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In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image
reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier
descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA) is applied to transform the
features into ones with better discriminating ability, which is the kernel PCA-based feature fusion.The transformed features are fed
into the third layer for classification. In this paper, we design a classifier by combining themultiple kernel learning (MKL) algorithm
and support vector machine (SVM). We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements.
Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-
based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors.
Also, the designedMKL-SVM outperforms the regular SVM in terms of recognition accuracy.The proposed recognition scheme is
able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

1. Introduction

In an automated assembly line, information of object (e.g.,
shape and orientation) is necessary in the robotic manipula-
tion. Based on the information received, a robot can assemble
the products using the objects or parts in an automated man-
ner. Previously, vision-based sensing technique (e.g., CCD
camera) was often applied to recognize the shape and orien-
tation information of objects in an automatedmanufacturing
line. Although this approach can provide good temporal
and spatial resolutions of objects, its recognition accuracy is
easily affected by the environment factors such as lighting
conditions. When a robot is operated in a dark environment,
the visual sensing quality becomes poor. On the contrary, the
visual sensing approach may suffer from the light reflection
when the environment becomes brighter, especially when
the objects to be assembled are made of metal. Moreover,
the objects are sometimes hidden from the visual sensors
during the manipulation. In contrast, tactile sensing is less

sensitive to these conditions. Therefore, tactile image-based
object recognition has received increasing attention form
researchers and engineers over the past decade [1–7].

When the tactile sensing approach is adopted, a two-
dimensional tactile sensing array consisting of multiple sens-
ing elements is attached to a robotic hand or finger.When the
robotic finger touches an object, each sensing element in the
tactile array measures the contact force or pressure applied
on a specific and small area of the object. The pressure values
of the sensing elements are then transformed into integer
oneswithin the range of [0, 255], thus forming a pseudoimage
in which the gray-level values are the transformed pressure
values. Based on the pseudoimage (known as the tactile
image), a system can recognize the shape, edge direction, and
contour of the object. The recognition results are the inputs
to the robot which performs the task of automated assembly.

Previous works mainly solve the problem where the size
of object is larger/much larger than the tactile sensing array
by way of edge tracking/following [1–8]. First, a system/robot
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guides the sensing array to move along the contour of an
object. After scanning the whole contour of the object,
the system estimates the shape of the object by using the
information of the collected tactile images during the contour
scanning. In addition to this case, there is another: the object
is smaller than the tactile sensing array. In this case, the
shape of an object can be identified through the use of one
single tactile image. However, due to the following factors,
the task of object shape recognition becomes difficult and
challenging.

(1) Low Resolution. Usually, the size of a tactile sensing
array which can be attached to a robotic finger is
small, whichmeans that the number of tactile sensing
elements in the array is very limited. In other words,
the acquired tactile image is of low spatial resolution.

(2) Diffusion Effect. In order to project the tactile sensor
array, a thin cover (plastic or silica) is usually placed
on the array. Although the cover can prevent the
tactile array from being damaged when the robotic
finger presses an object, the force that the object
applies to one sensing element spreads to its neighbor-
ing sensing elements simultaneously. The diffusion
effect makes the acquired tactile images ambiguous,
especially the edges of the objects.

(3) Fence Effect. Unlike the sensing elements in a CCD
camera where the sensing elements are closely adja-
cent to each other, there exists a large and noticeable
gap between sensing elements in a tactile sensing
array. These gaps make the object in a sensing tactile
image look like fenced.

Due to the factors above, it is difficult to identify the shape
of an object through the tactile image. To achieve a high-
reliability automated robotic assembly, it is thus necessary to
develop a high-accuracy tactile image recognition scheme. To
the end, we propose in this paper a scheme, which is com-
posed of three main layers. Initially, an image preprocessing
procedure is performed to enhance the contrast of the tactile
images. In this layer, geometric features and Fourier descrip-
tors are first extracted from a given image. The extracted
geometric features and the Fourier descriptors form a feature
vector, which is high-dimensional and does not necessarily
achieve satisfactory recognition accuracy. Kernel principal
component analysis (kernel PCA) [9] is a powerful kernel
method for pattern representation. It computes higher order
statistics among random variables while reducing the data
dimensionality, thus being able to achieve the goal of both
feature extraction and dimensionality reduction. Kernel PCA
has shown success in various pattern recognition problems,
such as face recognition [10] and defect inspection [11].
Therefore, in this paper, we apply the kernel PCA to reduce
the dimensionality and extract more discriminating features
from the feature vector extracted from the tactile images.
Finally, in the third layer, support vector machine (SVM)
[12] is performed to recognize the shape of the object in the
input tactile image. In order to improve the generalization
performance of SVM, we introduced the multiple kernel
learning (MKL) algorithm [13] to the regular SVM. Regular

SVM uses only one single kernel to learn the classifier.
Users have to determine the kernel function type and its
optimal parameter, which is not only time consuming but
also suboptimal because one single kernel may not lead
to satisfactory recognition accuracy, especially when the
classification problem is complex. Instead of using one single
kernel, MKL proposes that an ideal kernel should be a
combination of multiple kernels (i.e., base kernels). Based on
this idea, MKL trains an SVM with a mixed kernel. In this
study, we combine theMKL and the SVM to training a robust
classifier for tactile image recognition. Experimental results
show that even though the tactile images are of low resolution
and suffer from the diffusion and fence effects, the proposed
scheme is still able to achieve a high recognition accuracy of
over 85% on 12 types of objects.

The rest of this paper is organized as follows. In Section 2,
the details of the designed tactile sensing array used in this
study as well as the tactile image collection procedure are
given. The proposed tactile image recognition scheme is
introduced in Section 3. Results and discussion are provided
in Section 4. Finally, we conclude this study in Section 5.

2. Tactile Sensor and Image Acquisition

2.1. Material and Manufacturing Process. The piezoresistive
layer of sensor is a functional material [14, 15]. It is manufac-
tured bymixing the nanoparticles of carbon and silica into an
insulation polymer matrix with high concentration. In this
study, we design and fabricate a flexible tactile sensor array
by means of screen printing technology.The sensor structure
is composed of two 100𝜇m thick subtracts of Polyethylene
Terephthalate (PET) films (double-sided electrode structure)
and one adhesion layer. Screen printing process is conducted
to deposit the silver ink, piezoresistive ink, and adhesion resin
on the PET films, respectively, as illustrated in Figure 1. We
also design the raise structure to enhance the sensitivity of
the tactile sensor. The raised structure is fabricated on the
face sheet of the sensor using a UV curable adhesive and has
led to high sensitivity due to stress concentration. Similar to
the sensing elements onmodern touchscreens, these cells can
be used for contact localization and pressure measurement.
Thedeveloped tactile sensor array contains 100 taxels (i.e., 100
tactile sensing elements) in a 10 × 10 configuration as shown
in Figure 2.

2.2. Characteristics of Tactile Sensor Cells. The pressure-
piezoresistivity characteristics of the proposed sensor
were measured by a customized instrument developed in
LabVIEW environment which includes a pressure chamber,
multifunction switch/measure unit (Agilent 34980A), and
a National Instruments data acquisition (NI DAQ) card.
In the calibrating process, the sensor was placed in the
chamber, subjected to a static uniform load (to make sure
each cell faced the same pressure). The pressures in chamber
were controlled by a LabVIEW interface, and the measured
data was scanned by Agilent 34980A and recorded via the
NI DAQ card. Figure 3 shows the measuring device and a
measuring result of one tactile sensor cell.The pressure range
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Figure 1: Fabrication processes of tactile sensor arrays using screen
printing technology. (I) Print the row and column electrodes on the
PET films, respectively. (II) Print the piezoresistive material. (III)
Bottom PET filmwith adhesion resin. (IV)The top and bottom PET
films are laminated into a large area tactile array sensor.

of the tactile sensor was measured from 10 to 580 psi and
the linear relationship between pressure and conductivity in
each cell is acceptable.

2.3. Design of Experiment for Image Acquisition. To deter-
mine the characteristic of the sensor cell, the experimental
setting in Figure 4 was used. It mainly consists of a controlled
linear actor using a linear motion stage in conjunction with a
high precision servo motor and a load cell. The testing object
is placed between the linear actuator’s indenter and the tactile
sensor array. By positioning the indenter, a defined force can
be applied to the testing object, due to the defined flexibility
of the load cell. For each sensing element, the sensor material
changes its resistance itself as the normal stress changes.
The resistivity is measured using a data acquisition (DAQ)
module for signal transduction. Each sensing element then
provides signals carrying information about the local value
of the normal stresses, thus forming a 10 × 10 tactile image
of the contacting object. In this paper we use the tactile image
as input to a pattern recognition system,which should classify
the contacting object according to its image features.

In addition, to justify the stress applied to collect appro-
priate tactile images, five different loads (1 kgf, 2 kgf, 3 kgf,
4 kgf, and 5 kgf) were generated by the indenter. Raw images
of a bar shape object with fixed cover under the five different
loads are shown in Figure 5. The experimental results show

the following: (1) while applying small force (1∽3 kgf), the
tactile images of the testing object are usually incomplete, due
to the uneven press on the contact surface; (2) on the other
hand, due to the elastic cover layer, the tactile data present
high distortion while applying a too heavy load. According
to the observations above, the force of 4 kgf is a suitable one
for collecting tactile images.

The contact behavior is mainly determined by the surface
flatness and roughness between two objects. That is, local
stress will be concentrated on the first contacting area, and
this phenomenon will lead to fragment of tactile image.
To avoid this phenomenon, we place an elastic cover on a
tactile sensor as buffer layer. Several commercially available
cover layers with similar hardness were examined under the
loading of 4 kgf, as shown in Figure 6. The experimental
results show that thicker cover decreases both spatial and
force resolutions. However, if the cover is too thin, the tactile
image will be more fragile. Accordingly, the 0.9mm thick
silicone sheet was chosen as the cover in this study. Even
though the chosen cover is more suitable than others, the
diffusion effect mentioned in Section 1 would still happen.

Moreover, the tactile sensor array is fabricated on a
flexible film (20mm × 20mm × 250 𝜇m) and contains 100
sensing elements. Each element has a 1.3mm × 1.3mm
sensing area and a 0.7mm width spacer in each direction.
The layout of the designed tactile sensing array is shown in
Figure 7. The spacer refers to the gap between elements. As
mentioned in Section 1, such a large spacer results in the fence
effect.

2.4. Object Types. In this study, 12 mental objects with
different shapes and sizes are designed as the testing objects.
Samples of the designed objects are shown in Figure 8, and
their descriptions are listed in Table 1. These objects are the
parts commonly used in the manufacturing and are smaller
than the tactile array. When an object is placed on the tactile
array, a 4 kgf force is applied on the object. Notice that the
cover is placed between the object and the tactile array.When
the corresponding tactile image is acquired, the same object
is reput on the tactile array with a slightly different position
and direction (orientation) in order to get another image for
the same object. By repeating this procedure 20 times, we
collect 20 images for each object. Therefore, in this study, the
number of classes is 12, and for each class we prepare 20 tactile
images. Figure 9 displays examples of the tactile images of the
12 different objects.

As can be observed from these examples, the spatial
resolution of the tactile image is extremely low, and it is
very difficult to discriminate between objects by observation.
For example, the object in the last image (i.e., the sixth
image) of the first row and the one in the last image of
the second row are originally different: the former is a solid
hexagon, while the latter is a solid circle. However, due to the
low resolution and the aforementioned diffusion and fence
effects, the two different objects in the two images look very
similar and are thus difficult to discriminate. Therefore, a
robust recognition scheme is required. In the following, we
introduce our recognition scheme in detail.
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Figure 2: Tactile sensor array was fabricated on a flexible film (20mm × 20mm × 250 𝜇m) and contains 100 sensor cells (1.3mm × 1.3mm).
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Figure 3: Sensor array calibration device and the multifunction switch/measure unit. (a) The pressure chamber. (b) Agilent 34980A. (c) The
pressure-piezoresistivity characteristics of one cell (position (3, 3)).
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Figure 4: Pressure testing machine and experimental setting.
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Figure 5: Raw images of a bar shape object with fixed cover under various loads 1 kgf∽5 kgf.
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Figure 6: Raw images of a bar shape object with various covers under fixed load 4 kgf.
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Figure 7: Layout of the designed tactile sensor array.
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Figure 8: Samples of the 12 objects to be recognized in this study.

3. Proposed Tactile Image Recognition Scheme

3.1. Layer 1: Image Preprocessing. Each tactile image is orig-
inally a pixel matrix of 10 × 10. One example is shown as
Figure 10(b). In order to increase the spatial resolution, each
image is resized to a 33 × 33 image by linear interpolation.
The resized image of Figure 10(b) is shown as Figure 10(c).
As can be observed from Figure 10(c), the resized image has
a low contrast. Therefore, Gamma correction [15] is further
applied to enhance the contrast of each resized image (see
Figure 10(d)). However, the gray levels of pixels near the edge
of object and the ones of few isolated pixels inappropriately
become higher. To eliminate such noises, a statistical filtering
method is performed. Let 𝜇 and sd be themean and the stand
deviation of the gray levels of the image. Then, the gray level
of one pixel is replaced by zero if the gray level of this pixel
is below the threshold 𝑇, where 𝑇 = 𝜇 − 2 × sd. The image
after the statistical filtering-based noise removal is shown
as Figure 10(e). Finally, the processed gray-level image is
transformed to a binarized image through Otsu thresholding
[16]. It should be noticed here that when the force is applied
to the test object, the force is not necessarily uniformly
distributed over the tactile sensing array. Therefore, directly
performing the thresholding on the entire image may not
lead to an ideal binarized image. If the applied force is
highly nonuniformly distributed over the contact surface
between the tactile sensing array and the test object, only
part of the object will appear after thresholding the entire
image according to our preliminary test on the images
collected. Thus, our strategy is to partition the image into

Table 1: Descriptions of the 12 objects.

Object
number Description

1 Bar shape with 10mm length
2 Bar shape with 35mm length

3 Hexagon with flat size of 13mm and a Φ8mm hollow
hole

4 Solid hexagon with flat size of 13mm

5 Hexagon with flat size of 10mm and a Φ6mm hollow
hole

6 Solid hexagon with flat size of 10mm

7 Square with flat size of 13mm and aΦ8mm hollow
hole

8 Solid square with flat size of 13mm

9 Square with flat size of 10mm and aΦ6mm hollow
hole

10 Solid square with flat size of 10mm
11 Φ13mm circle with a Φ8mm hollow hole
12 SolidΦ13mm circle

𝑛 × 𝑛 subimages with equal size and then perform the Otsu
thresholding on each subimage independently.We found that
when 𝑛 is set as 2, the highest recognition accuracy can be
obtained. The binarized results of 1 × 1, 2 × 2, and 3 × 3 are
shown in Figures 10(f), 10(g), and 10(h), respectively.

3.2. Layer 2: Kernel PCA-Based Feature Fusion

3.2.1. Geometric Features. Two kinds of geometric features
are extracted from each binarized image: area and edge-to-
mean variance (called variance hereafter). Area denotes the
number of pixels labeled as 1 in the binarized image. To
compute the variance, we first detect the edge points and
the centroid of the object within one binarized image and
then compute the distance between each edge point and the
centroid. Finally, the variance of the computed distances is
calculated.

3.2.2. Fourier Descriptors. To compute the Fourier descrip-
tors, the boundary extraction algorithm [17] is performed to
find the Cartesian coordinates of the sequential boundary
pixels of the object in an image. Examples of the images after
the boundary extraction are shown in Figure 11.

Suppose that the Cartesian coordinates of the boundary
pixels of an object are (𝑥[𝑚], 𝑦[𝑚]), 𝑚 = 1, 2, . . . , 𝐿, where
𝐿 denotes the number of boundary pixels. The Fourier series
expansion of the boundary pixels is as follows:

𝑥 [𝑚] =

∞

∑
𝑛=−∞

𝑎 [𝑛] 𝑒
𝑗𝑛𝜔0𝑚, (1a)

𝑦 [𝑚] =

∞

∑
𝑛=−∞

𝑏 [𝑛] 𝑒
𝑗𝑛𝜔0𝑚, (1b)
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(a)

(b)

Figure 9: Examples of the tactile images. The images in the first row of this figure are the tactile images of the first six objects (class 1–class
6), respectively.The second row displays the examples of the tactile images of class 7–class 12, respectively. Each image is a 10-by-10 gray-level
matrix.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: An illustrative example for the image preprocessing stage, where (a) is the testing object, (b) is the corresponding 10-by-10 tactile
image, (c) is the resized 33-by-33 image, (d) is the image after Gamma correction-based contrast enhancement, (e) is the image after noise
reduction, and (f)–(h) are the binarized images with 1 × 1, 2 × 2, and 3 × 3 image partitioning-based thresholding.

where 𝜔
0
= 2𝜋/𝐿 and 𝑎[𝑛] and 𝑏[𝑛] are Fourier coefficients:

𝑎 [𝑛] =
1

𝐿

𝐿

∑
𝑚=1

𝑥 [𝑚] 𝑒
−𝑗𝑛𝜔0𝑚, 𝑛 = 1, . . . , 𝐿, (2a)

𝑏 [𝑛] =
1

𝐿

𝐿

∑
𝑚=1

𝑦 [𝑚] 𝑒
−𝑗𝑛𝜔0𝑚, 𝑛 = 1, . . . , 𝐿. (2b)

The Fourier descriptors 𝑠[𝑛] are given by

𝑠 [𝑛] =
𝑟 [𝑛]

𝑟 [1]
, 𝑛 = 1, . . . , 𝐿, (3)

where 𝑟[𝑛] = √|𝑎[𝑛]|
2

+ |𝑏[𝑛]|
2. The Fourier descriptors

are translation-, rotation-, and scaling-invariant. Actually,
not all of the 𝐿 Fourier descriptors are required: only the
first 𝑛 descriptors are necessary and perform the best. After
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(a)

(b)

Figure 11: Examples of boundary extraction result. The corresponding gray-level tactile images are displayed in Figure 9.

the feature extraction, each tactile image is represented by
a vector of 𝑛 + 2 dimension, in which two are geometric
features and the rest are the extracted Fourier descriptor.
To facilitate the following illustration, the feature vectors are
simply called data hereafter.

3.2.3. Kernel PCA-Based Feature Transformation. The kernel
PCA feature fusion consists of a training phase and a testing
phase. Suppose that there is a set of training data x

𝑖
∈ 𝑅
𝑚

, 𝑖 =

1, . . . ,𝑀. Kernel PCA maps the training data into a higher-
dimensional feature space 𝐹 using a nonlinear mapping 𝜙 :

𝑅
𝑚

→ 𝐹, where 𝑚 = 𝑛 + 2, and then centers these mapped
data such that they have a zero mean: ∑𝑀

𝑖=1
𝜙(x
𝑖
) = 0 (see

[9] for a detailed derivation of the data centering method in
the feature space). In the feature space, kernel PCA solves the
following eigenvalue problem:

𝜆k = Γk, (4)

where k ∈ 𝐹 are eigenvectors associated with nonzero
eigenvalues 𝜆 and Γ = 1/𝑀(∑

𝑀

𝑖=1
𝜙(x
𝑖
)𝜙
𝑇

(x
𝑖
)) is the mapped-

data covariance matrix. By introducing the kernel function:
𝐾(x
𝑖
, x
𝑗
) = 𝜙(x

𝑖
) ⋅ 𝜙(x

𝑖
), the dual problem of (1a) and (1b) is

as follows:

𝑀𝜆a = Ka, (5)

where K : 𝐾
𝑖𝑗
≡ 𝐾(x

𝑖
, x
𝑗
) is a 𝑀 × 𝑀 kernel matrix and

a = (𝑎
1
, . . . , 𝑎

𝑀
)
𝑇 is the eigenvector associated with 𝜆

𝑙
̸= 0

and is subject to the normalization condition ‖a‖2 = 1/𝜆.
Solving the eigenvalue problem expressed as (5) yields 𝑀
eigenvectors a𝑘, 𝑘 = 1, . . . ,𝑀. However, we select only the
first 𝑑 leading eigenvectors as the basis for transformation.
The number of chosen eigenvector should be smaller than
the number of total features and the number of training data,
that is, 𝑑 < 𝑚 and 𝑑 < 𝑀, and the optimal number of the
eigenvectors should be experimentally determined. By doing
so, the goal of dimensionality reduction can be achieved.

After the eigenvector selection, the training phase of kernel
PCA is completed.

In test phase, the projection of testing data x ∈ 𝑅
𝑚 onto

the 𝑘th eigenvector k𝑘 is computed by

𝑧
𝑘

= k𝑘 ⋅ 𝜙 (x) =
𝑀

∑
𝑖=1

𝑎
𝑘

𝑖
𝐾(x
𝑖
, x) , 𝑘 = 1, . . . , 𝑑, (6)

where 𝑎𝑘
𝑖
is the 𝑖th component of the 𝑘th eigenvector a𝑘, and

𝑧
𝑘 is the nonlinear principal component of x corresponding
to the nonlinear mapping 𝜙. The 𝑑 nonlinear principal
components constitute a vector z = (𝑧

1

, . . . , 𝑧
𝑑

)
𝑇, which is

the nonlinear fusion of the geometric features and the Fourier
descriptors. In this study, the Gaussian function 𝐾(x, y) =

exp(−‖x − y‖2/2𝜎2) is chosen as the kernel, where 𝜎 is a user-
specified kernel parameter and can be optimized by using a
cross validation procedure.

3.3. Layer 3: Multiple Kernel-Based SVM Classification

3.3.1. SVM. Given a training set {z
𝑖
, 𝑦
𝑖
}, 𝑖 = 1, . . . ,𝑀, where

z
𝑖
∈ 𝑅
𝑑 are training data and 𝑦

𝑖
∈ {−1, +1} are class

labels, SVMmaps the data into a higher-dimensional feature
space and then finds an optimal separating hyperplane (OSH)
whichmaximizes themargin of separation andminimizes the
training errors simultaneously, which can be formulated as
the constrained optimization problem as

Minimize 1

2
‖w‖2 + 𝐶

𝑀

∑
𝑖=1

𝜉
𝑖

subject to 𝑦
𝑖
(w𝑇𝜙 (z

𝑖
) + 𝑏) − 1 + 𝜉

𝑖
≥ 0, ∀𝑖

𝜉
𝑖
≥ 0, ∀𝑖,

(7)

where w denotes the weight vector of the hyperplane, 𝑏 is
the bias of the hyperplane, 𝜉

𝑖
are slack variables representing

training errors, and𝐶 is a penaltyweight.The value of𝐶needs
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to be specified in prior. Introducing the Lagrangian to (7)
yields the dual problem:

Maximize
𝑀

∑
𝑖=1

𝛼
𝑖
−
1

2

𝑀

∑
𝑖=1

𝑀

∑
𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾(z
𝑖
, z
𝑗
)

subject to 0 ≤ 𝛼
𝑖
≤ 𝐶, ∀𝑖

𝑀

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0,

(8)

where𝛼
𝑖
are Lagrangemultipliers.The training data forwhich

0 < 𝛼
𝑖
≤ 𝐶 are called support vectors (SVs). The class label

for a test data z is computed by the decision function:

𝐷 (z) = Sign( ∑
z𝑖∈SV

𝛼
𝑖
𝑦
𝑖
𝐾(z
𝑖
, z) + 𝑏

𝑜
) , (9)

where 𝑏
𝑜
is the optimal bias of the OSH, which can be cal-

culated by taking any support vectors whose corresponding
Lagrange multipliers satisfy 0 < 𝛼

𝑖
< 𝐶 into the Kuhn-Tucker

conditions. If 𝐷(z) > 0, z is classified as a positive data or
negative data otherwise.

3.3.2. Multiple Kernel SVM. MKL is a data-driven learning
algorithm which learns kernel from the given training data
[13]. It assumes that an ideal kernel is a linear combination of
predefined base kernels:

𝐾(x
𝑖
, x
𝑗
) =

𝑁

∑
𝑘=1

𝑑
𝑘
𝐾
𝑘
(x
𝑖
, x
𝑗
) , (10)

where𝐾
𝑘
are base kernels,𝑑

𝑘
are kernel combinationweights,

and 𝑁 is the number of chosen base kernels. MKL-SVM
solves the following optimization problem:

Minimize
𝑁

∑
𝑘=1

1

2

w𝑘

2

𝑑
𝑘

+ 𝐶

𝑀

∑
𝑖=1

𝜉
𝑖

subject to 𝑦
𝑖
(

𝑁

∑
𝑘=1

w𝑇
𝑘
𝜙
𝑘
(z
𝑖
) + 𝑏) − 1 + 𝜉

𝑖
≥ 0, ∀𝑖,

𝜉
𝑖
≥ 0, ∀𝑖,

𝑁

∑
𝑘=1

𝑑
𝑘
= 1, 𝑑

𝑘
≥ 0, ∀𝑘.

(11)

The dual problem of (11) is written as

Maximize
𝛼,𝛾

𝑀

∑
𝑖=1

𝛼
𝑖
− 𝛾

subject to 0 ≤ 𝛼
𝑖
≤ 𝐶, ∀𝑖,

𝑀

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0,

1

2

𝑀

∑
𝑖=1

𝑀

∑
𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾
𝑘
(z
𝑖
, z
𝑗
) ≤ 𝛾, ∀𝑘.

(12)
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Figure 12: k-NN recognition accuracies of Fourier descriptors
among different class combinations.

Finally, for a test data point z its class label is determined by
the MKL-SVM decision function:

𝑓 (z) = Sign(
𝑀

∑
𝑖=1

𝑁

∑
𝑘=1

𝛼
𝑖
𝑦
𝑖
𝑑
𝑘
𝐾
𝑘
(z
𝑖
, z) + 𝑏) . (13)

In this paper, we solve the optimal values of 𝛼
𝑖
, 𝑑
𝑘
, and 𝑏

by using the Simple MKL by Rakotomamonjy et al. [18] for
it adopts the reduced gradient method to solve the MKL
optimization problem, which is computationally cheaper
than other MKL solvers.

4. Results and Discussion

In this section, we first test the recognition accuracies of the
geometric features or properties (GP) and Fourier descriptors
(FD) using a simple classifier, that is, the k-nearest neighbor
(k-NN) classifier, to find the optimal number of FDs, where
k is set as 3. A ten-run twofold cross validation procedure is
performed to test the recognition accuracy on the data set.
The data set contains 240 data belonging to 12 classes, and
each class has 20 data.The results are shown in Figures 12–14.
Notice that (3 versus 7 versus 12) means that the number of
objects to be classified is 3, including class 3, class 7, and class
12. Also, “all hollow”means that the objects to be classified are
the ones with hollow holes as shown in Figure 8, including
class 3, class 5, class 7, class 9, and class 11, totally 5 classes.
On the other hand, “all solid” contains 5 different classes,
including class 4, class 6, class 8, class 10, and class 12. “All
(1∽12)” means that the number of classes is 12 (from class 1 to
class 12).

It can be seen from Figure 12 that different class combi-
nation results in different accuracy. For example, in the case
of “All solid,” FD with 𝑛 = 40 gives a recognition accuracy of
60.8%. For the same case, GP results in recognition accuracy
of 74.45% (see Figure 13). When the two kinds of features are
combined, a higher recognition accuracy of 84.3% occurs,
as shown in Figure 14. Moreover, if the objective is to
classify all types of objects, that is, the case of All (1∽12), the
recognition accuracy of FD with 𝑛 = 40 is only 43% (see
Figure 12), and the GE gives only the recognition accuracy
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Figure 13: k-NN recognition accuracies of geometric features
among different class combinations.
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Figure 14: k-NN recognition accuracies of geometric features and
Fourier descriptors among different class combinations.

of 63.3 (see Figure 13). However, when the two kinds of
features are combined, the accuracy can be enhanced to
68.69%, as indicated in Figure 14. These comparisons show
that the combination of GE and FD is able to achieve higher
recognition accuracy than any of them. In addition, we can
also observe from Figure 12 that the recognition accuracy
saturates as 𝑛 reaches 20. Moreover, when 𝑛 = 40, FD gives
the best result. Therefore, we set 𝑛 = 40 in the following
experiments.

Next, we test the proposed recognition scheme (combina-
tion of the kernel PCA-based feature fusion and MKL-SVM)
and compare the proposed scheme with other combinations.
Similarly, the 10-run twofold cross validation is performed
to optimize the parameters of the methods. For kernel PCA,
the parameters to be optimized include the kernel parameter
and the number of eigenvectors. The parameters of SVM are
the penalty weight 𝐶 and the kernel parameter 𝜎. For MKL-
SVM, not only the penalty weight 𝐶 needs to be adjusted, but
also the based functions need to be determined in advance.
Choosing a set of good kernels as the base kernels is crucial
to the MKL-SVM. Accordingly, two kinds of frequently used
kernel functions are adopted as the base kernels in this study:
Gaussian function and the polynomial function:

𝐾
𝐺
(x, y) = exp (−x − y

2

/2𝜎
2

) ,

𝐾
𝑃
(x, y) = (1 + x𝑇y)

𝑝

,

(14)

where 𝑝 is the power of the polynomial kernel. In order
to get a good combination of kernels, the range of 𝜎 is

Table 2: Comparison of recognition accuracies among different
methods.

Feature Classifier Recognition accuracy
(in %)

FD + GE 𝑘-NN 68.69
FD + GE SVM 76.17
Kernel PCA-based
feature fusion SVM 82.13

Kernel PCA-based
feature fusion MKL-SVM 85.54

set as wide as possible: 𝜎 = {2
−5

, 2
−4

, 2
−3

, 2
−2

, 2
−1

, 2
0,

2
1

, 2
2

, 2
3

, 2
4

, 2
5

, 2
6

, 2
7

, 2
8

, 2
9

, 2
10

}. Also, the values of 𝑝 are
in the set of {1, 2, 3, 4, 5, 6}. There are totally 16 Gaussian
kernels and 6 polynomial kernels used in the MKL-SVM.
Therefore, the number 𝑁 of base kernels is 22 in this
experiment. In addition, since the objective of this study is
to classify 12 different objects, we only consider this case in
this experiment. Since there are 12 classes to be classified, the
binary classifier SVM and MKL-SVM needs to be extended
to multiclass classifiers. In this study, the one-against-one
method combined with the voting strategy [19] is adopted for
this purpose. Finally, the cross validation results are listed in
Table 2.

As can be seen from Table 2, when feature FD + GE
is used, SVM largely improves the recognition accuracy.
However, the accuracy of 76.17% is still unacceptable when
the method is applied to automated robotic assembly. When
the kernel PCA is further applied to FD + GE, namely, the
kernel PCA-based feature fusion, the recognition accuracy is
significantly improved from 76.17% to 82.13%, which demon-
strates the validity of the proposed feature fusion scheme in
improving the tactile image recognition. Further, when the
classifier is replaced byMKL-SVM, an accuracy improvement
of 3.41% (85.54% − 82.13%) is observed. Although this
difference appears to be small, the error reduction ratio is
large: 3.41/(100 − 82.13) = 19.08%. Therefore, we can
conclude that MKL-SVM is more suitable than the widely
used SVM for tactile image classification.

5. Conclusion

In this paper, we have presented a recognition scheme for
solving the difficult tactile image recognition problem, which
plays a critical role in automated robotic assembly. The
proposed kernel PCA-based feature fusion technique largely
improved the recognition accuracy of the frequently used
geometric featured and Fourier descriptors, and the multiple
kernel learning (MKL)-based SVM can performmuch better
than the regular SVM in terms of object recognition through
the use of tactile image. Experimental results have indicated
the effectiveness of the proposed recognition scheme in
tactile image recognition. Nevertheless, there remain several
worth-studying issues that may further improve the current
results. For example, other types of kernels can be included in
the MKL-SVM to gain better kernel combination, which will
be our future work.



Mathematical Problems in Engineering 11

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] T. C. Phung, Y. S. Ihn, J. C. Koo, and H. R. Choi, “Edge
identification of a small object through a low-resolution tactile
sensor array,” International Journal of Precision Engineering and
Manufacturing, vol. 11, no. 2, pp. 247–254, 2010.

[2] N. Chen, R. Rink, and H. Zhang, “Efficient edge detection
from tactile data,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, pp. 386–391,
August 1995.

[3] G. M. Krishna and K. Rajanna, “Tactile sensor based on
piezoelectric resonance,” IEEE Sensors Journal, vol. 4, no. 5, pp.
691–697, 2004.

[4] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto,
“Robotic tactile sensor system and applications,” IEEE Transac-
tions on Industrial Electronics, vol. 57, no. 3, pp. 1074–1087, 2010.

[5] Z. Pezzementi, C. Reyda, and G. D. Hager, “Object mapping,
recognition, and localization from tactile geometry,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA ’11), pp. 5942–5948, Shanghai, China, May
2011.

[6] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager, “Tactile-
object recognition from appearance information,” IEEE Trans-
actions on Robotics, vol. 27, no. 3, pp. 473–487, 2011.

[7] U. M. Hernandez, T. J. Dodd, L. Natale, G. Metta, T. J. Prescott,
and N. F. Lepora, “Active contour following to explore object
shape with robot touch,” in Proceedings of the IEEE World
Haptics Conference (WHC ’13), pp. 341–346, Daejeon, Republic
of Korea, April 2013.

[8] Z. Pezzementi, E. Jantho, L. Estrade, and G. D. Hager, “Charac-
terization and simulation of tactile sensors,” inProceedings of the
IEEE Haptics Symposium, pp. 199–205, Waltham, Mass, USA,
March 2010.

[9] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear component
analysis as a Kernel Eigenvalue problem,” Neural Computation,
vol. 10, no. 5, pp. 1299–1319, 1998.

[10] K. I. Kim, K. Jung, andH. J. Kim, “Face recognition using kernel
principal component analysis,” IEEE Signal Processing Letters,
vol. 9, no. 2, pp. 40–42, 2002.

[11] Y. H. Liu, C. K. Wang, Y. Ting et al., “In-TFT-array-process
micro defect inspection using nonlinear principal component
analysis,” International Journal of Molecular Sciences, vol. 10, no.
10, pp. 4498–4514, 2009.

[12] V.N.Vapnik, Statistical LearningTheory, Adaptive and Learning
Systems for Signal Processing, Communications, and Control,
Springer, New York, NY, USA, 1998.

[13] M. Gönen and E. Alpaydın, “Multiple kernel learning algo-
rithms,” Journal of Machine Learning Research, vol. 12, pp. 2211–
2268, 2011.

[14] K. Weiß and H. Worn, “The working principle of resistive
tactile sensor cells,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation (ICMA ’05), pp.
471–476, Niagara Falls, Canada, August 2005.

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Prentice Hall, New York, NY, USA, 2nd edition, 2003.

[16] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[17] Y. H. Liu, Feature analysis and classifier design and their
applications in computer vision and data mining [Ph.D. thesis],
National Taiwan University, Taipei, Taiwan, 2003.

[18] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet,
“SimpleMKL,” Journal of Machine Learning Research, vol. 9, pp.
2491–2521, 2008.

[19] Y. H. Liu and Y. T. Chen, “Face recognition using total
margin-based adaptive fuzzy support vector machines,” IEEE
Transactions onNeural Networks, vol. 18, no. 1, pp. 178–192, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


