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This paper is concerned with the 𝐻
∞

filtering problem for networked systems with bounded measurement missing. A switched
linear system model is proposed to describe the considered filtering error system. A sufficient condition is derived for the filtering
error system to be exponentially stable and achieve a prescribed𝐻

∞
filtering performance level.The obtained condition establishes

quantitative relations among the𝐻
∞
performance level and two parameters characterizing the measurement missing, namely, the

measurement missing rate bound and the maximal number of consecutive measurement missing. A convex optimization problem
is presented to design the linear𝐻

∞
filters. Finally, an illustrative example is given to show the effectiveness of the proposed results.

1. Introduction

A sensor network consists of spatially distributed auton-
omous sensors to cooperatively monitor physical or envi-
ronmental conditions. The purpose of a sensor network is
to provide users with the information of interest from data
gathered by spatially distributed sensors, and it has found
applications in a variety of areas, such as moving target
localization and tracking, environment monitoring, intelli-
gent transportation systems, and sensor-actuator network-
based control (see [1, 2] and the literature therein). Thus,
it is not surprising that signal estimation has been one of
the most fundamental collaborative information processing
problems in sensor networks [3–10]. In the environment
of sensor networks, the measurements may be unavailable
to the estimators intermittently. The corresponding estima-
tion problem is usually termed estimation with missing,
incomplete, or intermittent measurements and has received
increasing research attention; see, for example, [11–17] and the
references therein.

Measurement missing degrades the performance of the
filtering system, and onemay be concerned with the problem
about how much the filtering performance declines for
a certain amount of measurement missing, what is the
maximal number of consecutive measurement missing that
the filtering system can tolerant to guarantee the desired

filtering performance, and so forth. This gives rise to the
idea of revealing the relations, especially the quantitative
relations, among the filtering performance level and some
parameters characterizing the measurement missing, such as
the missing rate/probability bound and the maximal number
of consecutive measurement missing. Such relations may
provide useful guidelines for designing the filtering systems
with measurement missing. For example, in the sensor-
network-based filtering system, one may purposely suspend
some sensor nodes intermittently to save node power without
destroying the stability and desired performance level of
the filtering systems; in some network-based fast sampling
filtering systems, one may consider dropping certain amount
of data packets to ensure that the set of the network-based
filtering systems is schedulable and meanwhile to guarantee
that the overall network-based filtering systems are stable and
achieve prescribed filtering performance level and so forth.
In these applications, establishing the relations among the
filtering performance level and the parameters characterizing
the measurement missing is of prior importance. Existing
results on this topic can be generally classified into two
frameworks, namely, the stochastic framework [18–22] and
the deterministic framework [23].

A general structure of the filtering system with mea-
surement missing is shown in Figure 1, where 𝑦 is the
measurement and 𝑦 is the filter input. In the stochastic
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Figure 1: Diagram of the filtering problem with measurement
missing.

framework, the measurement missing is usually described by
a Bernoulli sequence or a Markov chain. For those results
using the Bernoulli sequence, such as [14, 15], the filter
input is usually described as 𝑦(𝑘) = 𝛾(𝑘)𝑦(𝑘) + (1 −

𝛾(𝑘))𝑦(𝑘 − 1) or as 𝑦(𝑘) = 𝛾(𝑘)𝑦(𝑘) by introducing the
binary random variable 𝛾(𝑘), where Prob{𝛾(𝑘) = 1} = 𝛾,
and 𝛾 is usually called the measurement arrival probability
while 1 − 𝛾 is called the measurement missing probability.
For those results using Markov chain technique, such as [12,
21], the measurement missing and the measurement arrival
are defined as two modes of the Markov chain, and the
mode transition probabilities are assumed to be known. In
these ways, the stochastic parameters (either the Bernoulli
sequence or the Markov chain) are incorporated into the
filtering systemmodels, and the relation between the filtering
performance level and the measurement missing probability
is implicitly established. Note that the maximal number of
consecutive measurement missing is an important parameter
that characterizes the measurement missing, and it also plays
an important role in affecting the filtering performance.
However, the relation between the filtering performance
level and the maximal number of consecutive measure-
ment missing is not established in all the aforementioned
results using stochastic framework. Being different from the
stochastic framework, the effects of themeasurementmissing
on the filtering system are treated as time delays in the
filter input in the deterministic framework, and the filtering
error system with bounded measurement missing is usually
described as a deterministic system with bounded time-
varying delays. In this way, the relation between the filtering
performance level and the maximal number of consecutive
measurement missing is established. Some results on this
topic can be found, for example, in [7, 23], where the 𝐻

∞

filtering was investigated for linear continuous-time systems
with bounded measurement missing and delays. However,
the relation between the filtering performance level and the
measurement missing rate/probability is not established in
the existing results using deterministic framework.

By a closer inspection, it is found that the relations
among the filtering performance level and the parameters
characterizing the measurement missing revealed in the
existing results using either the stochastic framework or
the deterministic framework are quite implicit. Actually,
besides of determining the maximal allowable measurement
missing rate/probability bound, one may be interested more
in the quantitative results about how much the filtering
performance declines for a certain amount of measurement

missing and for a certain extent of increase on the maximal
number of consecutive measurement missing, or in other
words, the quantitative relations among the performance
level and the parameters characterizing the measurement
missing. Specifically, this gives rise to the problem of how to
express the filtering performance level as a function of the
parameters characterizing the measurement missing. To the
best of the authors’ knowledge, such quantitative relations
for the filtering systems with bounded measurement missing
have not yet been established in the existing results, which
motivates the presented research.

In this paper, the𝐻
∞
filtering problem is investigated for

networked systems with boundedmeasurement missing.The
filtering error system is described as a switched linear system
by using the augmentation technique and by including the
numbers of consecutive measurement missing as switching
parameters. Based on the obtained switched system model,
a sufficient condition is derived for the filtering system
to be exponentially stable and achieve a prescribed 𝐻

∞

performance level. A convex optimization problem is also
presented to design the linear 𝐻

∞
filters which guarantee

that the considered filtering system achieves a suboptimal
𝐻
∞

performance level. The main contributions of the paper
are summarized as follows. (1) A switched system model
with finite number of subsystems is established to describe
the networked filtering system with bounded missing mea-
surements. (2) A quantitative relation is established between
the filtering performance and parameters characterizing the
measurementmissing. Specifically, the exponential decay rate
of the filtering error system is given as amonotonic increasing
function of the measurement missing rate bound, while the
𝐻
∞

performance level is given as a monotonic increasing
function of both the measurement missing rate bound and
the maximal number of consecutive measurement missing.
(3) The established relation gives quantitative results about
how much the 𝐻

∞
filtering performance level declines for

a certain amount of measurement missing and for a certain
extent of increase on the maximal number of consecutive
measurement missing. They theoretically reveal that mea-
surement missing degrades the𝐻

∞
filtering performance.

2. Modelling of the Filtering System

The considered filtering problem is shown in Figure 1, where
the physical plant is described by

𝑥 (𝑘 + 1) = 𝐴
𝑝
𝑥 (𝑘) + 𝐵

𝑝
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑝
𝑥 (𝑘) + 𝐷

𝑝
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐿
𝑝
𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state, 𝑦(𝑘) ∈ R𝑝 is the
measured output, 𝑧(𝑘) ∈ R𝑞 is the signal to be estimated, and
𝑤(𝑘) ∈ R𝑚 is the noise signal which belongs to 𝑙

2
[0,∞). 𝐴

𝑝
,

𝐵
𝑝
, 𝐶
𝑝
, 𝐷
𝑝
, and 𝐿

𝑝
are constant matrices with appropriate
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dimensions, and 𝐴
𝑝
is assumed to be stable. The full-order

linear filter used to estimate the signal 𝑧(𝑘) is given by

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) ,

(2)

where 𝑥
𝑓
(𝑘) ∈ R𝑛 is the filter state, 𝑦(𝑘) ∈ R𝑝 is the filter

input, and 𝑧
𝑓
(𝑘) ∈ R𝑞 is the estimated signal. 𝐴

𝑓
, 𝐵
𝑓
, and

𝐶
𝑓
are filter matrices to be determined.
Since the measurements may be missed during the trans-

mission from the sensor to the filter, the filter input 𝑦may not
be equal to the measured output 𝑦. Suppose that the number
of consecutive measurement missing 𝑖 is upper bounded by
𝑖 ≤ 𝑑 and the filter input holds at its last available value if a
measurement is missed, where 𝑑 is a known constant. Then,
we have

𝑦 (𝑘) = 𝑦 (𝑘 − 𝑖) (3)

if there are 𝑖 consecutive measurement losses before the
time step 𝑘 + 1, where 𝑖 ∈ 𝑍

0
= {0, 1, . . . , 𝑑}. It can be

seen from (3) that the system model of the filter varies over
different sampling intervals since the number of consecutive
measurement missing is time varying over different sampling
periods. By defining the filtering error signal as 𝑒(𝑘) = 𝑧(𝑘) −
𝑧
𝑓
(𝑘) and denoting

𝜉 (𝑘) = [ 𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 1) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑘 − 𝑑) 𝑥
𝑇

𝑓
(𝑘)]

𝑇

,

𝜐 (𝑘) = [ 𝑤
𝑇

(𝑘) 𝑤
𝑇

(𝑘 − 1) ⋅ ⋅ ⋅ 𝑤
𝑇

(𝑘 − 𝑑)]

𝑇

,

(4)

we obtain the following filtering error system model:

𝑆
𝜎(𝑘)

: {

𝜉 (𝑘 + 1) = 𝐴
𝜎(𝑘)
𝜉 (𝑘) + 𝐵

𝜎(𝑘)
𝜐 (𝑘)

𝑒 (𝑘) = 𝐶𝜉 (𝑘) ,
(5)

where 𝜎(𝑘) ∈ 𝑍
0
, and

𝐴
𝜎(𝑘)

=
[

[

[

[

𝐴
𝑝
Λ
𝑎

Π

] [

0

𝑂
𝑎

]

𝐵
𝑓
𝐶
𝑝
𝐼
𝑎𝜎(𝑘)

𝐴
𝑓

]

]

]

,

𝐵
𝜎(𝑘)

=
[

[

[

𝐵
𝑝
Λ
𝑏

𝑂
𝑏

]

𝐵
𝑓
𝐷
𝑝
𝐼
𝑏𝜎(𝑘)

]

]

,

𝐶 = [[𝐿𝑝
𝑂
𝑐
] −𝐶
𝑓
] ,

Λ
𝑎
= [𝐼
1
𝑂
𝑇

𝑎
] , Λ

𝑎
= [𝐼
3
𝑂
𝑇

𝑑
] ,

Π = [𝐼
2
𝑂
𝑎
] , 𝑂

𝑎
= 0 ∈ 𝑅

𝑑𝑛×𝑛

,

𝑂
𝑏
= 0 ∈ 𝑅

𝑑𝑛×(𝑑+1)𝑛

,

𝑂
𝑐
= 0 ∈ 𝑅

𝑝×𝑑𝑛

, 𝑂
𝑑
= 0 ∈ 𝑅

𝑑𝑚×𝑚

,

𝐼
1
= 𝐼 ∈ 𝑅

𝑛×𝑛

, 𝐼
2
= 𝐼 ∈ 𝑅

𝑑𝑛×𝑑𝑛

,

𝐼
3
= 𝐼 ∈ 𝑅

𝑚×𝑚

,

𝐼
𝑎𝜎(𝑘)

= [Δ
𝑎0
Δ
𝑎1
⋅ ⋅ ⋅ Δ

𝑎𝑑
] ,

𝐼
𝑏𝜎(𝑘)

= [Δ
𝑏0
Δ
𝑏1
⋅ ⋅ ⋅ Δ

𝑏𝑑
] ,

Δ
𝑎𝑖
= {

𝐼
1
, 𝜎 (𝑘) = 𝑖

0, 𝜎 (𝑘) ̸= 𝑖,

Δ
𝑏𝑖
= {

𝐼
3
, 𝜎 (𝑘) = 𝑖

0, 𝜎 (𝑘) ̸= 𝑖.

(6)

By applying the augmentation technique, the filtering
error system is finally described as a nondelayed switched sys-
tem by including the numbers of consecutive measurement
missing as switching parameters. 𝜎(𝑘) serves as the switching
signal of system (5) which contains 𝑑 + 1 subsystems. The
switching of the subsystems is determined by the measure-
ment missing status. Specifically, for 𝑖 = 0, 1, . . . , 𝑑, we have
𝜎(𝑘) = 𝑖 and system (5) resides in the subsystem 𝑆

𝑖
during

the interval [𝑘, 𝑘 + 1) if there is 𝑖 consecutive measurement
missing before time step 𝑘 + 1. This is illustrated in Figure 2,
where ∙ represents the measurement that is successfully
received by the filter, while ∘ stands for the one that is missed.
At time step 𝑘 − 1, the measurement 𝑦(𝑘 − 1) is successfully
received by the filter. Then, 𝑦(𝑘 − 1) = 𝑦(𝑘 − 1), and 𝑆

𝜎(𝑘)

resides in 𝑆
0
. At time step 𝑘, the measurement 𝑦(𝑘) is missed

and the filter input holds at its previous value; that is, 𝑦(𝑘)
takes 𝑦(𝑘− 1), and 𝑆

𝜎(𝑘)
resides in 𝑆

1
. Then, at time step 𝑘+ 1,

the measurement 𝑦(𝑘+1) is missed again, and the filter input
remains at𝑦(𝑘−1); that is,𝑦(𝑘+1) = 𝑦(𝑘−1), and 𝑆

𝜎(𝑘)
resides

in 𝑆
2
. The rest can be deduced by analogy. It is seen from the

above analysis that the filtering error system 𝑆
𝜎(𝑘)

takes on the
following characteristics.

(a) For 𝑖 = 1, . . . , 𝑑 − 1, subsystem 𝑆
𝑖+1

always appears
after the subsystem 𝑆

𝑖
, and subsystem 𝑆

0
always

appears before 𝑆
1
or after 𝑆

𝑑
.

(b) Switching between the subsystems of 𝑆
𝜎(𝑘)

occurs only
when the subsystems 𝑆

𝑗
(𝑗 = 1, . . . , 𝑑) appear, and the

number of switches of 𝑆
𝜎(𝑘)

is determined by the total
activation times of 𝑆

𝑗
. Moreover, at most two switches

may be involved when 𝑆
𝑖
appears one time.

For 𝑖 = 0, 1, . . . , 𝑑 and 0 ≤ 𝑘
1
≤ 𝑘 ≤ 𝑘

2
, let 𝑁

𝜎
[𝑘
1
, 𝑘
2
]

denote the number of switches of𝜎(𝑘) and 𝑛
𝑖
[𝑘
1
, 𝑘
2
] the times

that the subsystem 𝑆
𝑖
is activated on the interval [𝑘

1
, 𝑘
2
].

Then, it follows from the characteristics of 𝑆
𝜎(𝑘)

that the
following relation holds:

𝑁
𝜎
[𝑘
1
, 𝑘
2
] ≤ 2

𝑑

∑

𝑖=1

𝑛
𝑖
[𝑘
1
, 𝑘
2
] . (7)

Definition 1. For any switching signal 𝜎(𝑘) and 0 ≤ 𝑘
1
≤ 𝑘 ≤

𝑘
2
, let 𝑁

𝜎
[𝑘
1
, 𝑘
2
] denote the number of switches of 𝜎(𝑘) on
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Figure 2: An example of measurement missing.

the interval [𝑘
1
, 𝑘
2
]. Then, 𝜃[𝑘

1
, 𝑘
2
] = 𝑁

𝜎
[𝑘
1
, 𝑘
2
]/(𝑘
2
− 𝑘
1
) is

called the switching frequency of 𝜎(𝑘) on the interval [𝑘
1
, 𝑘
2
].

Definition 2. For 𝑖 ∈ 𝑍
0
and 0 ≤ 𝑘

1
< 𝑘
2
, let 𝛼

𝑖
[𝑘
1
, 𝑘
2
] =

𝑛
𝑖
[𝑘
1
, 𝑘
2
]/(𝑘
2
− 𝑘
1
). Then 𝛼

𝑖
[𝑘
1
, 𝑘
2
] is called the occurrence

rate of the subsystem 𝑆
𝑖
on the interval [𝑘

1
, 𝑘
2
].

The subsystem 𝑆
𝑗
, 𝑗 ∈ {1, . . . , 𝑑} is activated when a

measurement missing occurs, so the measurement missing
rate on any interval [𝑘

1
, 𝑘
2
] can be defined as 𝛼[𝑘

1
, 𝑘
2
] =

∑
𝑑

𝑖=1
𝛼
𝑖
[𝑘
1
, 𝑘
2
]. Then, we have by relation (7) and Definitions

1 and 2 that

𝜃 [𝑘
1
, 𝑘
2
] ≤ 2𝛼 [𝑘

1
, 𝑘
2
] . (8)

Moreover, we have by the characteristics of 𝑆
𝜎(𝑘)

that there
exists a constant 𝛼 < 1 such that the following relations are
true for any 𝑡 ≥ 0 and 𝑙 ≥ 0:

𝛼 [𝑡, 𝑡 + 𝑙] ≤ 1, 𝑙 ≤ 𝑑

𝛼 [𝑡, 𝑡 + 𝑙] ≤ 𝛼 < 1, 𝑙 > 𝑑.

(9)

Remark 3. The considered filtering system with bounded
measurement missing is finally described as a switched linear
system 𝑆

𝜎(𝑘)
with 𝑑 + 1 subsystems, where 𝑆

0
describes the

filtering system without measurement missing, while 𝑆
𝑗
(𝑗 =

1, . . . , 𝑑) describes those with measurement missing. It is
reasonable to see that the filtering systemwill achieve a better
𝐻
∞

performance level if 𝑆
0
appears with higher frequency

(or, in other words, the measurement missing rate is lower).
This is the motivation of the proposed switched system
model of the filtering error system, which may enable us to
establish the quantitative relation between the 𝐻

∞
filtering

performance and the measurement missing rate bound.
Note that the augmentation technique is used to obtain the
switched system model, which increases computational cost.
From the energy-efficient perspective, the proposed method
is applicable to the case where the number of consecutive
packet losses is bounded and not too large.

The following definition and assumptions are needed in
the derivation of the main results.

Definition 4. System (5) is said to be exponentially stable with
decay rate 𝜆 < 1 if, for any finite initial state 𝜉(0) ∈ R(𝑑+2)𝑛,
there exist a constant 𝑐 > 0 such that ‖𝜉(𝑘)‖ ≤ 𝑐𝜆

𝑘

‖𝜉(0)‖

holds.

Assumption 5. For any 𝑡 ≥ 0 and 𝑙 > 𝑑, 𝛼[𝑡, 𝑡 + 𝑙] is upper
bounded by a constant measurement missing rate bound 𝛼;
that is, 𝛼[𝑡, 𝑡 + 𝑙] ≤ 𝛼, where 0 ≤ 𝛼 < 1.

Assumption 6. 𝜉(𝑘) = 0 and 𝑤(𝑘) = 0, for all 𝑘 ≤ 0.

The𝐻
∞
filtering problem to be addressed in this paper is

expressed as follows.

Problem HFBMM (𝐻
∞

Filtering with Bounded Measurement
Missing). For the filtering problem in Figure 1 and a given
system (1), determine the matrices 𝐴

𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
in filter

(2), such that the system (5) with 𝜐(𝑘) = 0 is exponentially
stable, and the estimation error 𝑒 satisfies a prescribed 𝐻

∞

performance level 𝛾 (i.e., ‖𝑒‖
2
≤ 𝛾‖𝜐‖

2
) under zero initial

conditions (i.e., 𝜉(𝑘) = 0, for all 𝑘 ≤ 0) for all admissible
bounded measurement missing.

3. 𝐻
∞

Filtering Analysis

An𝐻
∞

performance condition for the filtering error system
(5) is presented in the following theorem.

Theorem 7. For given scalars 𝜇 > 1 and 0 < 𝜆 < 1 satisfying
𝜇𝜆 < 1, if there exist matrices 𝑃

𝑖
> 0, 𝑖 = 0, 1, . . . , 𝑑, and a

scalar 𝛾
0
> 0, such that the following inequalities hold:

Ω
𝑖
= [

−𝜆
2

𝑃
𝑖
+ 𝐶
𝑇

𝐶 0

0 −𝛾
2

0
𝐼

] + [

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

]𝑃
𝑖
[𝐴
𝑖
𝐵
𝑖
] < 0, (10)

𝑃
𝛼
≤ 𝜇𝑃
𝛽
, 𝛼, 𝛽 ∈ 𝑍

0
, (11)

then system (5) is exponentially stable with decay rate 𝛿(𝛼) =
𝜆𝜇
𝛼 and achieves a prescribed𝐻

∞
performance level 𝛾(𝛼, 𝑑) =

𝛾
0
((1−𝜆

2

)(1−(𝜇𝜆)
2(𝑑+1)

)/(1−(𝜇𝜆)
2

)+(1−𝜆
2

)(𝜇
𝛼

𝜆)
2(𝑑+1)

/(1−

(𝜇
𝛼

𝜆)
2

))
1/2, where 𝛼 is the measurement missing rate bound.

Proof. Choose the Lyapunov function 𝑉
𝜎(𝑘)
(𝑘) =

𝜉
𝑇

(𝑘)𝑃
𝜎(𝑘)
𝜉(𝑘) and define 𝐽(𝑘) = ‖𝑒(𝑘)‖

2

− 𝛾
2

0
‖𝜐(𝑘)‖

2.
For 𝑖 ∈ 𝑍

0
, it follows from (5) and (10) that

𝑉
𝑖
(𝑘 + 1) − 𝜆𝑉

𝑖
(𝑘) + 𝐽 (𝑘) = 𝜂

𝑇

(𝑘)Ω
𝑖
𝜂 (𝑘) < 0, (12)

where 𝜂(𝑘) = [𝜉𝑇(𝑘) 𝜐𝑇(𝑘)]
𝑇

. For any given integer 𝑘 ≥ 1,
let 𝑘
1
< ⋅ ⋅ ⋅ < 𝑘

𝑖
, 𝑖 ≥ 1 denotes the switching instants of the

switching signal 𝜎(𝑘) on the interval [0, 𝑘]. Then, we have by
(11) that

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
) = 𝜉
𝑇

(𝑘
𝑖
) 𝑃
𝜎(𝑘𝑖)

𝜉 (𝑘
𝑖
) ≤ 𝜇𝜉

𝑇

(𝑘
𝑖
) 𝑃
𝜎(𝑘𝑖−1)

𝜉 (𝑘
𝑖
)

= 𝜇𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖
) , ∀𝑖 ≥ 1.

(13)
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It follows from (12) and (13) that

𝑉
𝜎(𝑘)

(𝑘) ≤ 𝜆
2(𝑘−𝑘𝑖)

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
) −

𝑘−1

∑

𝑡=𝑘𝑖

𝜆
2(𝑘−1−𝑡)

𝐽 (𝑡)

≤ 𝜆
2(𝑘−𝑘𝑖)

⋅ 𝜇 ⋅ 𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖
) −

𝑘−1

∑

𝑡=𝑘𝑖

𝜆
2(𝑘−1−𝑡)

𝐽 (𝑡)

≤ 𝜆
2(𝑘−𝑘𝑖)

⋅ 𝜇 ⋅ [𝜆
2(𝑘𝑖−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1
)

−

𝑘𝑖−1

∑

𝑡=𝑘𝑖−1

𝜆
2(𝑘𝑖−1−𝑡)

𝐽 (𝑡)
]

]

−

𝑘−1

∑

𝑡=𝑘𝑖

𝜆
2(𝑘−1−𝑡)

𝐽 (𝑡)

...
≤ 𝜇
𝑁𝜎[0,𝑘−1]

𝜆
2(𝑘−𝑘𝑖)

𝜆
2(𝑘𝑖−𝑘𝑖−1)

⋅ ⋅ ⋅ 𝜆
2𝑘1
𝑉
𝜎(0)

(0)

− Γ (𝐽 (𝑡)) ,

(14)

where

Γ (𝐽 (𝑡)) = 𝜇
𝑁𝜎[0,𝑘−1]

𝜆
2(𝑘−𝑘𝑖)

𝜆
2(𝑘𝑖−𝑘𝑖−1)

⋅ ⋅ ⋅ 𝜆
2(𝑘2−𝑘1)

×

𝑘1−1

∑

𝑡=0

𝜆
2(𝑘1−1−𝑡)

𝐽 (𝑡)

+ 𝜇
𝑁𝜎[0,𝑘−1]−1

𝜆
2(𝑘−𝑘𝑖)

𝜆
2(𝑘𝑖−𝑘𝑖−1)

⋅ ⋅ ⋅ 𝜆
2(𝑘3−𝑘2)

×

𝑘2−1

∑

𝑡=𝑘1

𝜆
2(𝑘2−1−𝑡)

𝐽 (𝑡)

...

+ 𝜇
0

𝑘−1

∑

𝑡=𝑘𝑖

𝜆
2(𝑘−1−𝑡)

𝐽 (𝑡)

= Γ (‖𝑒 (𝑡)‖
2

) − 𝛾
2

0
Γ (‖𝜐 (𝑡)‖

2

) .

(15)

First, we consider the exponential stability of system (5) for
𝜐(𝑘) = 0. It follows from (8), (14), 𝜐(𝑘) = 0, and𝑁

𝜎
[0, 𝑘−1] =

(𝑘 − 1) ⋅ 𝜃[0, 𝑘 − 1] ≤ 𝑘 ⋅ 𝜃[0, 𝑘 − 1] that

𝑉
𝜎(𝑘)

(𝑘) ≤ 𝜇
𝑁𝜎[0,𝑘−1]

𝜆
2(𝑘−𝑘𝑖)

𝜆
2(𝑘𝑖−𝑘𝑖−1)

⋅ ⋅ ⋅ 𝜆
2𝑘1
𝑉
𝜎(0)

(0)

≤ 𝜇
2𝑘⋅(𝜃[0,𝑘−1]/2)

𝜆
2𝑘

𝑉
𝜎(0)

(0)

≤ (𝜇
𝛼[0,𝑘−1]

𝜆)

2𝑘

𝑉
𝜎(0)

(0) .

(16)

It is reasonable in practice that the time horizon 𝑘 is larger
than 𝑑. So, it can be further obtained from (16) by assumption
1 that

𝑉
𝜎(𝑘)

(𝑘) ≤ (𝜇
𝛼

𝜆)
2𝑘

𝑉
𝜎(0)

(0) = 𝛿
2𝑘

𝑉
𝜎(0)

(0) (17)

which yields ‖𝜉(𝑘)‖ ≤ √𝜋
𝑀
/𝜋
𝑚
𝛿
𝑘

‖𝜉(0)‖, where 𝜋
𝑀

=

max
𝑖∈𝑍0

{𝜆max(𝑃𝑖)} and 𝜋
𝑚

= min
𝑖∈𝑍0

{𝜆min(𝑃𝑖)}. 𝜆max(⋆)

and 𝜆min(⋆) represent the maximum and the minimum
eigenvalues of the matrix ⋆, respectively. On the other hand,
𝛼 < 1 and 𝜇𝜆 < 1 guarantee that 𝛿 < 1. Thus, it is concluded
by Definition 4 that system (5) is exponentially stable with
decay rate 𝛿.

Next, to prove the𝐻
∞
performance, we consider 𝜐(𝑘) ̸= 0.

Then, under zero initial condition, we have, by (14) and the
fact that𝑉

𝜎(𝑘)
(𝑘) ≥ 0, that Γ(𝐽(𝑡)) = Γ(‖𝑒(𝑡)‖2)−𝛾2

0
Γ(‖𝜐(𝑡)‖

2

) ≤

0, and thus

𝑘−1

∑

𝑡=0

𝜇
𝑁𝜎[𝑡,𝑘−1]

𝜆
2(𝑘−1−𝑡)

‖𝑒 (𝑡)‖
2

= Γ (‖𝑒 (𝑡)‖
2

)

≤ 𝛾
2

0
Γ (‖𝜐 (𝑡)‖

2

)

= 𝛾
2

0

𝑘−1

∑

𝑡=0

𝜇
𝑁𝜎[𝑡,𝑘−1]

𝜆
2(𝑘−1−𝑡)

‖𝜐 (𝑡)‖
2

.

(18)

It follows from Definition 1 that 𝑁
𝜎
[𝑡, 𝑘 − 1] = (𝑘 − 1 − 𝑡) ⋅

𝜃[𝑡, 𝑘 − 1] ≤ 2(𝑘 − 1 − 𝑡)𝛼[𝑡, 𝑘 − 1], which leads to

1 ≤ 𝜇
𝑁𝜎[𝑡,𝑘−1]

≤ 𝜇
2(𝑘−1−𝑡)𝛼[𝑡,𝑘−1]

. (19)

We have by (18) and (19) that

𝑘−1

∑

𝑡=0

𝜆
2(𝑘−1−𝑡)

‖𝑒 (𝑡)‖
2

≤ 𝛾
2

0

𝑘−1

∑

𝑡=0

(𝜇
𝛼[𝑡,𝑘−1]

𝜆)

2(𝑘−1−𝑡)

‖𝜐 (𝑡)‖
2

. (20)

Summing both sides of (20) from 𝑘 = 1 to 𝑘 = +∞ and
changing the order of the summation, taking (9) into account,
we obtain

(1 − 𝜆
2

)

−1

+∞

∑

𝑡=0

‖𝑒 (𝑡)‖
2

=

+∞

∑

𝑡=0

‖𝑒 (𝑡)‖
2

⋅ (

+∞

∑

𝑘=𝑡+1

𝜆
2(𝑘−1−𝑡)

)

=

+∞

∑

𝑘=1

𝑘−1

∑

𝑡=0

𝜆
2(𝑘−1−𝑡)

‖𝑒 (𝑡)‖
2

≤ 𝛾
2

0

+∞

∑

𝑘=1

𝑘−1

∑

𝑡=0

(𝜇
𝛼[𝑡,𝑘−1]

𝜆)

2(𝑘−1−𝑡)

‖𝜐 (𝑡)‖
2

= 𝛾
2

0

+∞

∑

𝑡=0

‖𝜐 (𝑡)‖
2

⋅ (

+∞

∑

𝑘=𝑡+1

(𝜇
𝛼[𝑡,𝑘−1]

𝜆)

2(𝑘−1−𝑡)

)

= 𝛾
2

0

+∞

∑

𝑡=0

‖𝜐 (𝑡)‖
2

⋅ (

𝑑

∑

𝑖=0

(𝜇
𝛼[𝑡,𝑡+𝑖]

𝜆)

2𝑖

+

+∞

∑

𝑖=𝑑+1

(𝜇
𝛼[𝑡,𝑡+𝑖]

𝜆)

2𝑖

)
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≤ 𝛾
2

0

+∞

∑

𝑡=0

‖𝜐 (𝑡)‖
2

⋅ (

𝑑

∑

𝑖=0

(𝜇𝜆)
2𝑖

+

+∞

∑

𝑖=𝑑+1

(𝜇
𝛼

𝜆)
2𝑖

)

= 𝛾
2

0
(

1 − (𝜇𝜆)
2(𝑑+1)

1 − (𝜇𝜆)
2

+

(𝜇
𝛼

𝜆)
2(𝑑+1)

1 − (𝜇
𝛼
𝜆)
2
)

×

+∞

∑

𝑡=0

‖𝜐 (𝑡)‖
2

.

(21)

It follows from (21) that ‖𝑒‖
2
≤ 𝛾(𝛼, 𝑑)‖𝜐‖

2
, which implies that

the filtering error system (5) achieves the 𝐻
∞

performance
level 𝛾(𝛼, 𝑑). The proof is completed.

Remark 8. Theorem 7 establishes the quantitative relations
among the𝐻

∞
filtering performance level, the measurement

missing rate bound, and the maximal number of consec-
utive measurement missing. Specifically, the 𝐻

∞
filtering

performance level 𝛾(𝛼, 𝑑) is given as a monotonic increasing
function of both the measurement missing rate bound 𝛼 and
the maximal number of consecutive measurement missing 𝑑,
which implies that some smaller measurement missing rate
and maximal number of consecutive measurement missing
lead to a better𝐻

∞
filtering performance.

Remark 9. It is obtained from (12) that

𝑉
𝑖
(𝑘) < 𝜆

𝑘

𝑉 (0) −

𝑘−1

∑

𝑡=0

𝜆
(𝑘−1−𝑡)

𝐽 (𝑡) . (22)

It follows from (22) that 𝑉
𝑖
(𝑘) < 𝜆

𝑘

𝑉(0) for 𝜐(𝑘) = 0, which
implies that the subsystem 𝑆

𝑖
(𝑖 ∈ 𝑍

0
) is exponentially stable

with decay rate 𝜆. On the other hand, we have by (22) that

𝑘−1

∑

𝑡=0

𝜆
(𝑘−1−𝑡)

𝐽 (𝑡) < 0 (23)

under zero initial condition. Summing both sides of (23)
from 𝑘 = 1 to 𝑘 = +∞, we obtain (1 − 𝜆2)−1∑+∞

𝑡=0
𝐽(𝑡) < 0,

which yields ‖𝑒‖
2
< 𝛾
0
‖𝜐‖
2
. It implies that the subsystem 𝑆

𝑖

achieves the𝐻
∞

performance level 𝛾
0
. In summary, if (10) is

true for 0 < 𝜆 < 1, then the subsystem 𝑆
0
is exponentially

stable with decay rate 𝜆 and achieves the 𝐻
∞

performance
level 𝛾

0
. Note that if there is no measurement missing, then

𝑆
𝜎(𝑘)

resides in 𝑆
0
, and we have 𝛼 = 0, 𝑑 = 0 and 𝜇 = 1.

In this case, 𝛿(𝛼) and 𝛾(𝛼, 𝑑) in Theorem 7 are, respectively,
reduced to 𝜆 and 𝛾

0
, which are just the decay rate and

the 𝐻
∞

performance level of 𝑆
0
, respectively. So, Theorem 7

theoretically reveals that measurement missing degrades the
𝐻
∞
filtering performance and presents the quantitative result

about the effect of the measurement missing on the 𝐻
∞

filtering performance.

4. 𝐻
∞

Filter Design

Theorem 10. Consider the filtering problem in Figure 1. For
given scalars 𝜇 > 1 and 0 < 𝜆 < 1 satisfying 𝜇𝜆 < 1, if
there exist matrices 𝑄

𝑖11
> 0, 𝑄

𝑖22
> 0, 𝑄

𝑖12
, 𝑖 = 0, 1, . . . , 𝑑,

𝑈
1
, 𝑈
2
, 𝑈
3
, 𝐴
𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
of appropriate dimensions and a

scalar 𝛾
0
> 0, such that the following linear matrix inequalities

hold:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜆
2

𝑄
𝑖11

𝜆
2

𝑄
𝑖12

0 Δ
𝑇

𝑎
𝑈
1
+ 𝐼
𝑇

𝑎𝑖
𝐶
𝑇

𝑝
𝐵
𝑇

𝑓
𝐸
𝑇

Δ
𝑇

𝑎
𝑈
3
+ 𝐼
𝑇

𝑎𝑖
𝐶
𝑇

𝑝
𝐵
𝑇

𝑓
[𝐿
𝑝
𝑂
𝑐
]

𝑇

∗ 𝜆
2

𝑄
𝑖22

0 𝐴
𝑇

𝑓
𝐸
𝑇

𝐴
𝑇

𝑓
−𝐶
𝑇

𝑓

∗ ∗ 𝛾
2

0
𝐼 Δ
𝑇

𝑏
𝑈
1
+ 𝐼
𝑇

𝑏𝑖
𝐷
𝑇

𝑝
𝐵
𝑇

𝑓
𝐸
𝑇

Δ
𝑇

𝑏
𝑈
3
+ 𝐼
𝑇

𝑏𝑖
𝐷
𝑇

𝑝
𝐵
𝑇

𝑓
0

∗ ∗ ∗ 𝑈
1
+ 𝑈
𝑇

1
− 𝑄
𝑖11

U
3
+ 𝐸𝑈
2
− 𝑄
𝑖12

0

∗ ∗ ∗ ∗ 𝑈
2
+ 𝑈
𝑇

2
− 𝑄
𝑖22

0

∗ ∗ ∗ ∗ ∗ 𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0, (24)

𝑄
𝛼
≤ 𝜇𝑄
𝛽
, 𝛼, 𝛽 ∈ 𝑍

0
, (25)

then the filters of form (2) guarantee that the filtering error
system (5) is exponentially stable with decay rate 𝛿(𝛼) and
achieves a prescribed 𝐻

∞
performance level 𝛾(𝛼, 𝑑), and the

filter matrices are given by

𝐴
𝑓
= 𝑈
−1

2
𝐴
𝑓
, 𝐵

𝑓
= 𝑈
−1

2
𝐵
𝑓
,

𝐶
𝑓
= 𝐶
𝑓
,

(26)

where 𝛿(𝛼) and 𝛾(𝛼, 𝑑) are given in Theorem 7, and

Δ
𝑎
= [

𝐴
𝑝
Λ
𝑎

Π

] , Δ
𝑏
= [

𝐵
𝑝
Λ
𝑏

𝑂
𝑏

] ,

𝑄
𝑖
=
[

[

𝑄
𝑖11

𝑄
𝑖12

𝑄
𝑇

𝑖12
𝑄
𝑖22

]

]

, 𝐸 = [

𝐼
𝑛×𝑛

0
𝑑𝑛×𝑑𝑛

] .

(27)
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Proof. By Lemma 1 in [24], (10) is true if and only if there
exists a matrix 𝐺 such that the following inequality holds:

[

[

[

𝜆
2

𝑖
𝑃
𝑖
− 𝐶
𝑇

𝐶 0

0 𝛾
2

𝐼

] [

𝐴
𝑇

𝑖

𝐵
𝑇

𝑖

]𝐺

∗ 𝐺 + 𝐺
𝑇

− 𝑃
𝑖

]

]

> 0, (28)

On the other hand, (24) indicates that 𝑈
2
is nonsingular, and

thus we can always find square and nonsingular matrices
𝑀 ∈ 𝑅

𝑛×𝑛 and 𝐺
22

∈ 𝑅
𝑛×𝑛 satisfying 𝑈

2
= 𝑀

𝑇

𝐺
−1

22
𝑀.

Now, introduce the variables 𝑈
1
∈ 𝑅
(𝑑+1)𝑛×(𝑑+1)𝑛 and 𝐺

12
∈

𝑅
(𝑑+1)𝑛×𝑛, and let

𝐺 = [

𝑈
1

𝐺
12

𝑀𝐸
𝑇

𝐺
22

] , 𝑈
3
= 𝐺
12
𝐺
−1

22
𝑀,

𝐽
1
= [

𝐼 0

0 𝐺
−1

22
𝑀

] ,

[

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0
] = [

𝑀
−𝑇

0

0 𝐼

] [

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0

] [
𝑀
−1

𝐺
22
0

0 𝐼

] .

(29)

Then, pre- and postmultiplying (28) and (11) by diag{𝐽
1
, 𝐼, 𝐽
1
}

and 𝐽
1
, respectively, following some routine matrix manip-

ulations, yield (24) and (25). Furthermore, denote the fil-
ter transfer function from 𝑦(𝑘) to 𝑧

𝑓
(𝑘) by 𝑇

𝑓
(𝑧) =

𝐶
𝑓
(𝑧𝐼 − 𝐴

𝑓
)
−1

𝐵
𝑓
. Substituting the filter matrices with (29)

and taking 𝑈
2
= 𝑀
𝑇

𝐺
−1

22
𝑀 into account, we obtain 𝑇

𝑓
(𝑧) =

𝐶
𝑓
(𝑧𝐼 − 𝑈

−1

2
𝐴
𝑓
)

−1

𝑈
−1

2
𝐵
𝑓
. So, the filter matrices are given by

(26).Then, it follows fromTheorem 7 thatTheorem 10 is true.
The proof is completed.

The condition in Theorem 10 is convex in 𝛾2
0
. So, the

convex optimization problem

min 𝜌

s.t. (24) and (25) with 𝜌 = 𝛾2
0

(30)

can be formulated to design the 𝐻
∞

filters. If 𝜌∗ is the
solution of the optimization problem (30), then the designed
filters guarantee that system (5) achieves the following 𝐻

∞

performance level:

𝛾
∗

(𝛼, 𝑑) = (

𝜌
∗

(1 − 𝜆
2

) (1 − (𝜇𝜆)
2(𝑑+1)

)

1 − (𝜇𝜆)
2

+

𝜌
∗

(1 − 𝜆
2

) (𝜇
𝛼

𝜆)
2(𝑑+1)

1 − (𝜇
𝛼
𝜆)
2

)

1/2

.

(31)

Remark 11. Note that 𝛾∗(𝛼, 𝑑) is monotonic increasing on
𝜇 and 𝜆. Therefore, 𝜇 and 𝜆 should be chosen as small as
possible to obtain a better 𝐻

∞
filtering performance and

meanwhile to make the condition 𝜇𝜆 < 1 easier to be
satisfied. Nevertheless, it can be seen from (24) and (25)
that some smaller 𝜇 and 𝜆 will result in a larger value of 𝛾

0

and ultimately yield a larger value of 𝛾∗(𝛼, 𝑑). The following
algorithm provides a method on determining the parameters
𝜇 and 𝜆 that will result in a suboptimal𝐻

∞
performance level

𝛾
∗

(𝛼, 𝑑).

Algorithm 12.

Step 1. Choose some sufficiently large initial 𝜇 and 𝜆 such that
𝜇𝜆 < 1 holds. Set 𝜇0 = 𝜇 and 𝜆0 = 𝜆. Solve the optimization
problem (30) and calculate 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆0) for given 𝛼 and 𝑑.

Step 2. Decrease 𝜆0 by a certain step length; say, Δ𝜆; that is,
set 𝜆0 = 𝜆0 − Δ𝜆. Then, solve the optimization problem (30)
and calculate 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆0) for given 𝛼 and 𝑑.

Step 3. If 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆0) < 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆0 + Δ𝜆), then return
to Step 2. Otherwise, exit and set 𝜆∗ = 𝜆0 + Δ𝜆.

Step 4. Decrease 𝜇0 by a certain step length; say, Δ𝜇; that is,
set 𝜇0 = 𝜇0 − Δ𝜇. Then, solve the optimization problem (30)
and calculate 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆∗) for the obtained 𝜆∗ and given 𝛼
and 𝑑.

Step 5. If 𝛾∗(𝛼, 𝑑, 𝜇0, 𝜆∗) < 𝛾∗(𝛼, 𝑑, 𝜇0 + Δ𝜇, 𝜆∗), then return
to Step 4. Otherwise, exit and set 𝜇∗ = 𝜇

0

+ Δ𝜇. Then,
𝜇
∗ and 𝜆∗ are the desired values of the parameters 𝜇 and
𝜆, respectively, and 𝛾∗(𝛼, 𝑑, 𝜇∗, 𝜆∗) is the desired suboptimal
𝐻
∞

performance level for given 𝛼 and 𝑑.

5. Illustrative Examples

Example 1. Consider a mechanical system with two masses
and two springs as that studied in [7]. Its state-space model is
given by

𝑥̇ (𝑡) =

[

[

[

[

[

[

[

[

0 0 1 0

0 0 0 1

−

𝑘
1
+ 𝑘
2

𝑚
1

𝑘
2

𝑚
1

−

𝑐

𝑚
1

0

𝑘
2

𝑚
2

−

𝑘
2

𝑚
2

0 −

𝑐

𝑚
2

]

]

]

]

]

]

]

]

𝑥 (𝑡) +

[

[

[

[

[

0

0

1

𝑚
1

0

]

]

]

]

]

𝑤 (𝑡) ,

(32)

where 𝑥
1
and 𝑥

2
are the positions of masses 𝑚

1
and 𝑚

2
,

respectively. Choose 𝑚
1
= 1, 𝑚

2
= 0.5, 𝑘

1
= 𝑘
2
= 1, and

𝑐 = 0.5, and set 𝑇 = 200ms; then we obtain the discrete-time
system model (1) with

𝐴
𝑝
=

[

[

[

[

0.9617 0.0191 0.1878 0.001228

0.03697 0.9629 0.002456 0.1789

−0.3732 0.1853 0.8678 0.01787

0.3528 −0.3553 0.03574 0.784

]

]

]

]

,

𝐵
𝑝
=

[

[

[

[

0.01922

0.000125

0.1878

0.002456

]

]

]

]

.

(33)

Suppose that 𝑥
1
is measured by a device with noise 𝑤(𝑘) and

𝑥
2
is to be estimated by using the 𝐻

∞
filters; then we have

𝐶
𝑝
= [1 0 0 0] and 𝐿

𝑝
= [0 1 0 0]. Furthermore, we

choose𝐷
𝑝
= 0.1.

Choose 𝜇 = 1.01 and 𝜆 = 0.96. Suppose that 𝑑 = 2 and
𝛼 = 50%. Then, by solving the optimization problem (23),
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Figure 3: Trajectories of 𝑧(𝑘) and 𝑧
𝑓
(𝑘), the noise signal 𝑤(𝑘), and the measurement missing status.

we obtain the 𝐻
∞

performance level 𝛾∗ = 0.8001 with the
following filter gain matrices:

𝐴
𝑓
=

[

[

[

[

−0.0691 −0.0666 0.3304 −0.0409

−0.5288 0.9180 0.0793 0.1596

−1.1896 0.1687 1.0783 −0.0035

0.8709 −0.3034 −0.0219 0.8090

]

]

]

]

,

𝐵
𝑓
=

[

[

[

[

−1.0655

−0.5858

−0.7988

0.5298

]

]

]

]

, 𝐶
𝑓
=

[

[

[

[

0.0003

−1.0002

−0.0002

−0.0001

]

]

]

]

.

(34)

In the simulation, the noise signal 𝑤(𝑘) is assumed to be
uniformly distributed with [−0.1, 0.1] for the interval [0, 50].
The measurement missing is generated randomly and is
shown in Figure 3(b), where the measurement missing rate
is 50%. The trajectories of 𝑧(𝑘) and 𝑧

𝑓
(𝑘) are depicted in

Figure 3(a). By calculation, we obtain from the results in
Figure 3(a) that 𝛾

𝑎
= ‖𝑒‖

2
/‖𝜐‖
2
= 0.0460 < 𝛾

∗

=

0.8001, showing the effectiveness of the 𝐻
∞

filter design.
In what follows, we will show the relations among the 𝐻

∞

performance level, themeasurementmissing rate bound, and
the maximal number of consecutive measurement missing.
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Table 1: The relation between the 𝐻
∞

performance level and the
measurement missing rate bound for 𝑑 = 2.

𝛼 0% 20% 50% 80%
𝛾
∗ 0.7525 0.7704 0.8001 0.8339
𝛾
𝑎

0.0470 0.0475 0.0565 0.0926

Table 2: The relation between the 𝐻
∞

performance level and the
maximal number of consecutive measurement missing for 𝛼 = 50%.

𝑑 1 2 3
𝛾
∗ 0.5529 0.8001 1.0027
𝛾
𝑎

0.0218 0.0424 0.0506

For 𝜇 = 1.01, 𝜆 = 0.96, and 𝑑 = 2, the relation between
the 𝐻

∞
performance level and the measurement missing

rate bound is given in Table 1 by solving the optimization
problem (30). For 𝜇 = 1.01, 𝜆 = 0.96, and 𝛼 = 50%,
the relation between the 𝐻

∞
performance level and the

maximal number of consecutive measurement missing is
presented in Table 2 by solving the optimization problem
(30). In calculating the actual noise attenuation level 𝛾

𝑎
, the

noise signal𝑤(𝑘) in Figure 3 is adopted, and themeasurement
missing is generated randomly under the constraint of the
correspondingmissing rate bound. It can be seen fromTable 1
that the larger the missing rate bound, the worse the 𝐻

∞

filtering performance. Similarly, Table 2 shows that the larger
the maximal number of consecutive measurement missing,
the worse the 𝐻

∞
filtering performance. These verify the

statements inTheorem 7. Moreover, 𝛾
𝑎
is always smaller than

𝛾
∗ for different values of 𝛼 in Table 1, and it is always smaller

than 𝛾
∗ for different values of 𝑑 in Table 2, showing the

effectiveness of the𝐻
∞
filter design. On the other hand, it can

also be seen from Tables 1 and 2 that 𝛾∗ is much larger than
𝛾
𝑎
for different values of 𝛼 and 𝑑, which indicates that there

exists certain extent of conservatism in the 𝐻
∞

filter design
and the estimation of the𝐻

∞
performance level 𝛾∗.

6. Conclusions

In this paper, the 𝐻
∞

filtering problem was investigated
for networked systems with bounded measurement missing.
A switched system model was proposed to describe the
considered system, which helped establish the quantitative
relation between the𝐻

∞
performance level and two param-

eters, namely, the measurement missing rate bound and the
maximal number of consecutivemeasurementmissing. It has
been shown by the example that there exists certain extent
of conservatism in the proposed 𝐻

∞
filter design, and the

conservatism is partly introduced by the bounding on the
switching frequency of the switched filtering error system
given in (8). A tighter bounding on the switching frequency
may help reduce the conservatism, which requires more
detailed online information about the measurement missing
status.
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