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The purpose of this paper is to give a foundation for providing a new soft algebraic tool in considering many problems containing
uncertainties. In order to provide these new soft algebraic structures, we discuss a new soft set-(M, N)-soft intersection set, which
is a generalization of soft intersection sets. We introduce the concepts of (M, N)-SI filters of BL-algebras and establish some
characterizations. Especially, (M, N)-soft congruences in BL-algebras are concerned.

1. Introduction

It is well known that certain information processing, espe-
cially inferences based on certain information, is based on
classical two-valued logic. In making inference levels, it is
natural and necessary to attempt to establish some rational
logic system as the logical foundation for uncertain informa-
tion processing. BL-algebra has been introduced by Hájek as
the algebraic structures for his Basic Logic [1]. A well-known
example of a BL-algebra is the interval [0, 1] endowed with
the structure induced by a continuous 𝑡-norm. In fact, the
MV-algebras, Gödel algebras, and product algebras are the
most known classes of BL-algebras. BL-algebras are further
discussed by many researchers; see [2–12].

We note that the complexities of modeling uncertain data
in economics, engineering, environmental science, sociol-
ogy, information sciences, and many other fields cannot be
successfully dealt with by classical methods. Based on this
reason, Molodtsov [13] proposed a completely new approach
for modeling vagueness and uncertainty, which is called
soft set theory. We note that soft set theory emphasizes a
balanced coverage of both theory and practice. Nowadays,
it has promoted a breath of the discipline of information
sciences, intelligent systems, expert and decision support
systems, knowledge systems and decision making, and so on.
For example, see [14–24]. In particular, Çağman et al., Sezgin
et al., and Jun et al. applied soft intersection theory to groups
[25], near-rings [26], and BL-algebras [27], respectively.

In this paper, we organize the recent paper as follows.
In Section 2, we recall some concepts and results of BL-
algebras and soft sets. In Section 3, we investigate some char-
acterizations of (𝑀,𝑁)-SI filters of BL-algebras. In particular,
some important properties of (𝑀,𝑁)-soft congruences of
BL-algebras are discussed in Section 4.

2. Preliminaries

Recall that an algebra 𝐿 = (𝐿, ≤, ∧, ∨, ⊙, → , 0, 1) is a BL-
algebra [1] if it is a bounded lattice such that the following
conditions are satisfied:

(i) (𝐿, ⊙, 1) is a commutative monoid;
(ii) ⊙ and → form an adjoin pair; that is, 𝑧 ≤ 𝑥 → 𝑦 if

and only if 𝑥 ⊙ 𝑧 ≤ 𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿;
(iii) 𝑥 ∧ 𝑦 = 𝑥 ⊙ (𝑥 → 𝑦);
(iv) (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1.

In what follows, 𝐿 is a BL-algebra unless otherwise
specified.
In any BL-algebra 𝐿, the following statements are true
(see [1, 5, 6]):

(𝑎
1
) 𝑥 ≤ 𝑦 ⇔ 𝑥 → 𝑦 = 1;

(𝑎
2
) 𝑥 → (𝑦 → 𝑧) = (𝑥 ⊙ 𝑦) → 𝑧 = 𝑦 → (𝑥 → 𝑧);

(𝑎
3
) 𝑥 ⊙ 𝑦 ≤ 𝑥 ∧ 𝑦;
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(𝑎
4
) 𝑥 → 𝑦 ≤ (𝑧 → 𝑥) → (𝑧 → 𝑦), 𝑥 → 𝑦 ≤ (𝑦 →

𝑧) → (𝑥 → 𝑧);
(𝑎
5
) 𝑥 → 𝑥


= 𝑥


→ 𝑥;
(𝑎
6
) 𝑥 ∨ 𝑥


= 1 ⇒ 𝑥 ∧ 𝑥


= 0;

(𝑎
7
) (𝑥 → 𝑦) ⊙ (𝑦 → 𝑧) ≤ 𝑥 → 𝑧;

(𝑎
8
) 𝑥 ≤ 𝑦 ⇒ 𝑥 → 𝑧 ≥ 𝑦 → 𝑧;

(𝑎
9
) 𝑥 ≤ 𝑦 ⇒ 𝑧 → 𝑥 ≤ 𝑧 → 𝑦,

where 𝑥 = 𝑥 → 0.
A nonempty subset𝐴 of 𝐿 is called a filter of 𝐿 if it satisfies

the following conditions:

(I1) 1 ∈ 𝐴,
(I2) ∀𝑥 ∈ 𝐴, ∀𝑦 ∈ 𝐿, 𝑥 → 𝑦 ∈ 𝐴 ⇒ 𝑦 ∈ 𝐴.

It is easy to check that a nonempty subset 𝐴 of 𝐿 is a
filter of 𝐿 if and only if it satisfies

(I3) ∀𝑥, 𝑦 ∈ 𝐿, 𝑥 ⊙ 𝑦 ∈ 𝐴,
(I4) ∀𝑥 ∈ 𝐴, ∀𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 ⇒ 𝑦 ∈ 𝐴 (see [6]).

From now on, we let 𝐿 be a BL-algebra, 𝑈 an initial
universe, 𝐸 a set of parameters, and 𝑃(𝑈) the power set of
𝑈 and 𝐴, 𝐵, 𝐶 ⊆ 𝐸.

Definition 1 (see [13, 16]). A soft set 𝑓
𝐴
over𝑈 is a set defined

by 𝑓
𝐴

: 𝐸 → 𝑃(𝑈) such that 𝑓
𝐴
(𝑥) = 0 if 𝑥 ∉ 𝐴. Here 𝑓

𝐴

is also called an approximate function. A soft set over 𝑈 can
be represented by the set of ordered pairs 𝑓

𝐴
= {(𝑥, 𝑓

𝐴
(𝑥)) |

𝑥 ∈ 𝐸, 𝑓
𝐴
(𝑥) ∈ 𝑃(𝑈)}. It is clear to see that a soft set is a

parameterized family of subsets of 𝑈. Note that the set of all
soft sets over 𝑈 will be denoted by 𝑆(𝑈).

Definition 2 (see [16]). Let 𝑓
𝐴
, 𝑓
𝐵
∈ 𝑆(𝑈).

(1) 𝑓
𝐴
is said to be a soft subset of 𝑓

𝐵
and denoted by

𝑓
𝐴
⊆̃𝑓
𝐵
if 𝑓
𝐴
(𝑥) ⊆ 𝑓

𝐵
(𝑥), for all 𝑥 ∈ 𝐸. 𝑓

𝐴
and 𝑓

𝐵

are said to be soft equal, denoted by 𝑓
𝐴
= 𝑓
𝐵
, if 𝑓
𝐴
⊆̃𝑓
𝐵

and 𝑓
𝐴
⊇̃𝑓
𝐵
.

(2) The union of 𝑓
𝐴
and 𝑓
𝐵
, denoted by 𝑓

𝐴
∪̃𝑓
𝐵
, is defined

as 𝑓
𝐴
∪̃𝑓
𝐵
= 𝑓
𝐴∪𝐵

, where 𝑓
𝐴∪𝐵

(𝑥) = 𝑓
𝐴
(𝑥)∪𝑓

𝐵
(𝑥), for

all 𝑥 ∈ 𝐸.
(3) The intersection of 𝑓

𝐴
and 𝑓

𝐵
, denoted by 𝑓

𝐴
∩̃𝑓
𝐵
, is

defined as 𝑓
𝐴
∩̃𝑓
𝐵
= 𝑓
𝐴∩𝐵

, where 𝑓
𝐴∩𝐵

(𝑥) = 𝑓
𝐴
(𝑥) ∩

𝑓
𝐵
(𝑥), for all 𝑥 ∈ 𝐸.

Definition 3 (see [27]). A soft set 𝑓
𝐿
over 𝑈 is called an SI-

filter of 𝐿 over 𝑈 if it satisfies

(𝑆
1
) 𝑓
𝐿
(𝑥) ⊆ 𝑓

𝐿
(1) for any 𝑥 ∈ 𝐿,

(𝑆
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥) ⊆ 𝑓

𝐿
(𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

3. (𝑀,𝑁)-SI Filters

In this section, we introduce the concept of (𝑀,𝑁)-SI filters
in BL-algebras and investigate some characterizations. From
now on, we let 0 ⊆ 𝑀 ⊂ 𝑁 ⊆ 𝑈.

Definition 4. A soft set 𝑓
𝐿
over 𝑈 is called an (𝑀,𝑁)-soft

intersection filter (briefly, (𝑀,𝑁)-SI filter) of 𝐿 over 𝑈 if it
satisfies

(SI
1
) 𝑓
𝐿
(𝑥) ∩ 𝑁 ⊆ 𝑓

𝐿
(1) ∪ 𝑀 for all 𝑥 ∈ 𝐿,

(SI
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥) ∩𝑁 ⊆ 𝑓

𝐿
(𝑦) ∪𝑀 for all 𝑥, 𝑦 ∈ 𝐿.

Remark 5. If 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then 𝑓

𝐿

is an (0, 𝑈)-SI filter of 𝐿 over 𝑈. Hence every SI-filter of 𝐿 is
an (𝑀,𝑁)-SI filter of 𝐿, but the converse need not be true in
general. See the following example.

Example 6. Assume that 𝑈 = 𝑆
3
, the symmetric 3-group is

the universal set, and let 𝐿 = {0, 𝑎, 𝑏, 1}, where 0 < 𝑎 < 𝑏 < 1.
We define 𝑥 ∧ 𝑦 := min{𝑥, 𝑦}, 𝑥 ∨ 𝑦 := max{𝑥, 𝑦} and ⊙ and
→ as follows:

⊙ 0 𝑎 𝑏 1

0 0 0 0 0

𝑎 0 0 𝑎 𝑎

𝑏 0 𝑎 𝑏 𝑏

1 0 𝑎 𝑏 1

→ 0 𝑎 𝑏 1

0 1 1 1 1

𝑎 𝑎 1 1 1

𝑏 0 𝑎 1 1

1 0 𝑎 𝑏 1

(1)

It is clear that (𝐿, ∧, ∨, ⊙, → , 1) is a BL-algebra. Let 𝑀 =

{(13), (123)} and 𝑁 = {(1), (12), (13), (123)}. Define a
soft set 𝑓

𝐿
over 𝑈 by 𝑓

𝐿
(1) = {(1), (12), (123)}, 𝑓

𝐿
(𝑏) =

{(1), (12), (13), (123)} and 𝑓
𝐿
(𝑎) = 𝑓

𝐿
(0) = {(1), (12)}. Then

we can easily check that 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈,

but it is not SI-filter of 𝐿 over 𝑈 since 𝑓
𝐿
(𝑏) ̸⊆ 𝑓

𝐿
(1).

The following proposition is obvious.

Proposition 7. If a soft set 𝑓
𝐿
over 𝑈 is an (𝑀,𝑁)-SI filter of

𝐿 over 𝑈, then

(𝑓
𝑆
(1) ∩ 𝑁) ∪𝑀 ⊇ (𝑓

𝑆
(𝑥) ∩ 𝑁) ∪𝑀 ∀𝑥 ∈ 𝑆. (2)

Define an ordered relation “⊆̃
(𝑀,𝑁)

” on 𝑆(𝑈) as follows: for
any𝑓
𝐿
, 𝑔
𝐿
∈ 𝑆(𝑈), 0 ⊆ 𝑀 ⊂ 𝑁 ⊆ 𝑈, we define𝑓

𝐿
⊆̃
(𝑀,𝑁)

𝑔
𝐿
⇔

𝑓
𝐿
∩𝑁⊆̃𝑔

𝐿
∪𝑀. And we define a relation “=

(𝑀,𝑁)
” as follows:

𝑓
𝐿
=
(𝑀,𝑁)

𝑔
𝐿

⇔ 𝑓
𝐿
⊆̃
(𝑀,𝑁)

𝑔
𝐿
and 𝑔

𝐿
⊆̃
(𝑀,𝑁)

𝑓
𝐿
. Using this

notion we state Definition 4 as follows.

Definition 8. A soft set 𝑓
𝐿
over 𝑈 is called an (𝑀,𝑁)-soft

intersection filter (briefly, (𝑀,𝑁)-SI filter) of 𝐿 over 𝑈 if it
satisfies

(SI
1
) 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(1) for all 𝑥 ∈ 𝐿,

(SI
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

Proposition 9. If 𝑓
𝐿
is an (𝑀,𝑁)-𝑆𝐼 filter of 𝐿 over 𝑈, then

𝑓
∗

𝐿
= {𝑥 ∈ 𝐿 | (𝑓

𝐿
(𝑥) ∩ 𝑁) ∪𝑀 = (𝑓

𝐿
(1) ∩ 𝑁) ∪𝑀} is a filter

of 𝐿.

Proof. Assume that𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over𝑈.Then

it is clear that 1 ∈ 𝑓
∗

𝐿
. For any 𝑥, 𝑥 → 𝑦 ∈ 𝑓

∗

𝐿
, (𝑓
𝐿
(𝑥) ∩

𝑁) ∪ 𝑀 = (𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑁) ∪ 𝑀 = (𝑓

𝐿
(1) ∩ 𝑁) ∪ 𝑀. By
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Proposition 7, we have (𝑓
𝐿
(𝑦) ∩ 𝑁) ∪𝑀 ⊆ (𝑓

𝐿
(1) ∩ 𝑁) ∪𝑀.

Since 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, we have

(𝑓
𝐿
(𝑦) ∩ 𝑁) ∪𝑀 = ((𝑓

𝐿
(𝑦) ∪𝑀) ∩ 𝑁) ∪𝑀

⊇ (𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦) ∩ 𝑁) ∪𝑀

= ((𝑓
𝐿
(𝑦) ∩ 𝑁) ∪𝑀)

∩ ((𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑁) ∪𝑀)

= (𝑓
𝐿
(1) ∩ 𝑁) ∪𝑀.

(3)

Hence, (𝑓
𝐿
(𝑦) ∩ 𝑁) ∪ 𝑀 = (𝑓

𝐿
(1) ∩ 𝑁) ∪ 𝑀, which implies

𝑦 ∈ 𝑓
∗

𝐿
. This shows that 𝑓∗

𝐿
is a filter of 𝐿.

Proposition 10. If a soft set 𝑓
𝐿
over𝑈 is an (𝑀,𝑁)-SI filter of

𝐿, then for any 𝑥, 𝑦, 𝑧 ∈ 𝐿,

(1) 𝑥 ≤ 𝑦 ⇒ 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦),

(2) 𝑓
𝐿
(𝑥 → 𝑦) = 𝑓

𝐿
(1) ⇒ 𝑓

𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦),

(3) 𝑓
𝐿
(𝑥 ⊙ 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 ∧ 𝑦),

(4) 𝑓
𝐿
(0)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥

),

(5) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → 𝑧),

(6) 𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥 ⊙ 𝑧 → 𝑦 ⊙ 𝑧),

(7) 𝑓
𝐿
(𝑥 → 𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑦 → 𝑧) → (𝑥 → 𝑧)),

(8) 𝑓
𝐿
(𝑥 → 𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑧 → 𝑥) → (𝑧 → 𝑦)).

Proof. (1) Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑥 ≤ 𝑦. Then 𝑥 → 𝑦 = 1,
and hence

(𝑓
𝐿
(𝑥) ∩ 𝑁) = (𝑓

𝐿
(𝑥) ∩ 𝑁) ∩ (𝑓

𝐿
(1) ∪ 𝑀)

= (𝑓
𝐿
(𝑦) ∩ 𝑁) ∩ (𝑓

𝐿
(𝑥 → 𝑦) ∪𝑀)

⊆ (𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦) ∩ 𝑁) ∪𝑀

⊆ 𝑓
𝐿
(𝑦) ∪𝑀,

(4)

which implies 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦).

(2) Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑓
𝐿
(𝑥 → 𝑦) = 𝑓

𝐿
(1). Then,

𝑓
𝐿
(𝑥) ∩ 𝑁 = (𝑓

𝐿
(𝑥) ∩ 𝑁) ∩ (𝑓

𝐿
(1) ∪ 𝑀)

= (𝑓
𝐿
(𝑥) ∩ 𝑁) ∩ (𝑓

𝐿
(𝑥 → 𝑦) ∪𝑀)

⊆ (𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦) ∩ 𝑁) ∪𝑀

⊆ 𝑓
𝐿
(𝑦) ∪𝑀;

(5)

that is, 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦).

(3) By (𝑎
3
), we have 𝑥 ⊙ 𝑦 ≤ 𝑥 ∧ 𝑦 for all 𝑥, 𝑦 ∈ 𝐿. By

(1), 𝑓
𝐿
(𝑥 ⊙ 𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦). Since 𝑥 ≤ 𝑦 → 𝑥 ⊙ 𝑦,

we obtain 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → (𝑥⊙𝑦)). It follows from (SI

2
)

that𝑓
𝐿
(𝑥)∩𝑓

𝐿
(𝑦)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → (𝑥⊙𝑦))∩𝑓

𝐿
(𝑦) ⊆ 𝑓

𝐿
(𝑥⊙𝑦).

Hence, 𝑓
𝐿
(𝑥 ⊙ 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦).

Since 𝑦 ≤ 𝑥 → 𝑦 and 𝑥 ⊙ (𝑥 → 𝑦) ≤ 𝑥 ∧ 𝑦, we have
𝑓
𝐿
(𝑦)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑦) and𝑓

𝐿
(𝑥⊙(𝑥 → 𝑦))⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥∧𝑦).

Hence we have

𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥 ⊙

(𝑥 → 𝑦))⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥∧𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥)∩𝑓

𝐿
(𝑦), which implies

𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 ∧ 𝑦). Thus 𝑓

𝐿
(𝑥 ⊙ 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩

𝑓
𝐿
(𝑦)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 ∧ 𝑦).

(4) It is a consequence of (3), since 𝑥 ⊙ 𝑥

= 0.

(5) By (𝑎
4
).

(6) By (𝑎
7
).

(7) By (𝑎
8
).

(8) By (𝑎
9
).

By Definition 4 and Proposition 10, we can deduce the
following result.

Proposition 11. A soft set 𝑓
𝐿
over𝑈 is an (𝑀,𝑁)-SI filter of 𝐿

over 𝑈 if and only if it satisfies

(SI
3
) 𝑥 → (𝑦 → 𝑧) = 1 ⇒ 𝑓

𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦) ⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑧) .

(6)

Proposition 12. A soft set 𝑓
𝐿
over 𝑈 is an (𝑀,𝑁)-𝑆𝐼 filter of

𝐿 over 𝑈 if and only if it satisfies

(SI
4
) ∀𝑥, 𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 ⇒ 𝑓

𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦),

(SI
5
) ∀𝑥, 𝑦 ∈ 𝐿, 𝑓

𝐿
(𝑥 ⊙ 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦).

Proof. (⇒) By Proposition 10 (1) and (3).
(⇐) Let 𝑥, 𝑦 ∈ 𝐿. Since 𝑥 ≤ 1, by (SI

3
), we have

𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(1). Hence (SI

1
) holds. Since 𝑥⊙(𝑥 → 𝑦) ≤ 𝑦,

by (SI
3
) and (SI

4
), we have 𝑓

𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥 ⊙

(𝑥 → 𝑦))⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦); that is, (SI

2
) holds.Therefore, 𝑓

𝐿
is an

(𝑀,𝑁)-SI filter of 𝐿 over 𝑈.

4. (𝑀,𝑁)-Soft Congruences

In this section, we investigate (𝑀,𝑁)-soft congruences,
(𝑀,𝑁)-soft congruences classes, and quotient soft BL-
algebras.

Definition 13. A soft relation 𝜃 from 𝑓
𝐿
× 𝑓
𝐿
to 𝑃(𝑈 × 𝑈) is

called an (𝑀,𝑁)-congruence in 𝐿 over 𝑈 × 𝑈 if it satisfies

(𝐶
1
) 𝜃(1, 1)=

(𝑀,𝑁)
𝜃(𝑥, 𝑥), ∀𝑥 ∈ 𝐿,

(𝐶
2
) 𝜃(𝑥, 𝑦)=

(𝑀,𝑁)
𝜃(𝑦, 𝑥), ∀𝑥 ∈ 𝐿,

(𝐶
3
) 𝜃(𝑥, 𝑦) ∩ 𝜃(𝑦, 𝑧)⊆̃

(𝑀,𝑁)
𝜃(𝑥, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐿,

(𝐶
4
) 𝜃(𝑥, 𝑦)⊆̃

(𝑀,𝑁)
𝜃(𝑥 ⊙ 𝑧, 𝑦 ⊙ 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐿,

(𝐶
5
) 𝜃(𝑥, 𝑦)⊆̃

(𝑀,𝑁)
𝜃(𝑥 → 𝑧, 𝑦 → 𝑧) ∩ 𝜃(𝑧 →

𝑥, 𝑧 → 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝐿.

Definition 14. Let 𝜃 be an (𝑀,𝑁)-congruence in BL-algebra𝐿
over𝑈×𝑈 and 𝑥 ∈ 𝐿. Define 𝜃𝑥 in 𝐿 as 𝜃𝑥(𝑦) = 𝜃(𝑥, 𝑦), ∀𝑦 ∈

𝐿. The set 𝜃𝑥 is called an (𝑀,𝑁)-congruence class of 𝑥 by 𝜃 in
𝐿. The set 𝐿/𝜃 = {𝜃

𝑥
| 𝑥 ∈ 𝐿} is called a quotient soft set by 𝜃.

Lemma 15. If 𝜃 is an (𝑀,𝑁)-congruence in 𝐿 over𝑈×𝑈, then
𝜃(𝑥, 𝑦)⊆̃

(𝑀,𝑁)
𝜃(1, 1), ∀𝑥, 𝑦 ∈ 𝐿.

Proof. By (𝐶
1
) and (𝐶

3
), we have 𝜃(1, 1) =

𝜃(𝑥, 𝑥)⊇̃
(𝑀,𝑁)

𝜃(𝑥, 𝑦) ∩ 𝜃(𝑦, 𝑥) = 𝜃(𝑥, 𝑦).
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Lemma 16. If 𝜃 is an (𝑀,𝑁)-congruence in 𝐿 over𝑈×𝑈, then
𝜃
1 is an (𝑀,𝑁)-𝑆𝐼 filter of 𝐿 over 𝑈.

Proof. For any 𝑥 ∈ 𝐿, we have

𝜃
1
(1) = 𝜃 (1, 1) ⊇̃

(𝑀,𝑁)
𝜃 (1, 𝑥) = 𝜃

1
(𝑥) . (7)

This proves that (SI
1
) holds.

For any 𝑥, 𝑦 ∈ 𝐿, by (𝐶
3
) and (𝐶

5
), we obtain

𝜃 (1, 𝑦) ⊇̃
(𝑀,𝑁)

𝜃 (1, 𝑥 → 𝑦) ∩ 𝜃 (𝑥 → 𝑦, 𝑦) ,

𝜃 (𝑥 → 𝑦, 𝑦) = 𝜃 (𝑥 → 𝑦, 1 → 𝑦) ⊇̃
(𝑀,𝑁)

𝜃 (𝑥, 1) .
(8)

It follows that

𝜃 (1, 𝑦) ⊇̃
(𝑀,𝑁)

𝜃 (1, 𝑥 → 𝑦) ∩ 𝜃 (𝑥, 1)

= 𝜃 (1, 𝑥) ∩ 𝜃 (1, 𝑥 → 𝑦) ;
(9)

that is, 𝜃1(𝑦)⊇̃
(𝑀,𝑁)

𝜃
1
(𝑥) ∩ 𝜃

1
(𝑥 → 𝑦). This proves that (SI

2
)

holds. Thus, 𝜃1 is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈.

Lemma 17. Let 𝑓
𝐿
be an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈. Then

𝜃(𝑥, 𝑦) = 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑥) is an (𝑀,𝑁)-soft

congruence in 𝐿.

Proof. For any 𝑥, 𝑦, 𝑧 ∈ 𝐿, we have the following.

(𝐶
1
) Consider

𝜃
𝑓
(1, 1) = 𝑓

𝐿
(1 → 1) ∩ 𝑓

𝐿
(1 → 1)

= 𝑓
𝐿
(1) = 𝑓

𝐿
(𝑥 → 𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑥) = 𝜃

𝑓
(𝑥, 𝑥) .

(10)

This proves that (𝐶
1
) holds.

(𝐶
2
) It is clear that (𝐶

2
) holds.

(𝐶
3
) By Proposition 10(5), we have

𝜃
𝑓
(𝑥, 𝑦) ∩ 𝜃

𝑓
(𝑦, 𝑧)

= (𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑥))

∩ (𝑓
𝐿
(𝑦 → 𝑧) ∩ 𝑓

𝐿
(𝑧 → 𝑦))

= (𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑧))

∩ (𝑓
𝐿
(𝑦 → 𝑥) ∩ 𝑓

𝐿
(𝑧 → 𝑦))

⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑧) ∩ 𝑓

𝐿
(𝑧 → 𝑥)

= 𝜃
𝑓
(𝑥, 𝑧) .

(11)

Thus (𝐶
3
) holds.

(𝐶
4
) Since 𝑥 → 𝑦 ≤ (𝑥 ⊙ 𝑧) → (𝑦 ⊙ 𝑧) and 𝑦 → 𝑥 ≤

(𝑦 ⊙ 𝑧) → (𝑥 ⊙ 𝑧), we have

𝑓
𝐿
(𝑥 → 𝑦) ⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑥 ⊙ 𝑧) → (𝑦 ⊙ 𝑧)) ,

𝑓
𝐿
(𝑦 → 𝑧) ⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑦 ⊙ 𝑧) → (𝑥 ⊙ 𝑧)) ,

(12)

Thus, we have

𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑥)

⊆̃
(𝑀,𝑁)

𝑓
𝐿
((𝑥 ⊙ 𝑧) → (𝑦 ⊙ 𝑧))

∩ 𝑓
𝐿
((𝑦 ⊙ 𝑧) → (𝑥 ⊙ 𝑧)) .

(13)

which implies

𝜃
𝑓
(𝑥, 𝑦) ⊆̃

(𝑀,𝑁)
𝜃
𝑓
(𝑥 ⊙ 𝑧, 𝑦 ⊙ 𝑧) . (14)

This implies that (𝐶
4
) holds.

(𝐶
5
) Finally, we prove condition (𝐶

5
):

𝜃
𝑓
(𝑥 → 𝑧, 𝑦 → 𝑧) ∩ 𝜃

𝑓
(𝑧 → 𝑥, 𝑧 → 𝑦)

= 𝑓
𝐿
((𝑥 → 𝑧) → (𝑦 → 𝑧))

∩ 𝑓
𝐿
((𝑦 → 𝑧) → (𝑥 → 𝑧))

∩ 𝑓
𝐿
((𝑧 → 𝑥) → (𝑧 → 𝑦))

∩ 𝑓
𝐿
((𝑧 → 𝑦) → (𝑧 → 𝑥))

⊇̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → 𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦)

= 𝜃
𝑓
(𝑥, 𝑦) .

(15)

Thus, (𝐶
5
) holds. Therefore 𝜃

𝑓
is an (𝑀,𝑁)-soft congruence

in 𝐿.

Let 𝑓
𝐿
be an (𝑀,𝑁)-SI filter of 𝐿 over𝑈 and 𝑥 ∈ 𝐿. In the

following, let 𝑓𝑥 denote the (𝑀,𝑁)-congruence class of 𝑥 by
𝜃
𝑓
in 𝐿 and let 𝐿/𝑓 be the quotient soft set by 𝜃

𝑓
.

Lemma 18. If 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then

𝑓
𝑥
=
(𝑀,𝑁)

𝑓
𝑦 if and only if 𝑓

𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑦 →

𝑥)=
(𝑀,𝑁)

𝑓
𝐿
(1) for all 𝑥, 𝑦 ∈ 𝐿.

Proof. If 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then 𝑓

𝜇
(]) =

𝜃
𝜇

𝑓
(]) = 𝜃

𝑓
(𝜇, ]) = 𝑓

𝐿
(𝜇 → ]) ∩ 𝑓

𝐿
(] → 𝜇); that is,

𝑓
𝜇
(]) = 𝑓

𝐿
(𝜇 → ]) ∩ 𝑓

𝐿
(] → 𝜇) for all 𝑥, 𝑦 ∈ 𝐿.

If 𝑓𝑥=
(𝑀,𝑁)

𝑓
𝑦, then 𝑓

𝑥
(𝑥)=
(𝑀,𝑁)

𝑓
𝑦
(𝑥), and hence 𝑓

𝐿
(𝑥 →

𝑥) = 𝑓
𝐿
(1)=
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → 𝑥) ∩ 𝑓

𝐿
(𝑥 → 𝑦). Thus, 𝑓

𝐿
(𝑦 →

𝑥)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(1).

Conversely, assume the given condition holds. By
Proposition 10, we have 𝑓

𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → 𝑦) ∩

𝑓
𝐿
(𝑦 → 𝑧) and 𝑓

𝐿
(𝑦 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑦 → 𝑥) ∩ 𝑓

𝐿
(𝑥 →

𝑧).If𝑓
𝐿
(𝑦 → 𝑥)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(1), then𝑓

𝐿
(𝑥 →

𝑧)⊇
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → 𝑧) and 𝑓

𝐿
(𝑦 → 𝑧)⊇

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → 𝑧). Thus

𝑓
𝐿
(𝑥 → 𝑧)=

(𝑀,𝑁)
𝑓
𝐿
(𝑦 → 𝑧). Similarly, we can prove that

𝑓
𝐿
(𝑧 → 𝑥)=

(𝑀,𝑁)
𝑓
𝐿
(𝑧 → 𝑦). This implies that

𝑓
𝑥
(𝑧) = 𝑓

𝐿
(𝑥 → 𝑧) ∩ 𝑓

𝐿
(𝑧 → 𝑥)

=
(𝑀,𝑁)

𝑓
𝐿
(𝑦 → 𝑧) ∩ 𝑓

𝐿
(𝑧 → 𝑦) = 𝑓

𝑦

𝐿
(𝑧) ,

(16)

for all 𝑧 ∈ 𝐿. Hence, 𝑓𝑥=
(𝑀,𝑁)

𝑓
𝑦.

We denote 𝑓
𝑓(1)

by 𝑓
𝑓(1)

:= {𝑥 ∈ 𝐿 | 𝑓(𝑥)=
(𝑀,𝑁)

𝑓(1)}.
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Corollary 19. If 𝑓 is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then
𝑓
𝑥
=
(𝑀,𝑁)

𝑓
𝑦 if and only if 𝑥∼

𝑓𝑓(1)
𝑦, where 𝑥∼

𝑓𝑓(1)
𝑦 if and only

if 𝑥 → 𝑦 ∈ 𝑓
𝑓(1)

and 𝑦 → 𝑥 ∈ 𝑓
𝑓(1)

.
Let 𝑓 be an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈. For any 𝑓𝑥, 𝑓𝑦 ∈

𝐿/𝑓, we define

𝑓
𝑥
∨ 𝑓
𝑦
=
(𝑀,𝑁)

𝑓
𝑥∨𝑦

, 𝑓
𝑥
∧ 𝑓
𝑦
=
(𝑀,𝑁)

𝑓
𝑥∧𝑦

,

𝑓
𝑥
⊙ 𝑓
𝑦
=
(𝑀,𝑁)

𝑓
𝑥⊙𝑦

, 𝑓
𝑥
→ 𝑓

𝑦
=
(𝑀,𝑁)

𝑓
𝑥→𝑦

.
(17)

Theorem 20. If 𝑓 is an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then
𝐿/𝑓 = (𝐿/𝑓, ∧, ∨,


, → , 𝑓

0
, 𝑓
1
) is a BL-algebra.

Proof. We claim that the above operations on 𝐿/𝑓 are
well defined. In fact, if 𝑓

𝑥
=
(𝑀,𝑁)

𝑓
𝑦 and 𝑓

𝑎
=
(𝑀,𝑁)

𝑓
𝑏,

by Corollary 19, we have 𝑥∼
𝑓(𝑓(1))

𝑦 and 𝑎∼
𝑓𝑓(1)

𝑏, and so
𝑥 ∨ 𝑎∼

𝑓𝑓(1)
𝑦 ∨ 𝑏. Thus 𝑓𝑥∨𝑎=

(𝑀,𝑁)
𝑓
𝑦∨𝑏. Similarly, we prove

𝑓
𝑥∧𝑎

=
(𝑀,𝑁)

𝑓
𝑦∧𝑏

, 𝑓
𝑥⊙𝑎

=
(𝑀,𝑁)

𝑓
𝑦⊙𝑏, and 𝑓

𝑥→𝑎
=
(𝑀,𝑁)

𝑓
𝑦→𝑏.

Then it is easy to see that 𝐿/𝑓 is a BL-algebra. Especially,
we prove the divisibility in 𝐿/𝑓 as follows. Define a lattice
ordered relation “≼

(𝑀,𝑁)
” on 𝐿/𝑓 as follows:

𝑓
𝑥
≼
(𝑀,𝑁)

𝑓
𝑦
⇐⇒ 𝑓

𝑥
∨ 𝑓
𝑦
=
(𝑀,𝑁)

𝑓
1
. (18)

By Corollary 19, we have 𝑓
𝐿
(𝑥 → 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(1). If

𝑓
𝑥
, 𝑓
𝑦
, 𝑓
𝑧
∈ 𝐿/𝑓, then

𝑓
𝑥
⊙ 𝑓
𝑦
≼
(𝑀,𝑁)

𝑓
𝑧
⇐⇒ 𝑓

𝑥⊙𝑦
≼
(𝑀,𝑁)

𝑓
𝑧

⇐⇒ 𝑓
𝐿
((𝑥 ⊙ 𝑦) → 𝑧) =

(𝑀,𝑁)
𝑓
𝐿
(1)

⇐⇒ 𝑓
𝐿
(𝑥 → (𝑦 → 𝑧)) =

(𝑀,𝑁)
𝑓
𝐿
(1)

⇐⇒ 𝑓
𝑥
≼
(𝑀,𝑁)

𝑓
𝑦→𝑧

⇐⇒ 𝑓
𝑥
≼
(𝑀,𝑁)

𝑓
𝑦
→ 𝑓

𝑧
.

(19)

Theorem 21. If 𝑓
𝐿
is an (𝑀,𝑁)-𝑆𝐼 filter of 𝐿 over 𝑈, then

𝐿/𝑓 ≅ 𝐿/𝑓
𝑓(1)

.

Proof. Define 𝜑 : 𝐿 → 𝐿/𝑓 by 𝜑(𝑥) = 𝑓
𝑥 for all 𝑥 ∈ 𝐿. For

any 𝑥, 𝑦 ∈ 𝐿, we have

𝜑 (𝑥 ∨ 𝑦) = 𝑓
𝑥∨𝑦

=
(𝑀,𝑁)

𝑓
𝑥
∨ 𝑓
𝑦
= 𝜑 (𝑥) ∨ 𝜑 (𝑦) ,

𝜑 (𝑥 ∧ 𝑦) = 𝑓
𝑥∧𝑦

=
(𝑀,𝑁)

𝑓
𝑥
∧ 𝑓
𝑦
= 𝜑 (𝑥) ∧ 𝜑 (𝑦) ,

𝜑 (𝑥 ⊙ 𝑦) = 𝑓
𝑥⊙𝑦

=
(𝑀,𝑁)

𝑓
𝑥
⊙ 𝑓
𝑦
= 𝜑 (𝑥) ⊙ 𝜑 (𝑦) ,

𝜑 (𝑥 → 𝑦) = 𝑓
𝑥→𝑦

=
(𝑀,𝑁)

𝑓
𝑥
→ 𝑓

𝑦
= 𝜑 (𝑥) → 𝜑 (𝑦) .

(20)

Hence, 𝜑 is an epic. Moreover, we have

𝑥 ∈ Ker𝜑 ⇐⇒ 𝜑 (𝑥) = 𝑓
1

⇐⇒ 𝑓
𝑥
=
(𝑀,𝑁)

𝑓
1
⇐⇒ 𝑥∼

𝑓𝑓(1)
1 ⇐⇒ 𝑥 ∈ 𝑓

𝑓(1)
,

(21)

which shows that 𝐿/𝑓 ≅ 𝐿/𝑓
𝑓(1)

.

5. Conclusions

As a generalization of soft intersection filters of BL-algebras,
we introduce the concept of (𝑀,𝑁)-SI (implicative) filters of
BL-algebras.We investigate their characterizations. In partic-
ular, we describe (𝑀,𝑁)-soft congruences in BL-algebras.

To extend this work, one can further investigate (𝑀,𝑁)-
SI prime (semiprime) filters of BL-algebras. Maybe one
can apply this idea to decision making, data analysis, and
knowledge based systems.
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[25] N. Çağman, F. Citak, andH. Aktas, “Soft-int group and its appli-
cations to group theory,” Neural Computing and Applications,
vol. 21, no. 1, supplement, pp. 151–158, 2012.

[26] A. Sezgin, A. O. Atagun, and N. N. Çağman, “Soft intersection
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