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This paper addresses the problem of finite-time H∞ filtering for one family of singular stochastic
systems with parametric uncertainties and time-varying norm-bounded disturbance. Initially,
the definitions of singular stochastic finite-time boundedness and singular stochastic H∞ finite-
time boundedness are presented. Then, the H∞ filtering is designed for the class of singular
stochastic systems with or without uncertain parameters to ensure singular stochastic finite-
time boundedness of the filtering error system and satisfy a prescribed H∞ performance level
in some given finite-time interval. Furthermore, sufficient criteria are presented for the solvability
of the filtering problems by employing the linear matrix inequality technique. Finally, numerical
examples are given to illustrate the validity of the proposed methodology.

1. Introduction

Singular systems also referred to as descriptor systems or generalized state-space systems
represent one family of dynamical systems since it generalizes the linear system model
and has extensive applications in economics systems, power systems, mechanics systems,
chemical processes, and so on; see for more practical examples [1, 2] and the references
therein. Many control results in state-space systems have been extended to singular systems,
such as stability, stabilization, H∞ control, and the filtering problems, for instance, see [3–
6] and the references therein. Meanwhile, Markovian jump systems are referred to as one
special family of hybrid systems and stochastic systems, which are very appropriate to model
plants whose structure is subject to random abrupt changes, see the reference [7]. Thus, many
attracting results have been studied, such as stochastic stability and stabilization [8, 9], robust
control [10–12], guaranteed cost control [13], and other issues. For more details, the readers
may be refered to [7, 14] and the references therein. Recently, the problem of state estimation
for singular Markovian jump systems has also attracted considerable attention. As far as we
know, the traditional Kalman filtering requires the exact knowledge of statistics of the noise
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signals. To overcome the limitations regarding the system uncertainties and the statistical
properties, theH∞ filtering problem has been proposed and tackled for both the continuous-
time case and the discrete-time one including without or with time-delay and full-order or
reduced-order [15–20]. For more details, we refer the readers to [7, 21] and the references
therein.

On the other hand, in many practical processes, many concerned problems are the
practical ones which described that system state does not exceed some bound during some
time interval. Compared with classical Lyapunov asymptotical stability, in order to deal
with the transient performance of control systems, finite-time stability or short-time stability
was introduced in [22]. Employing linear matrix inequality (LMI) theory and Lyapunov
function approach, some appealing results were obtained to ensure finite-time stability, finite-
time boundedness, and finite-time stabilization of various systems including linear systems,
nonlinear systems, and stochastic systems. For instance, Amato et al. [23] investigated the
output feedback finite-time stabilization for continuous linear system. Zhang and An [24]
considered finite-time control problems for linear stochastic system. For more details of the
literature related to finite-time stability, the reader is referred to [25–34] and the references
therein. However, to date and to the best of our knowledge, the H∞ filtering problem
for singular stochastic systems has not investigated in finite-time interval. The problem is
important and challenging in many practice applications, which motivates us for this study.

This paper deals with the problem of finite-time H∞ filtering for one family of
singular stochastic systems with parametric uncertainties and time-varying norm-bounded
disturbance. Our results are totally different from those previous results, although some
studies on H∞ filtering and finite-time stability for singular stochastic systems have been
addressed, see [19–21, 31, 32, 35]. The main aim of this paper is to design an H∞ filtering
which guarantees the filtering error system singular stochastic finite-time boundedness and
satisfies a prescribedH∞ performance level in the given finite-time interval. Sufficient criteria
are presented for the solvability of the filtering problems by applying the LMI technique.
Finally, simulation examples are presented to demonstrate the validity of the developed
theoretical results.

Notations. Throughout the paper, R
n and R

n×m denote the sets of n component real vectors
and n × m real matrices, respectively. The superscript T stands for matrix transposition or
vector. E{·} denotes the expectation operator with respective to some probability measure
P. In addition, the symbol ∗ denotes the term that is induced by symmetry and diag{· · · }
stands for a block-diagonal matrix. λmin(P) and λmax(P) denote the smallest and the largest
eigenvalue of matrix P , respectively. Notations sup. and inf. denote the supremum and
infimum, respectively. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

2. Problem Formulation

In this paper, let us consider the dynamics of continuous-time singular system with
Markovian jumps:

Eẋ(t) = [A(rt) + ΔA(rt)]x(t) + [B(rt) + ΔB(rt)]w(t),

y(t) = C(rt)x(t) +D(rt)w(t),

z(t) = L(rt)x(t) +G(rt)w(t),

(2.1)
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where x(t) ∈ R
n is the state variable, y(t) ∈ R

q1 is the measurement output of the system,
z(t) ∈ R

q2 is the signal to be estimated, and E is a singular matrix with rank(E) = r < n;
{rt, t ≥ 0} is continuous-time Markov stochastic process taking values in a finite space
M := {1, 2, . . . ,N} with transition matrix Γ = (πij)N×N , and the transition probabilities are
described as follows:

Pij = Pr
(
rt+Δ = j | rt = i

)
=

⎧
⎨

⎩

πijΔ + o(Δ), if i /= j,

1 + πijΔ + o(Δ), if i = j,
(2.2)

where limΔ→ 0o(Δ)/Δ = 0, πij satisfies πij ≥ 0 (i /= j), and πii = −∑N
j=1,j /= i πij for all i, j ∈ M;

ΔA(rt) and ΔB(rt) are uncertain matrices and satisfy

[ΔA(rt),ΔB(rt)] = F(rt)Δ(rt)[E1(rt), E2(rt)], (2.3)

where Δ(rt) is an unknown, time-varying matrix function and satisfies ΔT (rt)Δ(rt) ≤ I for all
rt ∈ M; moreover, the disturbance input w(t) ∈ R

p satisfies

∫T

0
wT(t)w(t)dt ≤ d2, d ≥ 0, (2.4)

and the matrices A(rt), B(rt), C(rt), D(rt), L(rt), and G(rt) are coefficient matrices and of
appropriate dimension for all rt ∈ M.

In this paper, we construct the following full-order filter:

Ef
˙̃x(t) = Af(rt)x̃(t) + Bf(rt)y(t),

z̃(t) = Cf(rt)x̃(t),
(2.5)

where x̃(t) ∈ R
n is the filter state, z̃(t) ∈ R

q2 is the filter output, and Ef ,Af(rt), Bf(rt), and
Cf(rt) are to design the filter matrices with appropriate dimensions.

Define x(t) = [xT (t) xT (t) − x̃T (t)]T , e(t) = z(t) − z̃(t) and combining (2.1) and (2.5),
one can obtain the following filtering error dynamics as follows:

Eẋ(t) = A(rt)x(t) + B(rt)w(t),

e(t) = L(rt)x(t) +G(rt)w(t),
(2.6)

where

E =

[
E 0

E − Ef Ef

]

, A(rt) =

[
A(rt) + ΔA(rt) 0

A(rt) + ΔA(rt) −Af(rt) − Bf(rt)C(rt) Af(rt)

]

,

B(rt) =

[
B(rt) + ΔB(rt)

B(rt) + ΔB(rt) − Bf(rt)D(rt)

]

, L(rt) =
[
L(rt) − Cf(rt) Cf(rt)

]
.

(2.7)
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For notational simplicity, in the sequel, for each possible rt = i, i ∈ M, a matrix K(rt) will be
denoted by Ki; for instance, A(rt)will be denoted by Ai, B(rt) by Bi, and so on.

Throughout the paper, we need the following definitions and lemmas.

Definition 2.1 (regular and impulse free, see [21]). (i) The singular system with Markovian
jumps (2.1) is said to be regular in time interval [0, T] if the characteristic polynomial det(sE−
Ai −ΔAi) is not identically zero for all t ∈ [0, T].

(ii) The singular systems with Markovian jumps (2.1) is said to be impulse free in time
interval [0, T], if deg(det(sE −Ai −ΔAi)) = rank(E) for all t ∈ [0, T].

Definition 2.2 (singular stochastic finite-time boundedness (SSFTB)). The singular system
with Markovian jumps (2.6) which satisfies (2.4) is said to be SSFTB with respect to (c1,
c2, T, Ri, d), with c1 < c2, Ri > 0, if the stochastic system (2.6) is regular and impulse free in
time interval [0, T] and satisfies

E

{
xT (0)E

T
RiEx(0)

}
≤ c21 =⇒ E

{
xT (t)E

T
RiEx(t)

}
< c22, ∀t ∈ [0, T]. (2.8)

Remark 2.3. SSFTB implies that not only is dynamical mode of the filtering error system finite-
time bounded but also whole mode of the one is finite-time bounded since the static mode is
regular and impulse free.

Definition 2.4 (singular stochastic H∞ finite-time boundedness (SSH∞FTB)). The singular
systemwithMarkovian jumps (2.6) is said to be SSH∞FTBwith respect to (0, c2, T, Ri, γ, d), if
the singular system with Markovian jumps (2.6) is SSFTB with respect to (c1, c2, T, Ri, d) and
under the zero-initial condition, the output error e(t) satisfies the cost constrained function

E

{∫T

0
eT (t)e(t)dt

}

< γ2
∫T

0
wT(t)w(t)dt, (2.9)

for any nonzero w(t)which satisfies (2.4), where γ is a prescribed positive scalar.

Definition 2.5 (see [9]). Let V (x(t), rt = i, t > 0) be the stochastic function, define its weak
infinitesimal operator L of stochastic process {(x(t), rt = i), t ≥ 0} by

LV (x(t), rt = i, t) = Vt(x(t), i, t) + Vx(x(t), i, t)ẋ(t, i) +
N∑

j=1

πijV
(
x(t), j, t

)
. (2.10)

Lemma 2.6 (see [36]). For matrices Y,M, andN of appropriate dimensions, where Y is a symmetric
matrix, then

Y +MF(t)N +NTFT (t)MT < 0 (2.11)

holds for all matrix F(t) satisfying FT (t)F(t) ≤ I for all t ∈ R, if and only if there exists a positive
constant ε, such that the following inequality:

Y + ε−1MMT + εNTN < 0 (2.12)

holds.
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Lemma 2.7 (see [36]). The linear matrix inequality S =
[
S11 S12

∗ S22

]
< 0 is equivalent to S22 < 0,

S11 − S12S
−1
22S

T
12 < 0, where S11 = ST

11 and S22 = ST
22.

Lemma 2.8. The following items are true.
(i) Assume that rank(E) = r, there exist two orthogonal matrices U and V such that E has

the decomposition as

E = U

[
Σr 0

∗ 0

]

V T = U

[
Ir 0

∗ 0

]

VT , (2.13)

where Σr = diag{δ1, δ1, . . . , δr} with δk > 0 for all k = 1, 2, . . . , r. Partition U = [U1 U2], V =
[V1 V2], and V = [V1Σr V2] with EV2 = 0 and UT

2E = 0.
(ii) If P satisfies

ETP = PTE ≥ 0, (2.14)

then P̃ = UTPV−T withU and V satisfying (2.13) if and only if

P̃ =

[
P11 0

P21 P22

]

, (2.15)

with P11 ≥ 0 ∈ R
r×r . In addition, when P is nonsingular, one has P11 > 0 and det(P22)/= 0.

Furthermore, P satisfying (2.14) can be parameterized as

P = UXUTE +U2YVT , (2.16)

where X = diag{P11,Λ}, Y = [P21 P22], and Λ ∈ R
(n−r)×(n−r) is an arbitrary parameter matrix.

(iii) If P is a nonsingular matrix, R and Λ are two symmetric positive definite matrices, P and
E satisfy (2.14), X is a diagonal matrix from (2.16), and the following equality holds:

ETP = ETR1/2QR1/2E. (2.17)

Then the symmetric positive definite matrix Q = R−1/2UXUTR−1/2 is a solution of (2.17).

Proof. One only requires to prove that (ii) and (iii) hold. Let

P̃ =

[
P11 P12

P21 P22

]

. (2.18)
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Then by (2.13) and (2.14), it follows that condition P̃ = UTPV−T if and only if P12 = 0 and
P11 ≥ 0 ∈ R

r×r . In addition, when P is nonsingular, it follows that P11 > 0 and det(P22)/= 0.
Noting that (2.13) and U is an orthogonal matrix, thus we have

P = U

[
P11 0

P21 P22

]

VT

=

(

U

[
P11 0

∗ Λ

]

UT

)(

U

[
Ir 0

∗ 0

]

VT

)

+U

[
0 0

P21 P22

]

VT

= U

[
P11 0

∗ Λ

]

UTE +
[
U1 U2

]
[

0 0

P21 P22

]

VT

= UXUTE +U2YVT ,

(2.19)

where X = diag{P11,Λ}, Y = [P21 P22] with a parameter matrix Λ ∈ R
(n−r)×(n−r). Thus (ii) is

true.
By (i) and (ii), noticing UT

2E = 0 and P = UXUTE +U2YVT , we have

ETP = ET
(
UXUTE +U2YVT

)
= ETUXUTE. (2.20)

Thus,Q = R−1/2UXUTR−1/2 is a solution of (2.17). This completes the proof of the lemma.

In the paper, our main objective is to concentrate on designing the filter of system (2.1)
which guarantees the resulting filtering error dynamic system (2.6) SSH∞FTB.

3. Main Results

In this section, firstly we give SSH∞FTB analysis results of the filtering problem for nominal
system (2.1). Then these results will be extended to the uncertain systems. Linear matrix
inequality conditions are established to show the nominal system or the uncertain system
(2.6) is finite-time boundedness, and the output error e(t) and disturbance w(t) satisfy the
constrain condition (2.9).

Lemma 3.1. The filtering error system (2.6) is SSFTB with respect to (c1, c2, T, Ri, d), if there exists
a scalar α ≥ 0, a set of nonsingular matrices {Pi, i ∈ M} with Pi ∈ R

2n×2n, two sets of symmetric
positive definite matrices {Q1i, i ∈ M} with Q1i ∈ R

2n×2n, {Q2i, i ∈ M} with Q2i ∈ R
p×p, and for all

i ∈ M such that the following inequalities hold:

E
T
Pi = P

T

i E ≥ 0, (3.1a)
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⎡

⎢
⎣
A

T

i P + P
T

i Ai +
N∑

j=1

πijE
T
Pj − αE

T
Pi P

T

i Bi

∗ −Q2i

⎤

⎥
⎦ < 0, (3.1b)

E
T
Pi = E

T
R

1/2
i Q1iR

1/2
i E, (3.1c)

c21sup
i∈M

{
λmax

(
Q1i

)}
+ d2sup

i∈M

{
λmax

(
Q2i

)}
< c22e

−αT inf
i∈M

{
λmin

(
Q1i

)}
. (3.1d)

Proof. Firstly, one proves the filtering error system (2.6) is regular and impulse free in time
interval [0, T]. By Lemma 2.7 and noting that condition (3.1b), one has

A
T

i P i + P
T

i Ai +
N∑

j=1

πijE
T
Pj − αE

T
Pi < 0. (3.2)

Now, we choose two orthogonal matrices U and V such that E has the decomposition as

E = U

[
Σr 0

∗ 0

]

V
T
= U

[
Ir 0

∗ 0

]

VT
, (3.3)

where Σr = diag{δ1, δ2, . . . , δr} with δk > 0 for all k = 1, 2, . . . , r. Partition U = [U1 U2],

V = [V 1 V 2] and V = [V 1Σr V 2] with EV 2 = 0 and U
T

2E = 0. Denote

U
T
AiV

−T
=

⎡

⎣
A11i A12i

A21i A22i

⎤

⎦, U
T
PiV

−T
=

⎡

⎣
P 11i P 12i

P 21i P 22i

⎤

⎦. (3.4)

Noting that condition (3.1a) and Pi is a nonsingular matrix, by Lemma 2.8, we have P 12i = 0

and det(P 22i)/= 0. Pre and postmultiplying by V−1
and V−T

, it can easily obtain A
T

22iP 22i +

P
T

22iA22i < 0. Therefore A22i is nonsingular, which implies that system (2.6) is regular and
impulse free in time interval [0, T].

Let us consider the quadratic Lyapunov function candidate V (x(t), i) = xT (t)E
T
Pix(t)

for system (2.6). Computing LV , the derivative of V (x(t), i) along the solution of system (2.6),
we obtain

LV (x(t), i) = ξT (t)

⎡

⎢
⎣
A

T

i P i + P
T

i Ai +
N∑

j=1

πijE
T
Pj P

T

i Bi

∗ 0

⎤

⎥
⎦ξ(t), (3.5)
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where ξ(t) = [xT (t), wT(t)]T . From (3.1b) and (3.5), we obtain

E{LV (x(t), i)} < αE{V (x(t), i)} +wT(t)Q2iw(t). (3.6)

Further, (3.6) can be rewritten as

E
{
L
[
e−αtV (x(t), i)

]}
< e−αtwT (t)Q2iw(t). (3.7)

Integrating (3.7) from 0 to t, with t ∈ [0, T], we obtain

e−αtE{V (x(t), i)} < E{V (x(0), i = r0)} +
∫ t

0
e−ατwT (τ)Q2iw(τ)dτ. (3.8)

Noting that α ≥ 0, t ∈ [0, T] and condition (3.1c), we have

E

{
xT (t)E

T
Pix(t)

}
= E{V (x(t), i)}

< eαtE{V (x(0), i = r0)} + eαt
∫ t

0
e−ατwT (τ)Q2iw(τ)dτ

≤ eαt
[

sup
i∈M

{
λmax

(
Q1i

)}
c21 + sup

i∈M

{λmax(Q2i)}d2

]

.

(3.9)

Taking into account that

E

{
xT (t)E

T
Pix(t)

}
= E

{
xT (t)E

T
R

1/2
i Q1iR

1/2
i Ex(t)

}

≥ inf
i∈M

{
λmin

(
Q1i

)}
E

{
xT (t)E

T
RiEx(t)

}
,

(3.10)

we obtain

E

{
xT (t)E

T
RiEx(t)

}
≤ supi∈M

{
λmax

(
Q

−1
1i

)}
E

{
xT (t)E

T
Pix(t)

}

< eαT
supi∈M

{
λmax

(
Q1i

)}
c21 + sup

i∈M

{
λmax

(
Q2i

)}
d2

infi∈M

{
λmin

(
Q1i

)} .

(3.11)

Therefore, it follows that condition (3.1d) implies E{xT (t)E
T
RiEx(t)} < c22 for all t ∈ [0, T].

This completes the proof of the lemma.

Lemma 3.2. The filtering error system (2.6) is SSH∞FTB with respect to (0, c2, T, Ri, γ, d), if there
exists a scalar α ≥ 0, a set of nonsingular matrices {Pi, i ∈ M} with Pi ∈ R

2n×2n, a set of symmetric
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positive definite matrices {Q1i, i ∈ M} with Q1i ∈ R
2n×2n, and for all i ∈ M such that (3.1a), (3.1c)

and the following inequalities hold:

⎡

⎢
⎣
A

T

i P i + P
T

i Ai +
N∑

j=1

πijE
T
Pj + L

T

i Li − αE
T
Pi L

T

i Gi + P
T

i Bi

∗ GT
i Gi − γ2e−αTI

⎤

⎥
⎦ < 0, (3.12a)

d2γ2 < c22 inf
i∈M

{
λmin

(
Q1i

)}
. (3.12b)

Proof. Noting that

⎡

⎣L
T

i Li L
T

i Gi

∗ GT
i Gi

⎤

⎦ =

⎡

⎣L
T

i

GT
i

⎤

⎦
[
Li Gi

]
≥ 0. (3.13)

Thus, condition (3.12a) implies that

⎡

⎢
⎣
A

T

i P i + P
T

i Ai +
N∑

j=1

πijE
T
Pj − αE

T
Pi P

T

i Bi

∗ −γ2e−αTI

⎤

⎥
⎦ < 0. (3.14)

Let Q2i = −γ2e−αTI for all i ∈ M, by Lemma 3.1, conditions (3.1a), (3.1c), (3.12b), and (3.14)
guarantee that system (2.6) is SSFTB with respect to (0, c2, T, Ri, d). Therefore, we only need

to prove that (2.9) holds. Let V (x(t), i) = xT (t)E
T
Pix(t) and noting that (3.5) and (3.14), we

obtain

E{LV (x(t), i)} < αE{V (x(t), i)} + γ2e−αTwT(t)w(t) − E
{
eT (t)e(t)

}
. (3.15)

Then using the similar proof as Lemma 3.1, condition (2.9) can be easily obtained and thus is
omitted. Therefore, the proof of the lemma is completed.

Denote Pi = diag{Pi, Pi}, Q1i = diag{Q1i, Q1i}, Mi = PT
i Afi, Ni = PT

i Bfi, and Ef = E.
Using Lemmas 2.7 and 3.2, we obtain the following theorem.

Theorem 3.3. The nominal filtering error system (2.6) is SSH∞FTB with respect to (0, c2, T, Ri, γ, d)
with Ri = diag{Ri, Ri}, if there exists a scalar α ≥ 0, a set of nonsingular matrices {Pi, i ∈ M} with
Pi ∈ R

n×n, a set of positive definite matrices {Q1i, i ∈ M} with Q1i ∈ R
n×n, three sets of matrices

{Mi, i ∈ M} with Mi ∈ R
n×n, {Ni, i ∈ M} with Ni ∈ R

n×q1 , {Cfi, i ∈ M} with Cfi ∈ R
q2×n, for all

i ∈ M such that

ETPi = PT
i E ≥ 0, (3.16a)
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⎡

⎢
⎢
⎢
⎢
⎢
⎣

Θ1i ∗ ∗ ∗
PT
i Ai −Mi −NiCi Θ2i PT

i Bi −NiDi ∗
BT
i Pi ∗ −γ2e−αTI ∗

Li − Cfi Cfi Gi −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.16b)

ETPi = ETR1/2
i Q1iR

1/2
i E, (3.16c)

d2γ2 < c22 inf
i∈M

{λmin(Q1i)} (3.16d)

hold, whereΘ1i = PT
i Ai+AT

i Pi+
∑N

j=1 πijE
TPj −αETPi, andΘ2i = Mi+MT

i +
∑N

j=1 πijE
TPj −αETPi.

In addition, the desired filter parameters can be chosen by

Afi = P−T
i Mi, Bfi = P−T

i Ni, Cfi = Cfi, Ef = E. (3.17)

Noting that Pi is nonsingular matrix, by Lemma 2.8, there exist two orthogonal matrices U
and V , such that E has the decomposition as

E = U

[
Σr 0

∗ 0

]

V T = U

[
Ir 0

∗ 0

]

VT , (3.18)

where Σr = diag{δ1, δ2, . . . , δr} with δk > 0 for all k = 1, 2, . . . , r. Partition U = [U1 U2], V =
[V1 V2], and V = [V1Σr V2] with EV2 = 0 and UT

2E = 0. Let P̃i = UTPiV−T , from (3.16a), P̃i is of

the following form
[
P11i 0

P21i P22i

]
, and Pi can be expressed as

Pi = UXiU
TE +U2YiVT , (3.19)

where Xi = diag{P11i,Λi} and Yi = [P21i P22i] with a parameter matrix Λi. If we choose Λi being a
symmetric positive definite matrix, then Xi is a symmetric positive definite matrix. Furthermore, the
symmetric positive definite matrix Q1i = R−1/2

i UXiU
TR−1/2

i is a solution of (3.16c), and Pi satisfies

ETPi = PT
i E = ETUXiU

TE. (3.20)

From the above discussion, we have the following theorem.

Theorem 3.4. The nominal filtering error system (2.6) is SSH∞FTB with respect to (0, c2, T, Ri, γ, d)
with Ri = diag{Ri, Ri}, if there exists a scalar α ≥ 0, a set of positive definite matrices {Xi, i ∈ M}
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with Xi ∈ R
n×n, four sets of matrices {Yi, i ∈ M} with Yi ∈ R

(n−r)×n, {Mi, i ∈ M} with Mi ∈ R
n×n,

{Ni, i ∈ M} with Ni ∈ R
n×q1 , and {Cfi, i ∈ M} with Cfi ∈ R

q2×n, for all i ∈ M such that (3.16d)
and the following linear matrix inequality

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ1i ∗ ∗ ∗
PT
i Ai −Mi −NiCi Ξ2i PT

i Bi −NiDi ∗
BT
i Pi ∗ −γ2e−αTI ∗

Li − Cfi Cfi Gi −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.21)

hold, where Ξ1i = PT
i Ai +AT

i Pi +
∑N

j=1 πijE
TPj − αETPi, Ξ2i = Mi +MT

i +
∑N

j=1 πijE
TPj − αETPi,

Pi = UXiU
TE +U2YiVT , Xi and Yi are from the form (3.19); Moreover, other matrical variables are

the same as Theorem 3.3.

By Theorems 3.3 and 3.4 and applying Lemmas 2.6–2.8, one can obtain the results
stated as follows.

Theorem 3.5. The uncertain filtering error system (2.6) is SSH∞FTB with respect to
(0, c2, T, Ri, γ, d) with Ri = {Ri, Ri}, if there exists a scalar α ≥ 0, a set of positive definite matrices
{Xi, i ∈ M} with Xi ∈ R

n×n, four sets of matrices {Yi, i ∈ M} with Yi ∈ R
(n−r)×n, {Mi, i ∈ M} with

Mi ∈ R
n×n, {Ni, i ∈ M} withNi ∈ R

n×q1 , {Cfi, i ∈ M} with Cfi ∈ R
q2×n, and a set of positive scalars

{εi, i ∈ M}, for all i ∈ M such that (3.16d) and the following linear matrix inequality

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Υ1i ∗ ∗ ∗ ∗
PT
i Ai −Mi −NiCi Υ2i PT

i Bi −NiDi ∗ ∗
BT
i Pi + εiE

T
2iE1i ∗ εiE

T
2iE2i − γ2e−αTI ∗ ∗

FT
i Pi FT

i Pi 0 −εiI ∗
Li − Cfi Cfi Gi 0 −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (3.22)

hold, where Υ1i = PT
i Ai +AT

i Pi +
∑N

j=1 πijE
TPj + εiE

T
1iE1i −αETPi, Υ2i = Mi +MT

i +
∑N

j=1 πijE
TPj −

αETPi, Pi = UXiU
TE + U2YiVT , Xi and Yi are from the form (3.19); Moreover, other matrical

variables are the same as Theorem 3.3.

Remark 3.6. Theorems 3.4 and 3.5 extend the H∞ filtering problem of singular stochastic
systems to the finite-time H∞ filtering problem of singular stochastic systems. In fact, if we
fix α = 0 without condition (3.16d), we can obtain sufficient conditions of the H∞ filtering of
singular stochastic systems.

Let I < Q1i < ηI, then one can check that condition (3.16d) can be guaranteed by
imposing the conditions

I < R−1/2
i UXiU

TR−1/2
i < ηI, d2γ2 − c22 < 0. (3.23)
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Remark 3.7. The feasibility of conditions stated in Theorem 3.4 and Theorem 3.5 can be turned
into the following LMIs-based feasibility problem with a fixed parameter α, respectively:

min
(
γ2 + c22

)

Xi, Yi,Mi,Ni, Cfi, η

s.t. (3.21) and (3.23),

min
(
γ2 + c22

)

Xi, Yi,Mi,Ni, Cfi, εi, η

s.t. (3.22) and (3.23).

(3.24)

4. Simulation Examples

In this section, numerical results are given to illustrate the effectiveness of the suggested me-
thod.

Example 4.1. Consider a two-mode singular stochastic system (2.1)with uncertain parameters
as follows:

(i)Mode #1,

A1 =

⎡

⎢⎢
⎣

0.2 1 1

3 2.5 1

0.1 3 2

⎤

⎥⎥
⎦, B1 =

⎡

⎢⎢
⎣

1

1

1

⎤

⎥⎥
⎦, L1 =

⎡

⎢⎢
⎣

1

0.1

1

⎤

⎥⎥
⎦

T

, C1 =

⎡

⎢⎢
⎣

1

1

1

⎤

⎥⎥
⎦

T

,

F1 =

⎡

⎢⎢
⎣

0.05 0 0

0 0.04 0

0 0.01 0

⎤

⎥⎥
⎦, E11 =

⎡

⎢⎢
⎣

0.2 0 0.03

0.03 0.02 0

0.05 0 0.01

⎤

⎥⎥
⎦, E21 =

⎡

⎢⎢
⎣

0.03

0.02

0.05

⎤

⎥⎥
⎦,

(4.1)

(ii)Mode #2,

A2 =

⎡

⎢⎢
⎣

−4 1 1

1 −3 1

1 2 1

⎤

⎥⎥
⎦, B2 =

⎡

⎢⎢
⎣

1

0

1

⎤

⎥⎥
⎦, L2 =

⎡

⎢⎢
⎣

0.7

1

2

⎤

⎥⎥
⎦

T

, C2 =

⎡

⎢⎢
⎣

0.8

4

1

⎤

⎥⎥
⎦

T

,

F2 =

⎡

⎢⎢
⎣

0.05 0 0

0 0.04 0

0 0.01 0.02

⎤

⎥⎥
⎦, E12 =

⎡

⎢⎢
⎣

0.02 0 0.03

0.03 0.03 0

0.02 0 0.1

⎤

⎥⎥
⎦, E22 =

⎡

⎢⎢
⎣

0.03

0.02

0.02

⎤

⎥⎥
⎦,

(4.2)

and E = diag{1, 1, 0}, D1 = 0.2, G1 = 0.3, D2 = 0.1, G2 = 0.5, d = 0.6, Δi = diag{r1(i),
r2(i), r3(i)}, where rj(i) satisfies |rj(i)| ≤ 1 for all i = 1, 2 and j = 1, 2, 3. In addition, the

switching between the two modes is described by the transition rate matrix Γ =
[ −1 1

2 −2

]
.
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Figure 1: The local optimal bound of γ .

Then, we choose R1 = R2 = I3, T = 2, by Theorem 3.5, the optimal bound with
minimum value of γ2 + c22 relies on the parameter α. We can find feasible solution when
0.34 ≤ α ≤ 11.02. Figures 1 and 2 show the optimal values with different value of α. Noting
that when α = 2, it yields the optimal values γ = 9.4643 and c2 = 5.6786. Then, by using
the program fminsearch in the optimization toolbox of Matlab starting at α = 2, the locally
convergent solution can be derived as

Af1 =

⎡

⎢⎢
⎣

−0.8906 1.5044 0.3958

64.1537 47.0692 51.0207

14.9048 15.6431 14.4887

⎤

⎥⎥
⎦, Bf1 =

⎡

⎢⎢
⎣

2.2274

−63.2281
−13.4543

⎤

⎥⎥
⎦,

Cf1 =
[
0.9315 −0.3546 0.6824

]
,

(4.3)

Af2 =

⎡

⎢⎢
⎣

25.0076 170.6684 40.7148

−149.7287 −851.1311 −192.8675
20.5802 107.7329 25.9671

⎤

⎥⎥
⎦, Bf2 =

⎡

⎢⎢
⎣

−44.9909
223.8116

−27.9168

⎤

⎥⎥
⎦,

Cf2 =
[
0.3916 0.3722 1.6748

]
,

(4.4)

with α = 1.3209, and the optimal values γ = 8.1261, c2 = 4.8758.

Remark 4.2. From the above example and Remark 3.7, condition (3.22) in Theorem 3.5 is not
strict in LMI form, however, one can find the parameter α by an unconstrained nonlinear
optimization approach, which a locally convergent solution can be obtained by using the
program fminsearch in the optimization toolbox of Matlab.

Example 4.3. Consider a two-mode singular stochastic system (2.1)with uncertain parameters
as follows:

A1 =

⎡

⎢⎢
⎣

−3 2 0

−3 −2.5 0

1 0 1

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

1 3 0

−1 −2.5 0

−1 0 −4.8

⎤

⎥⎥
⎦. (4.5)
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Figure 2: The local optimal bound of c2.

Moreover, other matrical variables and the transition rate matrix are defined similarly as
Example 4.1.

Let R1 = R2 = I3, then the feasible solution of the above filtering error system can be
found when α = 0, Theorem 3.5 yields the optimal values γ = 3.7770, c2 = 2.2663, and

Af1 =

⎡

⎢⎢
⎣

35.9923 47.8632 42.1297

−125.9936 −141.5997 −122.0307
31.9978 34.4604 31.8623

⎤

⎥⎥
⎦, Bf1 =

⎡

⎢⎢
⎣

−47.6632
137.2043

−33.8527

⎤

⎥⎥
⎦,

Cf1 =
[
0.8294 0.1136 0.8294

]
,

Af2 =

⎡

⎢⎢
⎣

16.8765 73.6696 25.7772

−137.4627 −607.3156 −225.4097
−17.9446 −72.5666 −36.9766

⎤

⎥⎥
⎦, Bf2 =

⎡

⎢⎢
⎣

−15.8299
141.9862

17.5990

⎤

⎥⎥
⎦,

Cf2 =
[
1.1290 1.5975 3.6412

]
.

(4.6)

Thus, the above filtering error system is stochastically stable and the calculated minimum
H∞ performance γ satisfies ‖Twz‖ < 3.7770.

5. Conclusion

In this paper, we deal with the problem of finite-time H∞ filtering for a class of singular
stochastic systems with parametric uncertainties and time-varying norm-bounded distur-
bance. Designed algorithms are provided to guarantee the filtering error system SSFTB and
satisfy a prescribed H∞ performance level in a given finite-time interval, which can be re-
duced to feasibility problems involving restricted linear matrix equalities with a fixed pa-
rameter. Numerical examples are given to demonstrate the validity of the proposed meth-
odology.
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