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We consider two kinds of weighted mixed almost unbiased estimators in a linear stochastic restricted regression model when the
prior information and the sample information are not equally important.The superiorities of the two new estimators are discussed
according to quadratic bias and variance matrix criteria. Under such criteria, we perform a real data example and a Monte Carlo
study to illustrate theoretical results.

1. Introduction

In a linear regression, the ordinary least squares estimator
(LS) is unbiased and has minimum variance among all linear
unbiased estimators andhas been treated as the best estimator
for a long time. However, the LS can be highly variable when
the notorious multicollinearity is present although it has the
minimum variance property in the class of linear unbiased
estimators. Hence biased alternatives to the ordinary least
squares estimator have been recommended in order to obtain
a substantial reduction in variance, such as the ordinary
ridge regression estimator (ORE) proposed by Hoerl and
Kennard [1] and the ordinary Liu regression estimator (OLE)
proposed by Liu [2], and many modified methods. On the
other hand, for reducing the bias of a biased estimator,
Kadiyala [3] introduced a class of almost unbiased shrinkage
estimators and Singh et al. [4] introduced the almost unbiased
generalized ridge estimator by the jackknife procedure, and
Akdeniz and Kaçiranlar [5] studied the almost unbiased
generalized Liu estimator. Akdeniz and Erol [6] studied bias
corrected estimators of the ORE and OLE and discussed
the almost unbiased ridge estimator (AURE) and the almost
unbiased Liu estimator (AULE). Şiray et al. [7] discussed 𝑟-𝑘
class estimator and Wu [8] developed principal component
Liu-type estimator in the linear regression model.

An alternative technique to combat the multicollinearity
problem is to consider the parameter estimator in addition to
sample information. When the addition of stochastic linear
restrictions on the unknown parameter vector is assumed
to be held, Theil [9] proposed the ordinary mixed estimator
(OME). Hubert and Wijekoon [10] proposed the stochastic
restricted Liu estimator (SRLE). And Li and Yang [11] intro-
duced the stochastic restricted ridge estimator (SRRE) by
grafting the ORE into the mixed estimation procedure. Wu
[12] discussed Stochastic restricted 𝑟-𝑘 class estimator and
Stochastic restricted 𝑟-𝑑 class estimator in linear regression
model. When the prior information and the sample infor-
mation are not equally important, Schaffrin and Toutenburg
[13] introduced the method of weighted mixed regression
and developed the weighted mixed estimator (WME). Li and
Yang [14] grafted theORE into theweightedmixed estimation
procedure and proposed the weighted mixed ridge estimator.

In this paper, when additional stochastic linear restric-
tions are supposed to hold, we propose the stochastic
weighted mixed almost unbiased ridge estimator by com-
bining the WME and the AURE and also propose the
stochastic weighted mixed almost unbiased Liu estimator by
combining the WME and the AULE in a linear regression
model.Wediscuss performances of new estimators over other
competitive estimators with respect to the quadratic bias
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(QB) and variance matrix criteria. The results show that the
proposed stochastic weighted mixed almost unbiased ridge
estimator and stochastic weightedmixed almost unbiased Liu
estimator are proved to have smaller quadratic biases than
the SRRE and SRLE, respectively. And the variance matrix of
the new estimators is more competitive. The rest of the paper
is organized as follows: we describe the statistical model and
propose the stochastic weightedmixed almost unbiased ridge
estimator and stochastic weightedmixed almost unbiased Liu
estimator in Section 2. Section 3 compares new estimators
with competitive estimators according to quadratic bias crite-
rion. In Section 4, according to variance matrix, superiorities
of proposed estimators over relative estimators are compared.
Finally, a real data example and aMonte Carlo simulation are
studied to justify superiorities of new estimators in Section 5.
Some discussions are given in Section 6.

2. The Proposed Estimator

Consider the linear regression model:

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇 is an 𝑛-dimensional response vector,

𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
)
𝑇 with𝑋

𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑝
)
𝑇 is a known 𝑛 × 𝑝

matrix of full column rank, 𝛽 is a 𝑝 × 1 vector of unknown
parameters, 𝜀 is an 𝑛 × 1 vector of errors with expectation
𝐸(𝜀) = 0 and covariance matrix Cov(𝜀) = 𝜎

2
𝐼
𝑛
, and 𝐼

𝑛
is

an identity matrix of order 𝑛 × 𝑛. The ordinary least squares
estimator (LS) for 𝛽 is defined as follows:

̂
𝛽LS = (𝑋

𝑇
𝑋)

−1

𝑋
𝑇
𝑦 = 𝑆
−1
𝑋
𝑇
𝑦, (2)

where 𝑆 = 𝑋𝑇𝑋. In the presence of multicollinearity, the LS
can be highly variable. Two well-known biased estimators,
the ordinary ridge estimator (ORE) proposed by Hoerl and
Kennard [1] and the ordinary Liu estimator (OLE) studied by
Liu [2], are defined, respectively, as

̂
𝛽ORE (𝑘) = (𝑋

𝑇
𝑋 + 𝑘𝐼)

−1

𝑋
𝑇
𝑦 = 𝑆
−1

𝑘
𝑋
𝑇
𝑦 = 𝑇

𝑘
̂
𝛽LS,

̂
𝛽OLE (𝑑) = (𝑋

𝑇
𝑋 + 𝐼)

−1

(𝑋
𝑇
𝑦 + 𝑑

̂
𝛽LS) = 𝐹𝑑

̂
𝛽LS,

(3)

where 𝑆
𝑘
= 𝑆 + 𝑘𝐼, 𝑇

𝑘
= (𝐼 + 𝑘𝑆

−1
)
−1
= 𝑆
−1

𝑘
𝑆 = 𝑆𝑆

−1

𝑘
, 𝑘 > 0 is a

scalar constant, and 𝐹
𝑑
= (𝑆 + 𝐼)

−1
(𝑆 + 𝑑𝐼), 0 < 𝑑 < 1 is also

a scalar constant.
Kadiyala [3] introduced an almost unbiased shrinkage

estimator which can be more efficient than the LS estimator
and be fewer biases than the corresponding biased estimator.
Akdeniz and Erol [6] discussed the almost unbiased ridge
estimator (AURE) and the almost unbiased Liu estimator
(AULE) which are given as follows:

̂
𝛽AURE (𝑘) = (𝐼 − 𝑘

2
𝑆
−2

𝑘
)
̂
𝛽LS, (4)

̂
𝛽AULE (𝑑) = (𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)
̂
𝛽LS, (5)

respectively.

In addition to the model (1), let us give some prior
information about 𝛽 in the form of a set of 𝐽 independent
stochastic linear restrictions as follows:

𝑟 = 𝑅𝛽 + 𝑒, 𝑒 ∼ (0, 𝜎
2
Ω) , (6)

where 𝑅 is a 𝐽×𝑝 knownmatrix of rank 𝐽, 𝑒 is a 𝐽×1 vector of
disturbances with expectation 0, and covariance matrix 𝜎2Ω,
Ω is supposed to be known and positive definite matrix, and
the 𝐽×1 vector 𝑟 can be interpreted as a random variable with
expectation 𝐸(𝑟) = 𝑅𝛽. Furthermore, it is also assumed that
the random vector 𝜀 is stochastically independent of 𝑒.

For the restricted model specified by (1) and (6), the
ordinary mixed estimator (OME) introduced by Theil [9] is
defined as

̂
𝛽OME = (𝑆 + 𝑅

𝑇
Ω
−1
𝑅)

−1

(𝑋
𝑇
𝑦 + 𝑅
𝑇
Ω
−1
𝑟) . (7)

Hubert and Wijekoon [10] proposed the stochastic
restricted Liu estimator (SRLE) by combining the ordinary
mixed estimator and the Liu estimator, which is defined as

̂
𝛽SRRE (𝑘) = 𝑇𝑘

̂
𝛽OME. (8)

And Li and Yang [11] introduced the stochastic restricted
ridge estimator (SRRE) by grafting the RE into the mixed
estimation procedure, which is defined as

̂
𝛽SRLE (𝑑) = 𝐹𝑑

̂
𝛽OME. (9)

In practical, the prior information and the sample infor-
mation may be not equally important, which resulted in
emergence of the weighted mixed estimator (WME) [13]:

̂
𝛽WME (𝑤) = (𝑆 + 𝑤𝑅

𝑇
Ω
−1
𝑅)

−1

(𝑋
𝑇
𝑦 + 𝑤𝑅

𝑇
Ω
−1
𝑟) , (10)

where 𝑤 (0 ≤ 𝑤 ≤ 1) is a nonstochastic and nonnegative
scalar weight.

Now, we are ready to introduce two almost unbiased esti-
mators in the stochastic restricted linear regression model.
Combining theWME with the AURE and the AULE, respec-
tively, we can propose the stochastic weighted mixed almost
unbiased ridge estimator ̃𝛽

𝑅
(𝑤, 𝑘) and stochastic weighted

mixed almost unbiased Liu estimator ̃𝛽
𝐿
(𝑤, 𝑑) as follows:

̃
𝛽
𝑅
(𝑤, 𝑘) = (𝐼 − 𝑘

2
𝑆
−2

𝑘
)
̂
𝛽WME (𝑤) ,

̃
𝛽
𝐿
(𝑤, 𝑑) = (𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)
̂
𝛽WME (𝑤) ,

(11)

where ̂𝛽WME(𝑤) is the weighted mixed estimator.
In fact, note that

(𝑆 + 𝑤𝑅
𝑇
Ω
−1
𝑅)

−1

= 𝑆
−1
− 𝑤𝑆
−1
𝑅
𝑇
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−1
𝑅
𝑇
)

−1

𝑅𝑆
−1
,

(𝑆
−1
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−1
𝑅
𝑇
)

−1

𝑅𝑆
−1
)𝑤𝑅
𝑇
Ω
−1
𝑟

= 𝑤𝑆
−1
𝑅
𝑇
(Ω + 𝑤𝑅𝑆

−1
𝑅
𝑇
)

−1

𝑟.

(12)
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Then, the WME (10) can be rewritten as

̂
𝛽WME (𝑤) =

̂
𝛽LS + 𝑤𝑆

−1
𝑅
𝑇
(Ω + 𝑤𝑅𝑆

−1
𝑅
𝑇
)

−1

(𝑟 − 𝑅
̂
𝛽LS) .

(13)

Therefore, we can also derive ̃𝛽
𝑅
(𝑤, 𝑘) and ̃𝛽

𝐿
(𝑤, 𝑑) as the

LS of 𝛽 in the framework of the following augmentedmodels:

(

𝑦

√𝑘(𝐼 + 𝑘𝑆
−1
)

−1
̂
𝛽WME (𝑤) +

1

√𝑘

𝑆𝑔
) = (

𝑋

√𝑘𝐼

)𝛽 + (

𝜀

𝜀
) ,

(

𝑦

(𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−1
)
̂
𝛽WME (𝑤) + 𝑆𝑔

) = (

𝑋

𝐼
)𝛽 + (

𝜀

𝜀
) ,

(14)

where 𝑔 = 𝑤𝑆−1𝑅𝑇(Ω + 𝑤𝑅𝑆−1𝑅𝑇)−1(𝑟 − 𝑅 ̂𝛽LS) and 𝜀 is a
random vector of disturbances with 𝐸(𝜀) = 0, 𝐷(𝜀) = 𝜎2𝐼,
and𝐸(𝜀𝜀𝑇) = 0.Then the LS of 𝛽 from the augmentedmodels
(14) is

̃
𝛽
𝑅
(𝑘, 𝑤)

= (𝑆 + 𝑘𝐼)
−1
(𝑋
𝑇
𝑦 + 𝑘(𝐼 + 𝑘𝑆

−1
)

−1
̂
𝛽WME (𝑤) + 𝑆𝑔)

= (𝑆 + 𝑘𝐼)
−1
(𝑆 + 𝑘(𝐼 + 𝑘𝑆

−1
)

−1

)
̂
𝛽WME (𝑤)

= (𝐼 − 𝑘
2
𝑆
−2

𝑘
)
̂
𝛽WME (𝑤) ,

̃
𝛽
𝐿
(𝑑, 𝑤)

= (𝑆 + 𝐼)
−1
(𝑋
𝑇
𝑦 + (𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−1
)
̂
𝛽WME (𝑤) + 𝑆𝑔)

= (𝑆 + 𝐼)
−1
(𝑆 + 𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−1
)
̂
𝛽WME (𝑤)

= (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
)
̂
𝛽WME (𝑤) .

(15)

It can be seen from definitions of ̃𝛽
𝑅
(𝑘, 𝑤) and ̃𝛽

𝐿
(𝑑, 𝑤)

that they are two general estimators that include the WME,
AURE, AULE, OME, and LS, as special cases; that is,

̃
𝛽
𝑅
(0, 𝑤) =

̂
𝛽WME (𝑤) =

̃
𝛽
𝐿
(1, 𝑤) ,

̃
𝛽
𝑅
(0, 1) =

̂
𝛽OME =

̃
𝛽
𝐿
(1, 1) ,

̃
𝛽
𝑅
(0, 0) =

̂
𝛽LS =

̃
𝛽
𝐿
(1, 0) ,

̃
𝛽
𝑅
(𝑘, 0) =

̂
𝛽AURE (𝑘) ,

̃
𝛽
𝐿
(𝑑, 0) =

̂
𝛽AULE (𝑑) .

(16)

Now, by some straightforward calculations, we can com-
pute bias vectors and covariance matrices of the WME,
AURE, AULE, SRRE, SRLE, ̃𝛽

𝑅
(𝑘, 𝑤), and ̃𝛽

𝐿
(𝑑, 𝑤) as

Bias ( ̂𝛽WME (𝑤)) = 𝐸 (
̂
𝛽WME (𝑤)) − 𝛽 = 0, (17)

COV ( ̂𝛽WME (𝑤)) = 𝜎
2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
Ω
−1
𝑅)𝐴, (18)

Bias ( ̂𝛽AURE (𝑘)) = 𝐸 ( ̂𝛽AURE (𝑘)) − 𝛽 = −𝑘
2
𝑆
−2

𝑘
𝛽, (19)

COV ( ̂𝛽AURE (𝑘)) = 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) 𝑆
−1
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) , (20)

Bias ( ̂𝛽AULE (𝑑)) = 𝐸 ( ̂𝛽AULE (𝑑)) − 𝛽 = −(1 − 𝑑)
2
(𝑆 + 𝐼)

−2
𝛽,

(21)

COV ( ̂𝛽AULE (𝑑)) = 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
) 𝑆
−1

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
) ,

(22)

Bias ( ̂𝛽SRRE (𝑘)) = 𝐸 ( ̂𝛽SRRE (𝑘)) − 𝛽 = −𝑘𝑆
−1

𝑘
𝛽, (23)

COV ( ̂𝛽SRRE (𝑘)) = 𝜎
2
𝑇
𝑘
𝐴𝑇
𝑘
, (24)

Bias ( ̂𝛽SRLE (𝑑)) = 𝐸 ( ̂𝛽SRLE (𝑑)) − 𝛽 = − (1 − 𝑑) (𝑆 + 𝐼)
−1
𝛽,

(25)

COV ( ̂𝛽SRLE (𝑑)) = 𝜎
2
𝐹
𝑑
𝐴𝐹
𝑑
, (26)

Bias ( ̃𝛽
𝑅
(𝑘, 𝑤)) = 𝐸 (

̃
𝛽
𝑅
(𝑘, 𝑤)) − 𝛽 = −𝑘

2
𝑆
−2

𝑘
𝛽, (27)

COV ( ̃𝛽
𝑅
(𝑘, 𝑤))

= 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐴 (𝑆 + 𝑤

2
𝑅
𝑇
Ω
−1
𝑅)𝐴 (𝐼 − 𝑘

2
𝑆
−2

𝑘
) ,

(28)

Bias ( ̃𝛽
𝐿
(𝑑, 𝑤)) = 𝐸 (

̃
𝛽
𝐿
(𝑑, 𝑤)) − 𝛽 = −(1 − 𝑑)

2
(𝑆 + 𝐼)

−2
𝛽,

(29)

COV ( ̃𝛽
𝐿
(𝑑, 𝑤))

= 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)𝐴 (𝑆 + 𝑤

2
𝑅
𝑇
Ω
−1
𝑅)

× 𝐴 (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
) ,

(30)

where𝐴 = (𝑆+𝑅𝑇Ω−1𝑅)−1 and𝐴 = (𝑆+𝑤𝑅𝑇Ω−1𝑅)−1. In rest
sections, our primary aim is to study performances of new
estimators over relative estimators under the quadratic bias
(QB) and variance matrix criteria.

3. Quadratic Bias Comparisons of Estimators

In this section, we will focus on quadratic bias compar-
isons among the AURE, AULE, SRRE, SRLE, ̃𝛽

𝑅
(𝑘, 𝑤), and

̃
𝛽
𝐿
(𝑑, 𝑤). Let ̂𝛽 be some estimator of parameter vector 𝛽,

and then the quadratic bias of ̂𝛽 is defined as QB( ̂𝛽) =
Bias( ̂𝛽)𝑇Bias( ̂𝛽), where Bias( ̂𝛽) = 𝐸(

̂
𝛽) − 𝛽. According to

the definition of the quadratic bias, we can easily compute
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quadratic biases of the AURE, AULE, SRRE, SRLE, ̃𝛽
𝑅
(𝑘, 𝑤),

and ̃𝛽
𝐿
(𝑑, 𝑤) as

QB ( ̂𝛽AURE (𝑘)) = Bias( ̂𝛽AURE (𝑘))
𝑇

Bias ( ̂𝛽AURE (𝑘))

= 𝑘
4
𝛽
𝑇
𝑆
−4

𝑘
𝛽,

(31)

QB ( ̂𝛽AULE (𝑑)) = Bias( ̂𝛽AULE (𝑑))
𝑇

Bias ( ̂𝛽AULE (𝑑))

= (1 − 𝑑)
4
𝛽
𝑇
(𝑆 + 𝐼)

−4
𝛽,

(32)

QB ( ̂𝛽SRRE (𝑘)) = Bias( ̂𝛽SRRE (𝑘))
𝑇

Bias ( ̂𝛽SRRE (𝑘))

= 𝑘
2
𝛽
𝑇
𝑆
−2

𝑘
𝛽,

(33)

QB ( ̂𝛽SRLE (𝑑)) = Bias( ̂𝛽SRLE (𝑑))
𝑇

Bias ( ̂𝛽SRLE (𝑑))

= (1 − 𝑑)
2
𝛽
𝑇
(𝑆 + 𝐼)

−2
𝛽,

(34)

QB ( ̃𝛽
𝑅
(𝑘, 𝑤)) = Bias( ̃𝛽

𝑅
(𝑘, 𝑤))

𝑇

Bias ( ̃𝛽
𝑅
(𝑘, 𝑤))

= 𝑘
4
𝛽
𝑇
𝑆
−4

𝑘
𝛽,

(35)

QB ( ̃𝛽
𝐿
(𝑑, 𝑤)) = Bias( ̃𝛽

𝐿
(𝑑, 𝑤))

𝑇

Bias ( ̃𝛽
𝐿
(𝑑, 𝑤))

= (1 − 𝑑)
4
𝛽
𝑇
(𝑆 + 𝐼)

−4
𝛽.

(36)

Note that the AURE and the ̃𝛽
𝑅
(𝑘, 𝑤) have the same

quadratic bias 𝑘4𝛽𝑇𝑆−4
𝑘
𝛽, and the AULE and the ̃𝛽

𝐿
(𝑑, 𝑤) also

have the same quadratic bias (1 − 𝑑)4𝛽𝑇(𝑆 + 𝐼)−4𝛽. Thus we
just compare quadratic biases between the SRRE, SRLE and
̃
𝛽
𝑅
(𝑘, 𝑤), ̃𝛽

𝐿
(𝑑, 𝑤), respectively.

3.1. Quadratic Bias Comparison between the SRRE and
̃
𝛽
𝑅
(𝑘,𝑤). In this subsection, we will focus on the quadratic

bias comparison between the SRRE and ̃𝛽
𝑅
(𝑘, 𝑤). Firstly, we

derive the difference of the quadratic bias from (33) and (35)
as

𝑉
1
(
̂
𝛽SRRE (𝑘) ,

̃
𝛽
𝑅
(𝑘, 𝑤))

= QB ( ̂𝛽SRRE (𝑘)) −QB ( ̃𝛽𝑅 (𝑘, 𝑤))

= 𝑘
2
𝛽
𝑇
𝑆
−2

𝑘
𝛽 − 𝑘
4
𝛽
𝑇
𝑆
−4

𝑘
𝛽

= 𝑘
2
𝛽
𝑇
𝑆
−1

𝑘
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) 𝑆
−1

𝑘
𝛽.

(37)

Theorem 1. The ̃
𝛽
𝑅
(𝑘, 𝑤) is superior to the estimator

̂
𝛽SRRE(𝑘) under the quadratic bias criterion, namely,
𝑉
1
(
̂
𝛽SRRE(𝑘),

̃
𝛽
𝑅
(𝑘, 𝑤)) ≥ 0. That is, the proposed ̃𝛽

𝑅
(𝑘, 𝑤) can

be seen as bias corrected estimator of the SRRE.

Proof. For 𝑉
1
(
̂
𝛽SRRE(𝑘),

̃
𝛽
𝑅
(𝑘, 𝑤)) = 𝑘

2
𝛽
𝑇
𝑆
−1

𝑘
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝑆
−1

𝑘
𝛽,

we just consider 𝐼 − 𝑘2𝑆−2
𝑘
. For 𝑆 = 𝑋𝑇𝑋 > 0, there exists

some orthogonal matrix 𝑃 such that 𝑆 = 𝑃Λ𝑃𝑇, where Λ =
diag(𝜆

1
, . . . , 𝜆

𝑝
) and 𝜆

1
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑝
denoted the ordered

eigenvalues of the matrix 𝑆. Therefore we can easily compute
that 𝐼 − 𝑘2𝑆−2

𝑘
= 𝑃Γ
(1)
𝑃
𝑇
= 𝑃 diag(𝜏(1)

1
, . . . , 𝜏

(1)

𝑝
)𝑃
𝑇, where

Γ
(1)
= 𝐼 − 𝑘

2
(Λ + 𝑘𝐼)

−2 and 𝜏(1)
𝑖

= 1 − (𝑘
2
/(𝜆
𝑖
+ 𝑘)
2
) =

(𝜆
2

𝑖
+ 2𝑘𝜆

𝑖
)/(𝜆
𝑖
+ 𝑘)
2, 𝑖 = 1, . . . , 𝑝. Note that 𝜆

𝑖
> 0, 𝑘 > 0;

thus 𝜏(1)
𝑖

> 0, 𝑖 = 1, . . . , 𝑝, which means 𝐼 − 𝑘2𝑆−2
𝑘
> 0,

namely, 𝐼 − 𝑘2𝑆−2
𝑘

is a positive definition matrix. Therefore,
𝑉
1
(
̂
𝛽SRRE(𝑘),

̃
𝛽
𝑅
(𝑘, 𝑤)) > 0.

This completes the proof.

3.2. Quadratic Bias Comparison between the SRLE and
̃
𝛽
𝐿
(𝑑,𝑤). In this subsection, the comparison between the

quadratic bias of SRLE and the quadratic bias of ̃𝛽
𝐿
(𝑑, 𝑤) is

discussed. We get the difference of the quadratic bias from
(34) and (36) as

𝑉
2
(
̂
𝛽SRLE (𝑑) ,

̃
𝛽
𝐿
(𝑑, 𝑤))

= QB ( ̂𝛽SRLE (𝑑)) −QB ( ̃𝛽𝐿 (𝑑, 𝑤))

= (1 − 𝑑)
2
𝛽
𝑇
(𝑆 + 𝐼)

−2
𝛽 − (1 − 𝑑)

4
𝛽
𝑇
(𝑆 + 𝐼)

−4
𝛽

= (1 − 𝑑)
2
𝛽
𝑇
(𝑆 + 𝐼)

−1
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
) (𝑆 + 𝐼)

−1
𝛽.

(38)

Theorem 2. The ̃
𝛽
𝐿
(𝑑, 𝑤) is superior to the estimator

̂
𝛽SRLE(𝑑) under the quadratic bias criterion, namely,
𝑉
2
(
̂
𝛽SRLE(𝑑),

̃
𝛽
𝐿
(𝑑, 𝑤)) ≥ 0. That is, the proposed ̃𝛽

𝐿
(𝑑, 𝑤) can

be seen as bias corrected estimator of the SRLE.

Proof. For𝑉
2
(
̂
𝛽SRLE(𝑑),

̃
𝛽
𝐿
(𝑑, 𝑤)) = (1−𝑑)

2
𝛽
𝑇
(𝑆+𝐼)

−1
(𝐼−(1−

𝑑)
2
(𝑆+𝐼)
−2
)(𝑆+𝐼)

−1
𝛽, we just consider 𝐼−(1−𝑑)2(𝑆+𝐼)−2. Note

that 𝐼 − (1−𝑑)2(𝑆 + 𝐼)−2 = 𝑃Γ(2)𝑃𝑇 = 𝑃 diag(𝜏(2)
1
, . . . , 𝜏

(2)

𝑝
)𝑃
𝑇,

where Γ(2) = 𝐼−(1−𝑑)2(Λ+𝐼)−2 and 𝜏(2)
𝑖
= 1−((1−𝑑)

2
/(𝜆
𝑖
+

1)
2
) = (𝜆

2

𝑖
+ 2𝜆
𝑖
+ 1 − (1 − 𝑑)

2
)/(𝜆
𝑖
+ 1)
2, 𝑖 = 1, . . . , 𝑝. For

𝜆
𝑖
> 0, 0 < 𝑑 < 1, thus 𝜏(2)

𝑖
> 0, 𝑖 = 1, . . . , 𝑝, which means

𝐼−(1−𝑑)
2
(𝑆+𝐼)

−2
> 0.Therefore,𝑉

1
(
̂
𝛽SRLE(𝑑),

̃
𝛽
𝐿
(𝑑, 𝑤)) > 0.

This completes the proof.

4. Variance Comparisons of Estimators

In this section, we will focus on variance matrix comparisons
among the WME, AURE, AULE, SRRE, SRLE, ̃𝛽

𝑅
(𝑘, 𝑤), and

̃
𝛽
𝐿
(𝑑, 𝑤). For the sake of convenience, we list a lemma needed

in the following discussions.

Lemma 3. Let two 𝑛 × 𝑛 matrices𝑀 > 0, 𝑁 ≥ 0, and then
𝑀 > 𝑁 ⇔ 𝜆

1
(𝑁𝑀
−1
) < 1.

Proof. See Rao et al. [15].

4.1. Variance Comparison between the WME and ̃𝛽
𝑅
(𝑘,𝑤). In

this subsection, the comparison of variance matrix between
the ̃𝛽
𝑅
(𝑘, 𝑤) and the WME is discussed.
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Firstly, from (18) and (28), we can compute the difference
of variance matrices between the WME and the ̃𝛽

𝑅
(𝑘, 𝑤) as

Δ
1
= COV ( ̂𝛽WME (𝑤)) − COV ( ̃𝛽𝑅 (𝑘, 𝑤))

= 𝜎
2
𝐷
𝑤
− 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

= 𝜎
2
𝐷
1
,

(39)

where 𝐷
𝑤
= 𝐴(𝑆 + 𝑤

2
𝑅
𝑇
Ω
−1
𝑅)𝐴 and 𝐼 − 𝑘2𝑆−2

𝑘
are two real

symmetric positive definite matrices, and 𝐷
1
= 𝐷
𝑤
− (𝐼 −

𝑘
2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
). We can compute

𝐷
1
= 𝐷
𝑤
− (𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

= 𝐷
𝑤
− (𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
+ (𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤

− (𝐼 − 𝑘
2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

= 𝑘
2
𝑆
−2

𝑘
𝐷
𝑤
+ [(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
] 𝑘
2
𝑆
−2

𝑘
,

(40)

where 𝑘2𝑆−2
𝑘
> 0. We get 𝑘𝑆−1

𝑘
𝐷
𝑤
𝑘𝑆
−1

𝑘
> 0 and 𝑘𝑆−1

𝑘
[(𝐼 −

𝑘
2
𝑆
−2

𝑘
)𝐷
𝑤
]𝑘𝑆
−1

𝑘
> 0. Since 𝑘𝑆−1

𝑘
𝐷
𝑤
𝑘𝑆
−1

𝑘
and 𝑘𝑆−1

𝑘
[(𝐼 −

𝑘
2
𝑆
2

𝑘
)𝐷
𝑤
]𝑘𝑆
−1

𝑘
have the same zero eigenvalues as those of

𝑘
2
𝑆
−2

𝑘
𝐷
𝑤
and [(𝐼 − 𝑘2𝑆−2

𝑘
)𝐷
𝑤
]𝑘
2
𝑆
−2

𝑘
, respectively, we have

𝑘
2
𝑆
−2

𝑘
𝐷
𝑤
≥ 0 and [(𝐼−𝑘2𝑆−2

𝑘
)𝐷
𝑤
]𝑘
2
𝑆
−2

𝑘
≥ 0.Therefore, we can

get𝐷
1
≥ 0; namely, COV( ̂𝛽WME(𝑤)) − COV( ̃𝛽𝑅(𝑘, 𝑤)) ≥ 0.

4.2. Variance Comparison between theWME and ̃𝛽
𝐿
(𝑑,𝑤). In

this subsection, the comparison of variance matrix between
the ̃𝛽
𝐿
(𝑑, 𝑤) and the WME is discussed.

From (18) and (30), we can compute the difference of
variance matrices between the WME and the ̃𝛽

𝐿
(𝑑, 𝑤) as

Δ
2
= COV ( ̂𝛽WME (𝑤)) − COV ( ̃𝛽𝐿 (𝑑, 𝑤))

= 𝜎
2
𝐷
𝑤
− 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)𝐷
𝑤

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
)

= 𝜎
2
𝐷
2
,

(41)

where𝐷
2
= 𝐷
𝑤
−(𝐼−(1−𝑑)

2
(𝑆+𝐼)

−2
)𝐷
𝑤
(𝐼−(1−𝑑)

2
(𝑆+𝐼)

−2
).

We can compute

𝐷
2
= 𝐷
𝑤
− (𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)𝐷
𝑤

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
)

= 𝐷
𝑤
− 𝐷
𝑤
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)

+ 𝐷
𝑤
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)

− (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
)𝐷
𝑤
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)

= (1 − 𝑑)
2
𝐷
𝑤
(𝑆 + 𝐼)

−2
+ (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
𝐷
𝑤

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
) .

(42)

For (1−𝑑)2(𝑆+𝐼)−2 > 0, thus (1−𝑑)2(𝑆+𝐼)−1𝐷
𝑤
(𝑆+𝐼)

−1
>

0 and (1 − 𝑑)2(𝑆 + 𝐼)−1[𝐷
𝑤
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)](𝑆 + 𝐼)

−1
> 0

since (1 − 𝑑)2𝐷
𝑤
(𝑆 + 𝐼)

−2 and (1 − 𝑑)2(𝑆 + 𝐼)−2[𝐷
𝑤
(𝐼 − (1 −

𝑑)
2
(𝑆 + 𝐼)

−2
)] have the same zero eigenvalues as those of (1 −

𝑑)
2
(𝑆+𝐼)

−1
𝐷
𝑤
(𝑆+𝐼)

−1 and (1−𝑑)2(𝑆+𝐼)−1[𝐷
𝑤
(𝐼−(1−𝑑)

2
(𝑆+

𝐼)
−2
)](𝑆+𝐼)

−1, respectively.We get (1−𝑑)2𝐷
𝑤
(𝑆+𝐼)

−2
> 0 and

(1−𝑑)
2
(𝑆+𝐼)
−2
[𝐷
𝑤
(𝐼−(1−𝑑)

2
(𝑆+𝐼)
−2
)] > 0.Therefore, we can

get𝐷
2
≥ 0; namely, COV( ̂𝛽WME(𝑤)) − COV( ̃𝛽𝐿(𝑑, 𝑤)) ≥ 0.

4.3. VarianceComparison between theAUREand ̃𝛽
𝑅
(𝑘, 𝑤). In

this subsection, the comparison of variance matrix between
the ̃𝛽
𝑅
(𝑘, 𝑤) and the AURE is discussed.

From (20) and (28), we can get the difference of variance
matrices between the AURE and the ̃𝛽

𝑅
(𝑘, 𝑤) as

Δ
3
= COV ( ̂𝛽AURE (𝑘)) − COV ( ̃𝛽𝑅 (𝑘, 𝑤))

= 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) 𝑆
−1
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

− 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

= 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) (𝑆
−1
− 𝐷
𝑤
) (𝐼 − 𝑘

2
𝑆
−2

𝑘
) .

(43)

We can compute

𝑆
−1
− 𝐷
𝑤
= 𝑆
−1
− 𝐴 (𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

= 𝑆
−1
− (𝑆 + 𝑤𝑅

𝑇
𝑊
−1
𝑅)

−1

(𝑆 + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)

× (𝑆 + 𝑤𝑅
𝑇
𝑊
−1
𝑅)

−1

= 𝑆
−1
− (𝑆 + 𝑤𝑅

𝑇
𝑊
−1
𝑅)

−1

+ 𝑤 (1 − 𝑤) 𝑅
𝑇
𝑊
−1
𝑅(𝑆 + 𝑤𝑅

𝑇
𝑊
−1
𝑅)

−1

.

(44)

For (𝑆 + 𝑤𝑅
𝑇
𝑊
−1
𝑅)
−1

= 𝑆
−1
− 𝑤𝑆

−1
𝑅
𝑇
(𝑊 +

𝑤𝑅𝑆
−1
𝑅
𝑇
)
−1
𝑅𝑆
−1, we get 𝑆−(𝑆+𝑤𝑅𝑇𝑊−1𝑅)−1 = 𝑤𝑆−1𝑅𝑇(𝑊+

𝑤𝑅𝑆
−1
𝑅
𝑇
)
−1
𝑅𝑆
−1

> 0. Note that 𝑤(1 − 𝑤)𝑅𝑇𝑊−1𝑅(𝑆 +
𝑤𝑅
𝑇
𝑊
−1
𝑅)
−1
> 0 (0 < 𝑤 < 1). Thus 𝑆−1 −𝐷

𝑤
> 0. Therefore,

we can derive Δ
3
= COV( ̂𝛽AURE(𝑘)) − COV( ̃𝛽𝑅(𝑘, 𝑤)) > 0.

4.4. Variance Comparison between the AULE and ̃𝛽
𝐿
(𝑑,𝑤). In

this subsection, the comparison of variance matrix between
the ̃𝛽
𝐿
(𝑑, 𝑤) and the AULE is discussed.
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Table 1: Estimated QB values of the ̂𝛽SRRE(𝑘), ̃𝛽𝑅(𝑘, 𝑤), ̂𝛽SRLE(𝑑), and ̃𝛽𝐿(𝑑, 𝑤).

𝑘/𝑑 0.05 0.2 0.35 0.5 0.65 0.8 0.95
̂
𝛽SRRE(𝑘) 0.01009 0.14312 0.39108 0.71663 1.09355 1.50331 1.93269
̃
𝛽
𝑅
(𝑘, 𝑤) 4.394𝑒 − 06 0.00088 0.00657 0.02202 0.05117 0.09653 0.15925

̂
𝛽SRLE(𝑑) 1.87582 1.33022 0.87815 0.51962 0.25461 0.08313 0.00520
̃
𝛽
𝑅
(𝑘, 𝑤) 0.14992 0.07539 0.03286 0.01150 0.00276 0.00029 1.151𝑒 − 06

It can be seen from (22) and (30) that the difference of
variance matrices between the AULE and the ̃𝛽

𝐿
(𝑑, 𝑤) is

Δ
4

= COV ( ̂𝛽AULE (𝑑)) − COV ( ̃𝛽𝐿 (𝑑, 𝑤))

= 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
) 𝑆
−1
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)

− 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)𝐷
𝑤
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)

= 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
) (𝑆
−1
− 𝐷
𝑤
)

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
) .

(45)

Note that 𝐼 − (1 − 𝑑)2(𝑆 + 𝐼)−2 > 0 and 𝑆−1 − 𝐷
𝑤
> 0;

therefore, we can easily get that Δ
4
= COV( ̂𝛽AULE(𝑑)) −

COV( ̃𝛽
𝐿
(𝑑, 𝑤)) > 0.

4.5. Variance Comparison between the SRRE and ̃𝛽
𝑅
(𝑘,𝑤). In

this subsection, we compare the superiority of the variance
matrix between ̃𝛽

𝑅
(𝑘, 𝑤) and SRRE.

We can compute the difference of the variance matrix
between SRRE and ̃𝛽

𝑅
(𝑘, 𝑤) from (24) and (28) as

Δ
5
= COV ( ̂𝛽SRRE (𝑘)) − COV ( ̃𝛽𝑅 (𝑘, 𝑤))

= 𝜎
2
𝑇
𝑘
𝐴𝑇
𝑘
− 𝜎
2
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
)

= 𝜎
2
𝐷
3
,

(46)

where 𝐷
3
= 𝑇
𝑘
𝐴𝑇
𝑘
− (𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
). Note

that 𝑇
𝑘
𝐴𝑇
𝑘
> 0, and (𝐼 − 𝑘2𝑆−2

𝑘
)𝐷
𝑤
(𝐼 − 𝑘

2
𝑆
−2

𝑘
) > 0.

Therefore, applying Lemma 3, when 𝜆
1
((𝐼 − 𝑘

2
𝑆
−2

𝑘
)𝐷
𝑤
(𝐼 −

𝑘
2
𝑆
−2

𝑘
)(𝑇
𝑘
𝐴𝑇
𝑘
)
−1
) < 1, we can get 𝐷

3
> 0; namely, Δ

5
=

COV( ̂𝛽SRRE(𝑘)) − COV( ̃𝛽𝑅(𝑘, 𝑤)) > 0.

4.6. Variance Comparison between the SRLE and ̃𝛽
𝐿
(𝑑,𝑤). In

this subsection, we compare the superiority of the variance
matrix between ̃𝛽

𝐿
(𝑑, 𝑤) and SRLE.

We can get the difference of the variance matrix between
SRLE and ̃𝛽

𝐿
(𝑑, 𝑤) from (26) and (30) as

Δ
6
= COV ( ̂𝛽SRLE (𝑑)) − COV ( ̃𝛽𝐿 (𝑑, 𝑤))

= 𝜎
2
𝐹
𝑑
𝐴𝐹
𝑑
− 𝜎
2
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
)𝐷
𝑤

× (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
)

= 𝜎
2
𝐷
4
,

(47)

where𝐷
4
= 𝐹
𝑑
𝐴𝐹
𝑑
−(𝐼− (1−𝑑)

2
(𝑆+𝐼)

−2
)𝐷
𝑤
(𝐼− (1−𝑑)

2
(𝑆+

𝐼)
−2
). Note that 𝐹

𝑑
= (𝑆 + 𝐼)

−1
(𝑆 + 𝑑𝐼) > 0, 𝐹

𝑑
𝐴𝐹
𝑑
> 0, and

(𝐼 − (1−𝑑)
2
(𝑆 + 𝐼)

−2
)𝐷
𝑤
(𝐼 − (1−𝑑)

2
(𝑆 + 𝐼)

−2
) > 0. Therefore,

applying Lemma 3, when 𝜆
1
((𝐼−(1−𝑑)

2
(𝑆+𝐼)

−2
)𝐷
𝑤
(𝐼−(1−

𝑑)
2
(𝑆 + 𝐼)

−2
)(𝐹
𝑑
𝐴𝐹
𝑑
)
−1
) < 1, we can derive 𝐷

4
> 0; namely,

Δ
6
= COV( ̂𝛽SRLE(𝑑)) − COV( ̃𝛽𝐿(𝑑, 𝑤)) > 0.

5. Numerical Example and
Monte Carlo Simulation

In order to illustrate our theoretical results, firstly we consider
in this section a data set originally due to Webster et
al. [16]. Considering that comparison results depended on
unknown parameters 𝛽 and 𝜎2 and replaced them by their
unbiased estimators, namely, LS, the results here and below
are performed with R 2.14.1.

We can easily obtain that the condition number is
approximately 208.5. This information indicates a moderate
multicollinearity among regression vectors. The ordinary
least squares estimator of 𝛽 is

̂
𝛽LS = 𝑆

−1
𝑋
𝑇
𝑦

= (1.0561, 0.8408, 0.8924, 0.8184, 1.086, 5.0995)
𝑇

(48)

with �̂�2LS = 1.3622. Consider the following stochastic linear
restrictions:

𝑟 = 𝑅𝛽 + 𝑒, 𝑅 = [1, 2, 3, 1, 2, 3] , 𝑒 ∼ (0, �̂�
2

LS) . (49)

Note that quadratic bias values of AURE, AULE and
̃
𝛽
𝑅
(𝑘, 𝑤), ̃𝛽

𝐿
(𝑑, 𝑤) are the same from (31), (32), (35), and (36),

respectively. And quadratic bias values of the SRRE, ̃𝛽
𝑅
(𝑘, 𝑤),

SRLE, and ̃𝛽
𝐿
(𝑑, 𝑤) do not change when 𝑤 takes different

values. Therefore, we just compare the quadratic biases of
SRRE and ̃

𝛽
𝑅
(𝑘, 𝑤), SRLE and ̃

𝛽
𝐿
(𝑑, 𝑤) when 𝑘 or 𝑑 take

different values. For the SRRE, ̃𝛽
𝑅
(𝑘, 𝑤), SRLE, and ̃𝛽

𝐿
(𝑑, 𝑤),

their quadratic bias values are given in Table 1. For theWME,
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Table 2: Estimated MSE values of the ̂𝛽WME(𝑤), ̂𝛽AURE(𝑘), ̂𝛽SRRE(𝑘), ̃𝛽𝑅(𝑘, 𝑤), ̂𝛽AULE(𝑑), ̂𝛽SRLE(𝑑), and ̃𝛽𝐿(𝑑, 𝑤).

𝑘/𝑑 0.05 0.2 0.35 0.5 0.65 0.8 0.95
𝑤 = 0.1

̂
𝛽WME(𝑤) 0.60151 0.60151 0.60151 0.60151 0.60151 0.60151 0.60151
̂
𝛽AURE(𝑘) 0.76165 0.75567 0.74866 0.74762 0.75796 0.78318 0.82518
̂
𝛽SRRE(𝑘) 0.41703 0.51719 0.73716 1.03859 1.39457 1.78595 2.19912
̃
𝛽
𝑅
(𝑘, 𝑤) 0.60114 0.59690 0.59313 0.59629 0.61141 0.64173 0.68896

̂
𝛽AULE(𝑑) 0.81855 0.77043 0.75027 0.74698 0.75178 0.75815 0.76189
̂
𝛽SRLE(𝑑) 2.14397 1.61925 1.18918 0.85375 0.61297 0.46682 0.41533
̃
𝛽
𝐿
(𝑑, 𝑤) 0.68163 0.62681 0.60098 0.59311 0.59447 0.59859 0.60131

𝑤 = 0.5

̂
𝛽WME(𝑤) 0.43737 0.43737 0.43737 0.43737 0.43737 0.43737 0.43737
̂
𝛽AURE(𝑘) 0.76165 0.75566 0.74865 0.74762 0.75796 0.78318 0.82518
̂
𝛽SRRE(𝑘) 0.41703 0.51719 0.73715 1.03859 1.39456 1.78595 2.19912
̃
𝛽
𝑅
(𝑘, 𝑤) 0.43712 0.43468 0.43422 0.44166 0.46166 0.49719 0.54976

̂
𝛽AULE(𝑑) 0.81855 0.77043 0.75027 0.74698 0.75178 0.75815 0.76189
̂
𝛽SRLE(𝑑) 2.14397 1.6192 1.18918 0.85375 0.61297 0.46682 0.41533
̃
𝛽
𝐿
(𝑑, 𝑤) 0.54173 0.48007 0.44844 0.43588 0.43373 0.43556 0.43724

𝑤 = 0.9

̂
𝛽WME(𝑤) 0.41955 0.41955 0.41955 0.41955 0.41955 0.41955 0.41955
̂
𝛽AURE(𝑘) 0.76165 0.75566 0.74865 0.74762 0.75796 0.78318 0.82518
̂
𝛽SRRE(𝑘) 0.41703 0.51719 0.73715 1.03859 1.39456 1.78595 2.19912
̃
𝛽
𝑅
(𝑘, 𝑤) 0.41931 0.417072 0.41696 0.42487 0.44540 0.48150 0.53465

̂
𝛽AULE(𝑑) 0.81855 0.77043 0.75027 0.74698 0.75178 0.75815 0.76189
̂
𝛽SRLE(𝑑) 2.14397 1.6192 1.18918 0.85375 0.61297 0.46682 0.41533
̃
𝛽
𝐿
(𝑑, 𝑤) 0.52654 0.46414 0.43187 0.41881 0.41628 0.41786 0.41942

Table 3: Estimated QB values of the ̂𝛽SRRE(𝑘), ̃𝛽𝑅(𝑘, 𝑤), ̂𝛽SRLE(𝑑), and ̃
𝛽
𝐿
(𝑑, 𝑤) when 𝜌 = 0.99, 0.999.

𝑘/𝑑 0.1 0.2 0.5 0.8 0.99
𝜌 = 0.99

̂
𝛽SRRE(𝑘) 0.0059443 0.0236735 0.1460404 0.3690512 0.5605782
̃
𝛽
𝑅
(𝑘, 𝑤) 3.0509𝑒 − 08 4.8337𝑒 − 07 1.8336𝑒 − 05 0.0001167 0.0002687

̂
𝛽SRLE(𝑑) 0.4630895 0.3658979 0.1429289 0.0228686 5.7171𝑒 − 05

̃
𝛽
𝐿
(𝑑, 𝑤) 0.0001834 0.0001145 1.7472𝑒 − 05 4.4728𝑒 − 07 2.7955𝑒 − 12

𝜌 = 0.999

̂
𝛽SRRE(𝑘) 0.0081916 0.0325987 0.2006468 0.5059226 0.7674195
̃
𝛽
𝑅
(𝑘, 𝑤) 5.7930𝑒 − 08 9.1625𝑒 − 07 3.4582𝑒 − 05 0.0002190 0.0005028

̂
𝛽SRLE(𝑑) 0.6339137 0.5008701 0.1956524 0.0313043 7.8260𝑒 − 05

̃
𝛽
𝐿
(𝑑, 𝑤) 0.0003430 0.0002141 3.2682𝑒 − 05 8.3667𝑒 − 07 5.2292𝑒 − 12

AURE, SRRE, ̃𝛽
𝑅
(𝑘, 𝑤), AULE, SRLE, and ̃

𝛽
𝐿
(𝑑, 𝑤), their

estimated MSE values are obtained in Table 2 by replacing in
the corresponding theoretical MSE expressions all unknown
model parameters by their respective least squares estimators.

It can be seen from Table 1 that the ̃𝛽
𝑅
(𝑘, 𝑤) has smaller

quadratic bias values than the SRRE for every case, and this
same situation exists that the quadratic bias of the ̃𝛽

𝐿
(𝑑, 𝑤)

is smaller than that of the SRLE. From Table 2, we can find
that the ̃𝛽

𝑅
(𝑘, 𝑤) has smaller MSE values than the AURE

for every case. However, when the MSE values of the WME,
SRRE, and ̃𝛽

𝑅
(𝑘, 𝑤) are compared, there is no estimatorwhich

is always superior over than other estimators. Especially,
when 𝑘 increases from 0.2 to 0.95, the difference of MSE
values between the SRRE and ̃𝛽

𝑅
(𝑘, 𝑤) is always positive and

becomes larger and larger.The similar situation can be found

when we compare the WME, AULE, SRLE, and ̃𝛽
𝐿
(𝑑, 𝑤) in

MSE values.
In order to further illustrate the behavior of our proposed

estimator, we are to perform a Monte Carlo simulation
study under different levels ofmulticollinearity. Following Xu
and Yang [17], we can get the explanatory variables by the
following equations:

𝑥
𝑖𝑗
= (1 − 𝜌

2
)

1/2

𝑤
𝑖𝑗
+ 𝜌𝑤
𝑖𝑝
,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑝,

(50)

where 𝑤
𝑖𝑗
are independent standard normal pseudorandom

numbers and 𝜌 is specified so that the theoretical correlation
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Table 4: Estimated MSE values of the ̂𝛽WME(𝑤), ̂𝛽AURE(𝑘), ̂𝛽SRRE(𝑘), ̃𝛽𝑅(𝑘, 𝑤), ̂𝛽AULE(𝑑), ̂𝛽SRLE(𝑑), and ̃𝛽𝐿(𝑑, 𝑤) when 𝜌 = 0.99.

𝑘/𝑑 0.1 0.2 0.5 0.8 0.99
𝑤 = 0.1

̂
𝛽WME(𝑤) 0.0666663 0.0666663 0.0666663 0.0666663 0.0666663
̂
𝛽AURE(𝑘) 0.0688446 0.0688433 0.0688494 0.0689263 0.06906
̂
𝛽SRRE(𝑘) 0.0661541 0.0836549 0.205345 0.4276922 0.6188051
̃
𝛽
𝑅
(𝑘, 𝑤) 0.0666658 0.0666646 0.0666712 0.0667489 0.0668833

̂
𝛽AULE(𝑑) 0.068984 0.0689244 0.0688488 0.0688434 0.0688451
̂
𝛽SRLE(𝑑) 0.521516 0.4245462 0.202245 0.0828576 0.0604742
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0668069 0.0667470 0.0666706 0.0666647 0.0666663

𝑤 = 0.5

̂
𝛽WME(𝑤) 0.0618449 0.0618449 0.0618449 0.0618449 0.0618449
̂
𝛽AURE(𝑘) 0.0688446 0.0688433 0.0688494 0.0689263 0.06906
̂
𝛽SRRE(𝑘) 0.0661541 0.0836549 0.205345 0.4276922 0.6188051
̃
𝛽
𝑅
(𝑘, 𝑤) 0.0618444 0.0618433 0.0618509 0.0619305 0.0620665

̂
𝛽AULE(𝑑) 0.068984 0.0689244 0.0688488 0.0688434 0.0688451
̂
𝛽SRLE(𝑑) 0.521516 0.4245462 0.202245 0.0828576 0.0604742
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0619893 0.0619286 0.0618503 0.0618434 0.0618449

𝑤 = 0.9

̂
𝛽WME(𝑤) 0.0604830 0.0604830 0.0604830 0.0604830 0.0604830
̂
𝛽AURE(𝑘) 0.0688446 0.0688433 0.0688494 0.0689263 0.06906
̂
𝛽SRRE(𝑘) 0.0661541 0.0836549 0.205345 0.4276922 0.6188051
̃
𝛽
𝑅
(𝑘, 𝑤) 0.0604825 0.0604815 0.0604893 0.0605695 0.0606301

̂
𝛽AULE(𝑑) 0.068984 0.0689244 0.0688488 0.0688434 0.0688451
̂
𝛽SRLE(𝑑) 0.521516 0.4245462 0.202245 0.0828576 0.0604742
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0606285 0.0605675 0.0604887 0.0604815 0.0604830

between any two explanatory variables is given by 𝜌2. Obser-
vations on the dependent variable are then generated by

𝑦
𝑖
= 𝛽
1
𝑥
𝑖1
+ 𝛽
2
𝑥
𝑖2
+ 𝛽
3
𝑥
𝑖3
+ 𝛽
4
𝑥
𝑖4
+ 𝜀
𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(51)

where 𝜀
𝑖
are independent normal pseudorandom numbers

with expectation zero and variance 𝜎2
𝑖
. In this study, we

choose (𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
)
𝑇
= (40, 1, 2, 3)

𝑇, 𝑛 = 60, 𝑝 = 4, 𝜎2 = 1,
and the stochastic restrictions 𝑟 = 𝑅𝛽 + 𝑒, 𝑅 = [

4 0 −3 1

2 1 2 0
] ,

𝑒 ∼ 𝑁(0, 𝐼
2
). Furthermore, we study the two cases when

𝜌 = 0.99, 0.999.
For different values of the biasing parameters, the

quadratic bias values of the SRRE, ̃𝛽
𝑅
(𝑘, 𝑤), SRLE, and

̃
𝛽
𝐿
(𝑑, 𝑤) are obtained in Table 3. The MSE values of the

WME, AURE, SRRE, ̃𝛽
𝑅
(𝑘, 𝑤), AULE, SRLE, and ̃𝛽

𝐿
(𝑑, 𝑤) are

derived in Tables 4 and 5 for 0.99 and 0.999, respectively.
From the simulation results shown in Tables 3–5, we can

find that the quadratic biases and the MSE values of the esti-
mators are increasing with the increase of multicollinearity.
The ̃𝛽

𝑅
(𝑘, 𝑤) and ̃𝛽

𝐿
(𝑑, 𝑤) have smaller quadratic biases than

the SRRE and SRLE, respectively, for every case. On the other
hand, the value of 𝑤 is the level of the weight to sample
information and prior information, and we can see from the
Tables 4 and 5 that the estimated MSE values of the WME,
̃
𝛽
𝑅
(𝑘, 𝑤), and ̃𝛽

𝐿
(𝑑, 𝑤) become more and more smaller when

the value of 𝑤 increases. The ̃𝛽
𝑅
(𝑘, 𝑤) has smaller estimated

MSE values than the AURE and SRRE for every case when
𝑤=0.5, 𝜌 = 0.99, and 𝑤 = 0.9, 𝜌 = 0.999, and the ̃𝛽

𝐿
(𝑑, 𝑤)

has smaller estimated MSE values than the AULE for every
case when 𝑤 = 0.5, 𝜌 = 0.99, and 𝑤 = 0.9, 𝜌 = 0.999. Also,
superiorities between the ̃𝛽

𝑅
(𝑘, 𝑤) and WME or SRRE and

between the ̃𝛽
𝐿
(𝑑, 𝑤) and WME or SRLE with respect to the

MSE depend on the choice of parameters 𝑘, 𝑑, and 𝑤. More
details can be found in Tables 4 and 5.

In the numerical example, the execution times to compute
the quadratic bias of theAURE,AULE, ̃𝛽

𝑅
(𝑘, 𝑤), and ̃𝛽

𝐿
(𝑑, 𝑤)

are 0.003625 s, 0.003415 s, 0.003764 s, and 0.003813s, respec-
tively. Moreover, the execution times to compute the MSE
of the AURE, AULE, ̃𝛽

𝑅
(𝑘, 𝑤), and ̃

𝛽
𝐿
(𝑑, 𝑤) are 0.00399 s,

0.00400 s, 0.00800 s, and 0.00500 s, respectively. On the
other hand, in the Monte Carlo study when 𝜌 = 0.999,
the execution times to compute the quadratic bias of the
AURE,AULE, ̃𝛽

𝑅
(𝑘, 𝑤), and ̃𝛽

𝐿
(𝑑, 𝑤) are 0.00799 s, 0.00700 s,

0.00999 s, and 0.00799 s, respectively. In addition, the exe-
cution times to compute the MSE of the AURE, AULE, are
0.00799 s, 0.00700 s, 0.00999 s, and 0.00799 s, respectively.
In addition, the execution times to compute the MSE of
the AURE and AULE are 0.01100 s, 0.00900 s, 0.01299 s, and
0.01167 s, respectively. All the experiments are implemented
in R 2.14.1 on a personal computer (PC) with the AMD
Sempron Processor 3100+, 1.81 GHz.
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Table 5: Estimated MSE values of the ̂𝛽WME(𝑤), ̂𝛽AURE(𝑘), ̂𝛽SRRE(𝑘), ̃𝛽𝑅(𝑘, 𝑤), ̂𝛽AULE(𝑑), ̂𝛽SRLE(𝑑), and ̃𝛽𝐿(𝑑, 𝑤) when 𝜌 = 0.999.

𝑘/𝑑 0.1 0.2 0.5 0.8 0.99
𝑤 = 0.1

̂
𝛽WME(𝑤) 0.0778808 0.0778808 0.0778808 0.0778808 0.0778808
̂
𝛽AURE(𝑘) 0.0808510 0.0808491 0.0808638 0.0810138 0.0812681
̂
𝛽SRRE(𝑘) 0.0777264 0.1018247 0.2689598 0.5733425 0.8342839
̃
𝛽
𝑅
(𝑘, 𝑤) 0.0778800 0.0778782 0.0778937 0.0780453 0.0783010

̂
𝛽AULE(𝑑) 0.0811234 0.0810095 0.0808625 0.0808492 0.0808519
̂
𝛽SRLE(𝑑) 0.7010468 0.5683016 0.2639838 0.1005423 0.0698937
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0781556 0.0780410 0.0778924 0.0778783 0.0778808

𝑤 = 0.5

̂
𝛽WME(𝑤) 0.071582 0.071582 0.071582 0.071582 0.071582
̂
𝛽AURE(𝑘) 0.0808510 0.0808491 0.0808638 0.0810138 0.0812681
̂
𝛽SRRE(𝑘) 0.0777264 0.1018247 0.2689598 0.5733425 0.8342839
̃
𝛽
𝑅
(𝑘, 𝑤) 0.071581 0.0715797 0.0715970 0.0717519 0.0720104

̂
𝛽AULE(𝑑) 0.0811234 0.0810095 0.0808625 0.0808492 0.0808519
̂
𝛽SRLE(𝑑) 0.7010468 0.5683016 0.2639838 0.1005423 0.0698937
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0718635 0.0717475 0.0715957 0.0715798 0.0715819

𝑤 = 0.9

̂
𝛽WME(𝑤) 0.0698980 0.0698980 0.0698980 0.0698980 0.0698980
̂
𝛽AURE(𝑘) 0.0808510 0.0808491 0.0808638 0.0810138 0.0812681
̂
𝛽SRRE(𝑘) 0.0777264 0.1018247 0.2689598 0.5733425 0.8342839
̃
𝛽
𝑅
(𝑘, 𝑤) 0.0698973 0.0698958 0.0699136 0.070069 0.0703286

̂
𝛽AULE(𝑑) 0.0811234 0.0810095 0.0808625 0.0808492 0.0808519
̂
𝛽SRLE(𝑑) 0.7010468 0.5683016 0.2639838 0.1005423 0.0698937
̃
𝛽
𝐿
(𝑑, 𝑤) 0.0701813 0.0700650 0.0699122 0.0698959 0.0698980

6. Conclusion Remarks

In this paper, we propose two stochastic weighted mixed
almost unbiased estimators which are the stochastic weighted
mixed almost unbiased ridge estimator and the stochastic
weighted mixed almost unbiased Liu estimator. A detailed
discussion is given about performances of proposed estima-
tors with respect to quadratic bias (QB) and variance matrix.
The proposed stochastic weighted mixed almost unbiased
ridge estimator and stochastic weighted mixed almost unbi-
ased Liu estimator are proved to have small quadratic biases
than the SRRE and SRLE, respectively. Superiorities of new
estimators over relative estimators according to variance
matrix have been discussed. Finally, a real data example
and a Monte Carlo study are performed and simulation
results show that the stochastic weighted mixed almost
unbiased ridge estimator and the stochastic weighted mixed
almost unbiased Liu estimator can effectively reduce the
quadratic biases compared to the SRRE and SRLE, though
new estimators are still actually biased estimators, which can
support the finding of our theoretical results.
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ridge estimator,” Sankhyā B, vol. 48, no. 3, pp. 342–346, 1986.
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