contained (in a little varied form) in [3,4]. As Brunowski
proved [9], for every linear controlled object x = Ax+ Bu with
polyhedral control region U containing the origin in its interior, the
regular synthesis for time-optimization problem exists (under some
“general position condition”).

4. SUFFICIENT CONDITIONS OF OPTIMALITY
IN THE FORM OF REGULAR SYNTHESIS

THEOREM 6 For the controlled object (1), (2) with the performance
index (3) and a terminal set M., if the regular synthesis is realized, then
all indicated trajectories of this synthesis are L-optimal.

Proof In the proof, we call L-optimal processes simply optimal, since
no other sense of optimality is considered. Moreover, we will not write
the superscripts L for H- and 4" because only this sense of H and 1 is
considered.
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If xo€G\M,, denote by —w(xp) integral (3) along the indi-
cated trajectory going from x, to M;. Even if xo€M;, we
put w(xg)=0. Thus regular synthesis allows to define the function
w(x).

The following assertion is the key for the proof:

Let o be an arbitrary n-dimensional cell and xy € o. Denote by x(1),
to <t <1y, the indicated trajectory that transfers xq to the terminal set
M, and by u(t)=v(x(?)), toy<t<ty, the corresponding control. Let
Yo <0 and (1) satisfy the Maximum Principle, cf. condition (EF) in
definition of regular synthesis. Then

Y(to) = —1bo grad w(x(t)). (17)

We prove this assertion. Choose arbitrary real number ¢, and let
to+61(xp) be the moment at which the solution x(7) of (14), emanating
at the moment ¢, from x,, arrives to the cell II(0), i.e., 81(xg) is the
transferring time from x, to a point &;(x) € II(o). By Theorem on
dependence of solutions of differential equations on initial points,
&1(xo) and 6,(xp) are continuously differentiable functions of xy€o
(since the trajectories of (14) arrive to II(o) in a nonzero angle).
Furthermore, from the point £;(xo) the solution x(z) passes along the
cell II(o) (if II (o) is a cell of the first type) or along the cell E(I1(0)) (if
II(o) is a cell of the second type). As above, the point £>(xo) at which
the trajectory leaves the cell II(0) (or X(II(s))) and the time 6a(xo)
during which the trajectory passes along this cell are continuously
differentiable functions of x € 0. Continuing, we obtain that the time
t1—to=01(x0) +02(xp)+ - - - during which the indicated trajectory x(#)
passes from x to M is a continuously differentiable function of xo € 0.
Consequently w(xo)= —J* (¢f. (3)) is a continuously differentiable
function of x, on the union of all n-dimensional cells, i.e., on
G\(M;UQ) where Q=NUP"" ' is a piecewise smooth set of
dimension n—1.

Let éw be an arbitrary vector whose length we consider as an
infinitesimal of the first order. Denote by X(¢) the indicated trajectory
transferring the point x(zp)+6éw to M,. We may suppose (changing ¢
by 7+ const, if necessary) that x(¢) arrives to M, at the same moment ¢,
as the trajectory x(z). Denote by 7o = 1o+ 6t the moment at which x(7)
starts from x(zg)+ éw.
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Furthermore, denote the difference X(¢) — x(¢) by éx(#). Then
ow = X(10) — x(to) = 6x(t0) + f(x(0),u(to))6t (18)

(here and in the sequel we write the equalities up to infinitesimal of
higher order). The trajectory X(¢) corresponds to the control

u(f) = v(x(t)) = v(x(t) + 6x(t)) = u(f) + Z D g A1)

We have w(x(#1)) = w(x(#1)) = 0 (since w =0 on M;). Consequently,

/p ), 2(0)dt = —w(x(n)) /fMWW

= —w(x(t0)) — (grad w(x(t)), 5w)
+£°(x(r0), a(70) )6t

~IUWAmmmm+ﬂummmm&
— (grad w(x(tp)), ow). (19)

Let 1o <0 and (1) = (¥1(2), . - . , 1¥,(?)) be the solution of conjugate
system (15) that corresponds to the indicated trajectory x(z), cf.
condition (E¥) in definition of regular synthesis.

Taking into account the transversality condition (v(¢;), 6x(¢;)) =0
and the equality

(¥(t0),f (x(t0), u(to) )—sz t0)f' (x(t0), u(t0)) = —tpo.f * (x(t0), u(10))

(cf. (16)), we obtain by (18)

—(9(to), 6w) = (P(11), 6x(t1)) — ((to), 6x(to))
— (¥(20),f (x(t0),u(t0)))61

”iwmanmm+%ﬂumwm»&

/, Z(w,av)éw fZ( )Mdz

0 =0 =1 o =1

+ o f °(x(t0), u(t0))5t
= [ oHar - / '¢05f°dz+¢of°(x(to),u(to))5f-
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The first summand in the right-hand side is nonpositive (by the
maximum condition (16)). Hence, by (19),

—((to), bw) < — / " o 8%t + 1o £ (x(to), u(t0)
= yo(grad w(x(t)), ow),
ie.,

(1(t0) + tho grad w(x(o)),éw) > 0. (20)

Since inequality (20) holds for every vector éw, this implies (17).
Now we can complete the proof of Theorem 6. In the notation of the
key-assertion, we obtain from (17):

H(4(t0), x(to), u) = o °(x(to), u +E¢x(fo f'(x(t0),u)

ool = Pt Z B wtt))).
e1)

Now we consider three possible cases:

(@) ¥o#0. Then (21) implies (by the maximum condition (16)) that at
the point xo=x(#y) and for every it u € U Bellman inequality (5)
holds.

(b) =0, but in every neighborhood of x there are points for which
the corresponding ), 1(¢) satisfy the condition 1, #0. In other
words, there is a sequence x”, xX®, ... convergent to x, such that
at every point of this sequence, according to the case (a), Bellman
inequality (5) holds. For every fixed u € U, we obtain, as x* — x,,
that at the point x, the Bellman inequality (5) holds for arbitrary
taken ue U.

(c) Yo =0 for every point X, in a neighborhood W C o of the point x,
where o is the n-dimensional cell containing x,. But we show that
this case is impossible. Indeed, in this case, by (16),

3 G0 (x(0), v(x(1))) = 0 (22)
i=1
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where x(¢) is the indicated trajectory starting from an arbitrary
point Xo €W and (¢) = (¢;(),...,9¥,(t)) is the corresponding
solution of the conjugate system, cf. condition (EY). In other
words, (1) L f(x(z),v(x(?))). Let 7(Xo) be the moment when the
indicated trajectory x(t) arrives to (n— 1)-dimensional cell II(0).
Assume at first that II(o) is a cell of the first type. Then at the
moment 7(Xo) + 0 the vector 1(¢) is orthogonal to f(x(¢), v(x(¢)))
where the trajectory x(¢) is going along the cell II(c). This is true
for every point Xy € W and hence, at the moment 7(X¢) + 0, the
vector 1(f) is orthogonal to the cell II(0). But then equality (22)
taken for the moment 7(Xp) — 0 means that the trajectory X(¢)
touches the cell II(o) at the moment of arrival to this cell, what is
excluded by condition (C) in the definition of the regular
synthesis.

Even if II(0) is a cell of the second type, then we follow the indicated
trajectory along the cell X(Il(o)) etc., until we arrive to an (n—1)-
dimensional cell of the first type, and we obtain the same contra-
diction.

Thus Bellman inequality (5) holds inside every n-dimensional cell.
Now it follows from Theorem 2 that all indicated trajectories are
L-optimal. |

Remark 1t is necessary to give an improvement of the above
reasoning. Consider the moments 7y,...,7; at which the indicated
trajectory x(2), to < t < t;, leaves cells through which it passes:

T =1 +01(x0),72 =ty + 01(x0) +02(X0), o T =1

The trajectory x(¢) leaves the same cells at moments 7,72, ..., Tk = Tk
which are close to 7, T,,..., 7Tk not coinciding with them. Hence
the function 6x(tf) = x(t) — x(¢) is non-smooth at the moments
TlyeevosThk—15 T15-- -, Tk—1, making the above proof of (17) incorrect.
Nevertheless, the equality (17) is true. Indeed, denote by ¢ the length of
the vector éw and consider the time-intervals I, I,,...,I, _1 of the
length 2¢ge with midpoints at the moments 7y, ..., 74 _;. With suitable
number g > 0, the moments 71,...,7x_1; T1,...,7k-1 are situated in
the set A=I;ULU---Ul;_;. This means that on © =[t, #;]\A the
function 6x(¢) is smooth, and the above calculation is correct.
Furthermore, the integrals taken over A (in the above proof of (17))
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have the value o(¢), since the measure of A is O(g) and the integrand is
O(g). Consequently we conclude that

(¥(10) + o grad w(x(to)), éw) + o(e) 20
(¢f- (20)), what makes (17) correct, since ||éw|| =e¢. | |

We now consider Mayer optimization problem (1), (2), (8) with the
terminal set M as in Section 2. Assume that g(x) is a twice continuous-
ly differentiable function on G. The regular synthesis for this problem
is defined as in Section 3, but with some variation in condition (EX).

DeFiNTioNn 3 We say that for the controlled object (1), (2) with
performance index (8) and the terminal set M, the regular synthesis
is realized if the controllability region G is an open set in R"” and,
moreover, some piecewise smooth sets N and P°Pc P'c---c P" ! are
given in G such that conditions (A)—(D), (F) of Definition 2 are
satisfied and the condition (E”) holds in the following varied form:

(E™) Introduce the Hamiltonian function

M, x0) = S 9 (v, ), (23)
=
where Y = (M, ... yM) is an auxiliary vector. Furthermore, write

the following con]ugate system:

P OHM (M x(1), v(x(2)))
i 8xi

mOF (x(0,v(x(1) . _
Zw T’ i=1,...,n (24)

Every indicated trajectory x(), to<t<t,, satisfies the Maximum
Principle, i.e., there exists a number A >0 and a solution ¥M™(f) =
(WM(1),...,pM(1)) of (24), »™(2) being nontrivial if A =0, such that
for all z€[tg, t;] the maximum condition

mea;jHM(wM( ), x(1),u) = HY (M (1), x(2), v(x(1))) = 0 (25)

holds, and wM(t|)+/\ grad g(x(¢,)) LM, at the terminal point x(¢,) (the
transversality condition).
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THEOREM 7 For the controlled object (1), (2) with performance index
(8) and a smooth terminal manifold M, if the function g(x) is twice
continuously differentiable and regular synthesis is realized, then all
indicated trajectories of this synthesis are M-optimal.

Proof As we have seen in Section 2, the considered Mayer’s
optimization problem is equivalent to Lagrange’s problem (1), (2),
(3) with

e =3 %0 ), 26)

By Theorem 6, every indicated trajectory x(?), oy <t < t, satisfies
the Maximum Principle, as in condition (EX), i.., there exists a
number ¢ <0 and a solution () = (YE(2),...,9E(t)) of (15)
where %(?) is nontrivial if ¥¢ = 0 such that maximum condition (16)
holds and v%(z;) L M, at the terminal point x(¢;) (the transversality
condition).

Now we make a change of variables, writing wL + ¢
(0g/0x) = 1/)“ Then the Hamiltonian function indicated in condltlon
(E") takes the form

HL("p(fﬂ/)L’ ) ) d)o ij(x u)

_Z(www&agx, ) Z¢ £ (x,u)

=HM(1/) , X, U)

(¢f. (23)), i.e., maximum condition (16) turns into (25). Furthermore
(everywhere the arguments are x(t) and v(x(?)))

d og N e

= U g = L 5xiox"
P L af NI
L L ]
i g~ 2V +¢° Dprr

_ g 38 of’ LOf
‘_%( awiox’ T % ?935) wa ox
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n 62 g
— OxiOx/
j=1

- g\ of ~ w9
= Lygpb 2 ) 2= — M
= j_Zl (/d)] + ’()b() ax]> 8xi ledjj axi’

ie., we obtain conjugate system (24). (We remark that (8%g/
Ox’0x’) = (8%g/Dx'dx7), since g(x) is twice continuously differentiable.)
Finally, the transversality condition v%(z;)LM, takes the form
YM(t)+ M grad g(x(t)) L M;, where X = —yF>0. Consequently
Theorem 6 implies Theorem 7. |

+ ¥y i

In conclusion, we consider Bolza’s optimization problem (1), (2),
(11) with the terminal set M, as in Section 2. The following theorem is
deduced from Theorem 6 by a reasoning quite analogous to the
previous proof, and we give here only the statement.

DeFiNITION 4 We say that for the controlled object (1), (2) with
performance index (11) and the terminal set M, the regular synthesis is
realized if the controllability region G is an open set in R” and,
moreover, some piecewise smooth sets N and P°Cc P'c---c P" " are
given in G such that conditions (A)—(D), (F) of Definition 2 are
satisfied and condition (E”) holds in the following varied form:

(E®) Introduce the Hamiltonian function
n
HP (Y3, 4%, x,u) = Y if (x,u),
=0

where 9§ is a real number and y# = (¢, ..., ¢?) is an auxiliary vector.
Furthermore, write the following conjugate system:

wB _ _ aHB(¢B7 1/’B,x(t)» v(x(t)))
i axi

j=0

Every indicated trajectory x(f), fp<t<t,, satisfies the Maximum
Principle, i.e., there exists a number 15 <0 and a solution ¥#(r) =
(B (1), ..., 9B(1)) of (27), ¥®(?) being nontrivial if ¥§ = 0, such that
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for all z €[t, t,] the maximum condition
max H2 (48, 42 (1), x(0),u) = HP (8, 4P (1), (1), v(x(1))) = 0

holds, and v%(t;)+ ) grad g(x(z;))LM; at the terminal point x(¢;) (the
transversality condition).

THEOREM 8 For the controlled object (1), (2) with the performance
index (11) and a smooth terminal manifold M, if the function g(x) is
twice continuously differentiable and regular synthesis is realized, then
all indicated trajectories of this synthesis are B-optimal.

5. EXAMPLES

Example 1 In R", consider the controlled object
=, i=1,...,m |u|<]1,
with terminal set M, ={x:||x|| <1} and functional (3) of the form

1 for x ¢ M,
0 _ 1)
f ("”‘)“{1—2(1—||x||2)2 for x € My,

where [|u®=@')?+- -+ @, |Ix]* = ")+ -+ ()

Let u(?), x(f), to <t<t;, be an admissible process transferring an
initial point xoeR2\M1 to the terminal set M, ie., x(f)= xo,
x(t) € M;. If the process transfers x, to M; within R2\M1 ie.,
x(H) ¢ M, for ty<it<ty, then f%x,u)=1 during the process, and
L-optimality coincides with time-optimality. In this case, it is easily
shown that the optimal process has the form

u(t) =

- ol = const,
and the minimal value of functional (3) is equal to ||xo|| —1.

On the other hand, consider a process that is defined in a larger
segment, coinciding with the above time-optimal process during the
time ||xo|| — 1 and situated in M, after arriving to the boundary bd M,
of the set M,. In the set {x:|x|| <(1/2)}, the function f°(x,u) is
negative, and it is possible to move in M; any time, making the
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functional J © negative with any great value |J”|. This means that if we
consider admissible processes in whole plane R? (including the points
in the interior int M, of the set M;), then minimum of J* does not
exist. This shows that in Lagrange optimization problem, it is essential
to limit ourselves by the processes running only within G\ M, (except
for the terminal moment). It is possible to construct an analogous
example with a one-dimensional terminal set M.

Example 2 In Cartesian coordinate system x'=x, x*=y in R
consider (as in [10, 11]) the controlled object

x=y, y=u, Ju<l,

with M; ={(0,0)}, f®=1. Thus the optimization problem is: Starting
from a point xq=(a,b)€ R?, arrive to the origin x;=(0,0) in the
shortest time. The Maximum Principle [2, 6, 13] gives the simplest way
to obtain the solution. We explain the result.

Consider the curve T=I""UT' ", where each curve I' *, T'* is a half-
parabola:

1 1
[Tix=—2y, y20; TIMix=5y, y<O0.

If the initial point x, = (a, b) is situated above I" (or in the arc ' ™), the
optimal process passes at first along the parabola

_ 1, 1.5
X = 2y + (a + '2‘b )
(with y = u = —1) from Xxy till the intersection with I'* at a point (¢, d),

and after that along I'" (with y = u = 1) till the arrival to the origin.
Hence the transferring time is equal to (b—d)+|d|, i.e., as it is easily

shown,
1
—w(xg) =b+24/a+ —2—b2.

Even if x is situated below T (or in the arc I'"), then

/ 1
—w(xp) = =b+2y/—a+ Ebz
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This is obtained with the help of the Maximum Principle. But, as soon
as we already know w(x,), it is possible to justify the optimality.
Indeed, the two above expressions for w(xg) coincide along T, i.e., the
function w(x,) is continuous in the whole plane R*. Furthermore, w(xo)
is smooth in R?\I'. It is easily shown with the help of the above
expression for w(xo) that the function w(x,) satisfies Bellman inequality
(5) in RA\T. Finally, for every point xo€ R> there is a trajectory
transferring x, to the origin in the time —w(xy). Hence, by Theorem 3,
these trajectories are time-optimal.

Example 3 1n [7], we considered the controlled object
=l =22, 2= xR u);
—1<u<l1; M ={(0,0)}, f°=1,

that satisfies the following four conditions:

(@ £%0,0,1)>0, %0,0, —1)<0;

B) fA(x', x* u)increases with respect to u € [— 1, 1] for any fixed x', x*;

(A) no trajectory comes to infinity in a finite time;

(B) there exists a continuous function o(x',x?,u) with continuous
derivatives (8¢/0x"), (O/0x?) such that

ok o of?
2 <P 2 299

for u=+1 and any xl, x>

In [7], it is shown that under these conditions a synthesis of
Feldbaum’s type is realized in the controllability region G of the
object. Namely, denote by I' ™ the semitrajectory for u=—1 and by
I'* the semitrajectory for u=1, both the semitrajectories ending at
the origin. These semitrajectories are said to be l-dimensional cells.
The controllability region G is divided by T=T"UT" into two
2-dimensional cells (above and below the curve I'). Starting from any
point xo€G, it is possible to get the origin along an indicated
trajectory (with no more than one switching), where v(x) = —1 above
I' and on I'", whereas v(x)=1 below I and on I'*. All indicated
trajectories satisfy the Maximum Principle with respect to suitable v,
(). Theorem 6 implies that all indicated trajectories are time-optimal.
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Example 4 1In R", consider the controlled object
X=u, i=1,...,n (28)

where U= M, C R" is the unit ball {x: ||x|| < 1}. For conveniency, we
consider R” as self-conjugate space with orthonormal coordinate
system in it. Hence covariant coordinates coincide with contravariant
ones, and

el = (x,) = () 4 -+ ().

For this controlled object, we consider Lagrange’s optimization
problem (1), (2), (3) with the function

fo(x»“) = (\/M)_l = ((xl)2 oot (xn)2)‘(1/4).

Thus the optimization problem is: Starting from a point xq€ R"\ M},
arrive to M with minimal value of the integral

DR R S L O SRR A (VL)
> = / T [ @@+t )

We introduce the function w(x) (taking w(x)=0 on M;) by the
equality

—w(x) =2 ||x|| —2 = 2((x1)2 e (xn)z)(1/4) _9
for xyeR"\ M,

without any discussion, why namely this function is taken. The
function w(x) is continuous in R” and smooth in R"\M;. It is easily
shown that w(x) satisfies Bellman inequality (5) in R™\ M,. Moreover,
it is easily shown that for every xo=a=(d',...,d") € R"\M,, thereis a
control u(t) = (u'(), . . ., u"'(£)) transferring x, to M, with J== —w(xo):

. a
u'(l) = —m=const, i=1,...,n

Hence, by Theorem 2, these controls are L-optimal.
When we apply Theorem 6 (instead of Theorem 2), the reasoning
takes another form. It is easily shown that the assumption 1y =0 is



200 V. BOLTYANSKI

contradictory. Taking 1= — 1, we obtain:

H= ‘fo(x,u)'*‘(‘/’,u) = —fo(x7u)+¢1u1 ++¢nunv

of° x' ) (29)
'l/)i:F:__(S/—Z)’ l=1,...,n.
X 2|

Let u(?), x(¢), 0 <t < 1, be a process satisfying the Maximum Principle
(¢f. condition (EY) in Definition 2). Denote by p=(p',... p") the
terminal point, i.e., p=x(#;). The transversality condition means that
the vector 1 is orthogonal to the sphere bd M at the terminal point p,
i.e., ¥(t;)=pup where p#0. Now maximum condition (16) implies
u(t) = psign p. Thus at the terminal moment ¢,, the three vectors u(?,),
x(11), Y¥(t;) are collinear. By the character of Egs. (28), (29) and the
maximum condition (1, x) = max, this collinearity remains to be hold
during all time. Consequently u(f) = + p =const.

Since the trajectory x(#) arrives to the terminal point p from R™\ M,
we conclude that u <0, i.e., u= —p during all time. Now we obtain
x(t)= —pt+const. More detailed (taking into account that x(z;) = p)
we have

x=—pt+ (p+ph). (30)

These trajectories fill the n-dimensional cell o= R™\ M in, and they
satisfy the Maximum Principle. By Theorem 6, all these trajectories are
L-optimal.

Thus, using Theorem 6, it is not necessary to know the function w(x)
and to check that it satisfies Bellman inequality. Moreover, now we
can calculate w(x). Indeed, by (30), the initial point x(0) = a coincides
with p+pt;. Using this formula and the equalities

el =1, lall=14+t, [x()]=-t+1+1,
we obtain

—w(a) = ! O(x(t),u = " x(7)||17?
(a) /0 FOx(e), u(e))dr /0 ()]t

]
=/ (—t+1+4)""Pdr = (=2¢/=t+ 1+ 1)
0

= 2(\/”7”_ 1)7

i.e., we justified the choice of w(x) that was made above.
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We see that the sufficient condition of optimality in the form of the
regular synthesis (Theorem 6) is more preferable than Dynamic
Programming Method (Theorem 2).

Example 5 Consider in R” the following controlled object with scalar
control:

¥=(=24+uwx, i=1,...,n -1<u<l. (31)

As in the previous Example, the terminal set M, is the ball
{x:||x|| <1}. For this controlled object, we consider Lagrange
optimization problem (1), (2), (3) with the function

fo(x’ u) = (3 - u)(<xvx> “4)'

Denote by W the ball {x:|x|| < 2}. We consider two n-dimensional
cells 0y = R"\W and o, =int W\M;. The sphere bd W is the (n—1)-
dimensional cell. Remark that f%(x,u) is positive on the cell o; and
negative on the cell o5.

We are going to show that the synthesis of optimal trajectories is
given by Eq. (14) where v(x) = —1 on the cell o; and v(x)=1 on the
cell o5.

Consider a trajectory x(z), —oo < t <0, that is going from infinity
and arrives to a point p € bd My, i.e., x(0) =p. According to (31), the
part of this trajectory contained in o, is defined by the equation x =
—x (since u=v(x)=1 on o,). Consequently x({)=e ’p in o,. At the
moment § = —In 2, this trajectory intersects the boundary of the ball
W (since x(0)=2p, ie., ||x(0)||=2). Hence for —oo<t<@ the
trajectory x(?) is situated in oy, i.e., it is defined by the equality x =
—3x (since it u=v(x)=—1 on oy). The solution with the initial
condition x(f) = 2p has the form x(z) = (1/4)e ~*p. Thus

x(f) = (1/4)e3p for —oo<t<b,
T e for < ¢<0.

This trajectory corresponds to the control

u(t) = -1 for —oo<t<¥,
11 for 6<¢<0.

We are going to prove that this trajectory satisfies the Maximum
Principle with respect to a solution 1)(7) of the conjugate system.



202 V. BOLTYANSKI

Taking 1¥9= —1 (as in the previous Example), we can write the
Hamiltonian function and the conjugate system:

H=—3—u)((x,x) —4) + (=2 + u)(x, %),
Yp=02—-uwyp+ (3—u)-2x.

Since x(0)=p, u(0)=1, the condition H=0 implies (0)=06p
(taking into account the transversality condition (0) L bd M, at the
point x(0) = p). On the segment 8 < ¢ <0, the function () satisfies the
equation v = ¢ + 4x (¢f. (32)) with the initial condition (0) = 6p, i.e.,
(1) = (8e'—2e~")p on this segment. It follows (6) =0.

Furthermore, on the ray —oo < ¢ < 6 the function () satisfies the
equation 9) = 31 + 8x (cf. (32)). Taking into account that ¢(6) =0, we
obtain the corresponding solution:

[ (64/3)e¥ — (1/3)e)p  for —oco <1<,
vt = { (8¢' — 2¢~)p P re<i<o.

(32)

It is easily shown that the obtained functions u(f), x(f), ¥(t) satisfy
the condition H=0 (on the ray —oo<t< 6, and on the segment
0<1t<0, too).

Furthermore, the maximum condition (16) means that

u = sign({x,x + ¢) — 4). (33)

In the segment 6<7<0, the equality (33) takes the form
u=sign(4—e~%), ie., u=1 on this segment, and the maximum
condition holds. Furthermore, on the ray —oo << 6, the equality
(33) takes the form u=sign(1/48)(64—e~*)=sign(64—e~®), ie.,
u= —1 on this ray, and the maximum condition holds, too.

Thus the functions u(?), x(z), 1(¢) satisfy the condition (EY) in the
Definition of regular synthesis. Denoting by /, the ray consisting of all
points x =kp with k> 1, we see that the trajectory x(#) moves along
the ray /, from infinity to the point p. These trajectories (taken for all
p€bd M) fill the set R"\ M; in. By Theorem 6, all these trajectories are
L-optimal.
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