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We study the conservation laws of evolution equation, lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation,
andmodified Sawada-Kotera equation.The symbolic software GeM (Cheviakov (2007) and (2010)) is used to derive the multipliers
and conservation law fluxes. Software GeM is Maple-based package, and it computes conservation laws by direct method and first
homotopy and second homotopy formulas.

1. Introduction

The study of conservation laws plays a vital role in analysis,
solution, and reductions of PDEs. For the PDEs, the con-
servation laws are used in wide variety of applications, for
example, inverse scattering transform in soliton solutions [1],
bi-Hamiltonian structures and recursion operators [2], Lax
operators [3], and derivation of conserved quantities for jet
flows [4].

Different methods have been developed so far for the
construction of conservation laws and are well documented
in [5–7]. In the last few decades, the researchers focused
on the development of symbolic computational packages
based on different approaches of conservation laws. These
packages work with either Mathematica or Maple. The
development of symbolic computational packages gives relief
to perform complicated and tedious algebraic computation.
Recently, several computational packages have been devel-
oped, for example, CONDENS.M by Göktaş and Hereman
[8], RUDCE by Wolf et al. [9–11], TransPDEDensity.m by
Adams and Hereman [12], GeM by Cheviakov [13, 14],
Vessiot suite by Anderson and Cheb-Terrab [15], Conserva-
tionLawsMD.m by Poole and Hereman [16], and SADE by
Rocha Filho and Figueiredo [17].

In this paper, we will use GeM package [13] to com-
pute the conservation laws for partial differential equations

(PDEs) arising in applications. GeM package works with
Maple to obtain the symmetries and conservation laws of
differential equations. In symmetry analysis, it first computes
the overdetermined system of determining equations and
then simplifies the system by Rif package routines. After
simplification, a Maple command in GeM generates all
symmetry generators of differential equation. In conservation
laws analysis, GeM computes an overdetermined system
of determining equation of conservation law multipliers,
and then this system is simplified by Rif package which is
solved by using the built-in Maple function pdsolve to get
multipliers. After computing multipliers, the conservation
laws fluxes are derived by one of the following four methods:
direct method [18, 19], first homotopy formula [20], second
homotopy formula [19], and scaling symmetry formula [21].
All these four methods have some limitations in their use.
The direct method written in GeM [13] is a Maple implemen-
tation based on Wolf [11] program in REDUCE. For simple
partial differential equation (PDE) systems and multipliers,
direct method is used to calculate fluxes. It is also used
if arbitrary functions are involved. The conservation laws
fluxes for complicated PDEs or multipliers, not involving
arbitrary functions, are established by using first and second
homotopy formulas. The scaling symmetry method is used
to compute fluxes for the scaling-homogeneous PDEs or/and
multipliers. For the complicated scaling-homogeneous PDEs
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and/or multipliers involving arbitrary functions, this is only
a systematic method for computing fluxes.

The evolution equations are important and arise in many
applications. We compute the conservation laws of various
nonlinear evolution equations using GeM Maple routines.
This includes a (1 + 1)-dimensional evolution equation [22],
lubrication models [23], sinh-Poisson equation [24], Kaup-
Kupershmidt equation [25], and modified Sawada-Kotera
equation [26]. At last, we summarize and discuss our results.

2. Multipliers and Conservation Laws
Using GeM Maple Routines

2.1. Evolution Equation. As a first example, consider the
following evolution equation [22]:

𝑢
𝑡𝑡
+ 𝑎𝑢
𝑥𝑥
+ 𝑏𝑢 + 𝑐𝑢

3
= 0, (1)

where 𝑢(𝑡, 𝑥) and 𝑎, 𝑏, 𝑐 are constants. We will explain this
example in detail along with GeM Maple routines given in
[13, 14]. The variables and partial differential equation (PDE)
(1) are defined in GeM by the following Maple commands.

With(GeM):
gem decl vars(indeps=[t,x], deps=[u(t,x)]);
gem decl eqs([diff(u(t,x),t,t)+a∗diff(u(t,x),x,x)+b∗
u(t,x)+c∗u3(t,x)=0],
solve for=[diff(u(t,x),t,t)]).

The option solve for is used in the flux-computation routine,
and actually it defines a set of leading derivatives the given
PDE systems can be solved for.

Consider multipliers of the form Λ = Λ(𝑡, 𝑥, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
). In

GeM, we use the Maple routines,

det eqs:=gem conslaw det eqs([t,x,u(t,x),diff(u(t,x),
t),diff(u(t,x),x)]):
CL multipliers:=gem conslaw multipliers();
simplified eqs:=DEtools[rifsimp](det eqs,
CL multipliers,mindim=1),

to obtain the set of determining equations for the multipliers
expressed in the simplified form as

Λ
𝑥𝑥
= 0, Λ

𝑢
= 0, Λ

𝑥𝑢
𝑥

= 0, Λ
𝑢
𝑥
𝑢
𝑥

= 0,

Λ
𝑡
= −
𝑎𝑢
𝑥
Λ
𝑥

𝑢
𝑡

,

Λ
𝑢
𝑡

=
Λ − 𝑢

𝑥
Λ
𝑢
𝑥

𝑢
𝑡

, with 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0.

(2)

To solve the system (2), we use the Maple command

multipliers sol:=pdsolve(simplified eqs[Solved]),

and it yields

Λ (𝑡, 𝑥, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
) = (𝑐
3
𝑥 + 𝑐
1
) 𝑢
𝑡
+ (−𝑐
3
𝑎𝑡 + 𝑐
2
) 𝑢
𝑥
, (3)

where 𝑐
1
, 𝑐
2
, 𝑐
3
are arbitrary constants. We obtain three

linearly independent conservation laws, arising from the
multipliers

Λ
(1)
= 𝑢
𝑡
, Λ

(2)
= 𝑢
𝑥
, Λ

(3)
= 𝑥𝑢
𝑡
− 𝑎𝑡𝑢
𝑥
. (4)

Next step is the derivation of conservation laws associated
with multipliers given in (4). The Maple command

gem get CL fluxes(multipliers sol)
computes the flux expressions by the direct method. For
the multipliers (4), we have the following conservation laws
fluxes:

𝜙
(1)
=
1

2
𝑢
2

𝑡
−
1

2
𝑎𝑢
2

𝑥
+
1

4
𝑐𝑢
4
+
1

2
𝑏𝑢
2
, 𝜓

(1)
= 𝑎𝑢
𝑥
𝑢
𝑡
,

𝜙
(2)
= 𝑢
𝑡
𝑢
𝑥
+ 𝑏𝑡𝑢𝑢

𝑥
+ 𝑐𝑡𝑢
3
𝑢
𝑥
,

𝜓
(2)
= −
1

2
𝑢
2

𝑡
− 𝑐𝑡𝑢
3
𝑢
𝑡
− 𝑏𝑡𝑢𝑢

𝑡
+
1

2
𝑎𝑢
2

𝑥
,

𝜙
(3)
= −
1

2
𝑎𝑥𝑢
2

𝑥
− 𝑎𝑡𝑢
𝑡
𝑢
𝑥
+
1

2
𝑥𝑢
2

𝑡
+
1

4
𝑐𝑥𝑢
4
+
1

2
𝑏𝑥𝑢
2
,

𝜓
(3)
= −
1

4
𝑎𝑐𝑡𝑢
4
−
1

2
𝑎𝑏𝑡𝑢
2
+
1

2
𝑎𝑡𝑢
2

𝑡
+ 𝑎𝑥𝑢

𝑥
𝑢
𝑡
−
1

2
𝑎
2
𝑡𝑢
2

𝑥
.

(5)

The multipliers given in (4) do not involve arbitrary func-
tions, so homotopy formulas can be used to compute fluxes.
We call the routine for first homotopy method

gem get CL fluxes(multipliers sol,
method=“Homotopy1”)

to get the following expressions for conservation law fluxes:

𝜙
(1)
=
1

4
𝑐𝑢
4
+
1

2
𝑢
2

𝑡
+
1

2
𝑎𝑢𝑢
𝑥𝑥
+
1

2
𝑏𝑢
2
,

𝜓
(1)
= −
1

2
𝑎𝑢𝑢
𝑡𝑥
+
1

2
𝑎𝑢
𝑥
𝑢
𝑡
,

𝜙
(2)
= −
1

2
𝑢𝑢
𝑡𝑥
+
1

2
𝑢
𝑡
𝑢
𝑥
,

𝜓
(2)
=
1

4
𝑐𝑢
4
+
1

2
𝑎𝑢
2

𝑥
+
1

2
𝑢𝑢
𝑡𝑡
+
1

2
𝑏𝑢
2
,

𝜙
(3)
=
1

4
𝑐𝑢
4
𝑥 +
1

2
𝑎𝑢𝑢
𝑥
+
1

2
𝑎𝑡𝑢𝑢
𝑡𝑥
−
1

2
𝑎𝑡𝑢
𝑡
𝑢
𝑥

+
1

2
𝑥𝑢
2

𝑡
+
1

2
𝑎𝑥𝑢𝑢
𝑥𝑥
+
1

2
𝑏𝑥𝑢
2
,

𝜓
(3)
= −
1

4
𝑎𝑐𝑡𝑢
4
−
1

2
𝑎𝑢𝑢
𝑡
−
1

2
𝑎𝑥𝑢𝑢
𝑡𝑥
−
1

2
𝑎
2
𝑡𝑢
2

𝑥

+
1

2
𝑎𝑥𝑢
𝑡
𝑢
𝑥
−
1

2
𝑎𝑡𝑢𝑢
𝑡𝑡
−
1

2
𝑎𝑏𝑡𝑢
2
.

(6)

For second homotopy formula, the Maple command
gem get CL fluxes(multipliers sol,
method=“Homotopy2”)

yields divergence expressions in the same form as in (6).
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Table 1: Multipliers and conserved vectors for PDE (14).

Multiplier Fluxes

Λ(1) = 𝑢
𝑡

𝜙
(1)
= 𝜆
2
+
1

2
𝑢𝑢
𝑥𝑥
+
1

2
𝑢𝑢
𝑧𝑧
−
1

2
𝑢
2

𝑡
− 𝜆
2 cosh 𝑢

𝜓(1) = −
1

2
𝑢𝑢
𝑡𝑥
+
1

2
𝑢
𝑡
𝑢
𝑥

𝜋(1) = −
1

2
𝑢𝑢
𝑡𝑧
+
1

2
𝑢
𝑡
𝑢
𝑧

Λ(2) = 𝑢
𝑥

𝜙
(2)
=
1

2
𝑢𝑢
𝑡𝑥
−
1

2
𝑢
𝑡
𝑢
𝑥

𝜓
(2)
= 𝜆
2
+
1

2
𝑢𝑢
𝑧𝑧
+
1

2
𝑢
2

𝑥
− 𝜆
2 cosh 𝑢 − 1

2
𝑢𝑢
𝑡𝑡

𝜋(2) = −
1

2
𝑢𝑢
𝑥𝑧
+
1

2
𝑢
𝑥
𝑢
𝑧

Λ(3) = 𝑢
𝑧

𝜙
(3)
=
1

2
𝑢𝑢
𝑡𝑧
−
1

2
𝑢
𝑡
𝑢
𝑧

𝜓(3) = −
1

2
𝑢𝑢
𝑥𝑧
+
1

2
𝑢
𝑥
𝑢
𝑧

𝜋(3) = 𝜆2 +
1

2
𝑢𝑢
𝑥𝑥
+
1

2
𝑢2
𝑧
− 𝜆2 cosh 𝑢 − 1

2
𝑢𝑢
𝑡𝑡

Λ(4) = 𝑥𝑢
𝑡
+ 𝑡𝑢
𝑥

𝜙
(4)
=
1

2
𝑢𝑢
𝑥
−
1

2
𝑥𝑢
2

𝑡
+
1

2
𝑡𝑢𝑢
𝑡𝑥
−
1

2
𝑡𝑢
𝑡
𝑢
𝑥
+
1

2
𝑥𝑢𝑢
𝑧𝑧
+
1

2
𝑥𝑢𝑢
𝑥𝑥
− 𝜆
2
𝑥 cosh 𝑢 + 𝜆2𝑥

𝜓
(4)
= −
1

2
𝑥𝑢𝑢
𝑡𝑥
−
1

2
𝑡𝑢𝑢
𝑡𝑡
+
1

2
𝑥𝑢
𝑥
𝑢
𝑡
+
1

2
𝑡𝑢𝑢
𝑧𝑧
+ 𝜆
2
𝑡 − 𝜆
2
𝑡 cosh 𝑢 − 1

2
𝑢𝑢
𝑡
+
1

2
𝑡𝑢
2

𝑥

𝜋
(4)
= −
1

2
𝑥𝑢𝑢
𝑡𝑧
+
1

2
𝑥𝑢
𝑡
𝑢
𝑧
−
1

2
𝑡𝑢𝑢
𝑥𝑧
+
1

2
𝑡𝑢
𝑥
𝑢
𝑧

Λ
(5)
= −𝑧𝑢

𝑥
+ 𝑥𝑢
𝑧

𝜙(5) =
1

2
𝑧𝑢𝑢
𝑡𝑥
+
1

2
𝑥𝑢𝑢
𝑡𝑧
+
1

2
𝑧𝑢
𝑡
𝑢
𝑥
−
1

2
𝑥𝑢
𝑡
𝑢
𝑧

𝜓
(5)
= −
1

2
𝑢𝑢
𝑧
−
1

2
𝑧𝑢𝑢
𝑧𝑧
−
1

2
𝑥𝑢𝑢
𝑥𝑧
+
1

2
𝑧𝑢𝑢
𝑡𝑡
−
1

2
𝑧𝑢
2

𝑥
+
1

2
𝑥𝑢
𝑥
𝑢
𝑧
− 𝜆
2
𝑧 + 𝜆
2
𝑧 cosh 𝑢

𝜋
(5)
=
1

2
𝑢𝑢
𝑥
+
1

2
𝑥𝑢𝑢
𝑥𝑥
− 𝜆
2
𝑥 cosh 𝑢 + 1

2
𝑥𝑢
2

𝑧
+
1

2
𝑧𝑢𝑢
𝑥𝑧
−
1

2
𝑧𝑢
𝑧
𝑢
𝑥
−
1

2
𝑥𝑢𝑢
𝑡𝑡
+ 𝜆
2
𝑥

Λ
(6)
= 𝑡𝑢
𝑧
+ 𝑧𝑢
𝑡

𝜙(6) =
1

2
𝑢𝑢
𝑧
−
1

2
𝑧𝑢2
𝑡
+
1

2
𝑡𝑢𝑢
𝑡𝑧
−
1

2
𝑡𝑢
𝑡
𝑢
𝑧
+
1

2
𝑧𝑢𝑢
𝑧𝑧
+
1

2
𝑧𝑢𝑢
𝑥𝑥
+ 𝜆2𝑧 − 𝜆2𝑧 cosh 𝑢

𝜓(6) = −
1

2
𝑧𝑢𝑢
𝑡𝑥
+
1

2
𝑧𝑢
𝑡
𝑢
𝑥
−
1

2
𝑡𝑢𝑢
𝑥𝑧
+
1

2
𝑡𝑢
𝑥
𝑢
𝑧

𝜋(6) = −
1

2
𝑡𝑢𝑢
𝑡𝑡
+ 𝜆2𝑡 − 𝑡𝜆2 cosh 𝑢 − 1

2
𝑢𝑢
𝑡
+
1

2
𝑡𝑢2
𝑧
−
1

2
𝑧𝑢𝑢
𝑡𝑧
+
1

2
𝑧𝑢
𝑧
𝑢
𝑡
+
1

2
𝑡𝑢𝑢
𝑥𝑥

The PDE (1) has no scaling symmetry; therefore, we can-
not apply the scaling symmetry formula here for derivation
of fluxes.

2.2. Lubrication Models. Now we will study two lubrication
models for conservation laws point of view. Gandarias and
Medina [23] performed the symmetry analysis of lubrication
model

𝑢
𝑡
= 𝑓 (𝑢) 𝑢

𝑥𝑥𝑥𝑥
, (7)

where 𝑓 is an arbitrary function. For 𝑓(𝑢) = 𝑐(𝑢 + 𝑏)𝑎 and
𝑓(𝑢) = 𝛾𝑒𝛼𝑢, this equation has some extra symmetry [23].
Without loss of generality, take 𝑓(𝑢) = 𝑢 + 𝑏 in (7); we have

𝑢
𝑡
= (𝑢 + 𝑏) 𝑢

𝑥𝑥𝑥𝑥
, (8)

where 𝑏 is arbitrary constant. Consider themultipliers of form
Λ(𝑡, 𝑥, 𝑢) in GeM Maple routines, and then we obtain the
following four multipliers:

Λ
(1)
(𝑡, 𝑥, 𝑢) =

1

(𝑢 + 𝑏)
, Λ

(2)
(𝑡, 𝑥, 𝑢) =

𝑥

(𝑢 + 𝑏)
,

Λ
(3)
(𝑡, 𝑥, 𝑢) =

𝑥
2

2 (𝑢 + 𝑏)
, Λ

(4)
(𝑡, 𝑥, 𝑢) =

𝑥
3

6 (𝑢 + 𝑏)
.

(9)

The fluxes associated with the multipliers given in (7) are
computed by homotopy first method and are given by

𝜙
(1)
= ln(𝑢 + 𝑏

𝑏
) , 𝜓

(1)
= 𝑢
𝑥𝑥𝑥
,

𝜙
(2)
= 𝑥 ln(𝑢 + 𝑏

𝑏
) , 𝜓

(2)
= −𝑢
𝑥𝑥
+ 𝑥𝑢
𝑥𝑥𝑥
,

𝜙
(3)
=
1

2
𝑥
2 ln(𝑢 + 𝑏
𝑏
) , 𝜓

(3)
= 𝑢
𝑥
− 𝑥𝑢
𝑥𝑥
+
𝑥2𝑢
𝑥𝑥𝑥

2
,
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Table 2: Multipliers and conserved vectors for PDE (15).

Multiplier Fluxes

Λ(1) = 1
𝜙
(1)
= 𝑢

𝜓(1) = −𝑢
𝑥𝑥𝑥𝑥
−
5

3
𝑢3 − 5𝑢𝑢

𝑥𝑥
−
15

4
𝑢2
𝑥

Λ(2) = 2𝑢2 + 𝑢
𝑥𝑥

𝜙(2) =
2

3
𝑢3 +
1

2
𝑢𝑢
𝑥𝑥

𝜓(2) = 4𝑢𝑢
𝑥
𝑢
𝑥𝑥𝑥
+
1

2
𝑢
𝑡
𝑢
𝑥
− 4𝑢2
𝑥
𝑢
𝑥𝑥
−
9

2
𝑢𝑢2
𝑥𝑥
+
1

2
𝑢2
𝑥𝑥𝑥
− 2𝑢2𝑢

𝑥𝑥𝑥𝑥
− 𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
−
1

2
𝑢𝑢
𝑡𝑥
− 10𝑢3𝑢

𝑥𝑥
− 2𝑢5

Λ(3) = 𝑥 + 5𝑡𝑢2 +
5

2
𝑡𝑢
𝑥𝑥

𝜙
(3)
=
5

3
𝑡𝑢
3
+
5

4
𝑢𝑢
𝑥𝑥
+ 𝑥𝑢

𝜓(3) = 𝑢
𝑥𝑥𝑥
− 𝑥𝑢
𝑥𝑥𝑥𝑥
+
5

4
𝑡𝑢2
𝑥𝑥𝑥
−
5

4
𝑡𝑢𝑢
𝑡𝑥
− 5𝑡𝑢2𝑢

𝑥𝑥𝑥𝑥
−
5

2
𝑡𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 10𝑡𝑢𝑢

𝑥
𝑢
𝑥𝑥𝑥
+
5

4
𝑡𝑢
𝑡
𝑢
𝑥
−
5

3
𝑥𝑢3

−5𝑡𝑢
5
−
15

4
𝑥𝑢
4

𝑥
− 10𝑡𝑢

2

𝑥
𝑢
𝑥𝑥
−
45

4
𝑡𝑢𝑢
2

𝑥𝑥
− 5𝑥𝑢𝑢

𝑥𝑥
− 25𝑡𝑢

3
𝑢
𝑥𝑥
+
15

4
𝑢𝑢
𝑥

Λ(4) = 𝑢𝑢
𝑥𝑥
+
1

2
𝑢2
𝑥
+
1

6
𝑢
𝑥𝑥𝑥𝑥
+
4

9
𝑢3

𝜙(4) =
1

9
𝑢4 +
1

3
𝑢2𝑢
𝑥𝑥
+
1

6
𝑢𝑢2
𝑥
+
1

12
𝑢𝑢
𝑥𝑥𝑥𝑥

𝜓(4) = −
5

6
𝑢3𝑢2
𝑥
+
1

12
𝑢𝑢2
𝑥𝑥𝑥
−
10

27
𝑢6 −
11

16
𝑢4
𝑥
−
1

12
𝑢2
𝑥𝑥𝑥𝑥
−
1

12
𝑢𝑢
𝑡𝑥𝑥𝑥
+
1

12
𝑢
𝑥
𝑢
𝑡𝑥𝑥
−
1

2
𝑢2
𝑥
𝑢
𝑥𝑥𝑥𝑥

−
1

12
𝑢
𝑡𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+
1

12
𝑢
𝑡
𝑢
𝑥𝑥𝑥
−
1

3
𝑢2𝑢
𝑡𝑥
−
1

12
𝑢
𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
+
1

3
𝑢𝑢
𝑡
𝑢
𝑥
+
1

36
𝑢3
𝑥𝑥

−
11

4
𝑢
2
𝑢
2

𝑥𝑥
−
20

9
𝑢
4
𝑢
𝑥𝑥
−
4

9
𝑢
3
𝑢
𝑥𝑥𝑥𝑥
−
7

2
𝑢𝑢
2

𝑥
𝑢
𝑥𝑥
+
1

2
𝑢
2
𝑢
𝑥
𝑢
𝑥𝑥𝑥

𝜙
(4)
=
1

6
𝑥
3 ln(𝑢 + 𝑏
𝑏
) ,

𝜓
(4)
= −𝑢 + 𝑥𝑢

𝑥
−
𝑥2𝑢
𝑥𝑥

2
+
𝑥
3𝑢
𝑥𝑥𝑥

6
.

(10)
We will get the same fluxes for (7) if we define higher order
multipliers in GeMMaple routines.

Another interesting lubrication model is

𝑢
𝑡
+
𝑢
𝑥𝑥𝑥𝑥

𝑒𝑢
= 0. (11)

It is obtained by taking 𝑓(𝑢) = 𝑒−𝑢 in (7). The GeM Maple
routines yield the following fourmultipliers of formΛ(𝑡, 𝑥, 𝑢):

Λ
(1)
(𝑡, 𝑥, 𝑢) = 𝑒

𝑢
, Λ

(2)
(𝑡, 𝑥, 𝑢) = 𝑥𝑒

𝑢
,

Λ
(3)
(𝑡, 𝑥, 𝑢) =

1

2
𝑥
2
𝑒
𝑢
, Λ

(4)
(𝑡, 𝑥, 𝑢) =

1

6
𝑥
3
𝑒
𝑢
.

(12)

The corresponding fluxes obtained by homotopy first
method are

𝜙
(1)
= −1 + 𝑒

𝑢
, 𝜓

(1)
= 𝑢
𝑥𝑥𝑥
,

𝜙
(2)
= 𝑥 (−1 + 𝑒

𝑢
) , 𝜓

(2)
= −𝑢
𝑥𝑥
+ 𝑥𝑢
𝑥𝑥𝑥
,

𝜙
(3)
=
1

2
𝑥
2
(−1 + 𝑒

2
) , 𝜓

(3)
= 𝑢
𝑥
− 𝑥𝑢
𝑥𝑥
+
𝑥2𝑢
𝑥𝑥𝑥

2
,

𝜙
(4)
=
1

6
𝑥
3
(−1 + 𝑒

𝑢
) ,

𝜓
(4)
= −𝑢 + 𝑥𝑢

𝑥
−
𝑥2𝑢
𝑥𝑥

2
+
𝑥
3𝑢
𝑥𝑥𝑥

6
.

(13)

The conservation laws fluxes derived here can be used to find
the solution of lubrication models and will be considered in
future work.

2.3. sinh-Poisson Equation. The (2 + 1)-dimensional sinh-
Poisson equation is [24]

𝑢
𝑥𝑥
+ 𝑢
𝑧𝑧
− 𝑢
𝑡𝑡
= 𝜆
2 sinh 𝑢, (14)

where 𝑢(𝑡, 𝑥, 𝑧). The conservation laws for PDE (14) are
derived here by usingGeM routines. Consider themultipliers
of formΛ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑧
) in GeM routines, then it will yield

six multipliers not containing any arbitrary function. The
expression for fluxes is computed by using first homotopy
formula. The multipliers and associated conserved vectors
computed by first homotopy formula are given in Table 1.

2.4. Kaup-Kupershmidt Equation. Now, we will compute the
conservation laws for the fifth order Kaup-Kupershmidt [25]:

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥𝑥𝑥
+ 5𝑢𝑢

𝑥𝑥𝑥
+
25

2
𝑢
𝑥
𝑢
𝑥𝑥
+ 5𝑢
2
𝑢
𝑥
. (15)

The GeM Maple routines yield three multipliers of the
form Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
) for PDE (14). The first homo-

topy formula is applied to derive the expressions for con-
servation laws fluxes. One more multiplier can be com-
puted if we consider higher order multipliers of the form
Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑥
). All themultipliers and asso-

ciated conserved vectors for PDE (14) computed by first
homotopy formula are presented in Table 2.
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Table 3: Multipliers and conserved vectors for PDE (16).

Multiplier Fluxes

Λ(1) = 1 𝜙
(1)
= 𝑢, 𝜓(1) = 5𝑢

𝑥
𝑢
𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥
+ 5𝑢
2
𝑢
𝑥𝑥
+ 5𝑢𝑢

2

𝑥
− 𝑢
5

Λ(2) = 𝑢
𝜙
(2)
=
1

2
𝑢
2
,

𝜓
(2)
= 5𝑢𝑢

𝑥
𝑢
𝑥𝑥
−
1

2
𝑢
2

𝑥𝑥
+ 𝑢
𝑥
𝑢
𝑥𝑥𝑥
−
5

3
𝑢
3

𝑥
+
5

2
𝑢
2
𝑢
2

𝑥
+ 5𝑢
3
𝑢
𝑥𝑥
−
5

6
𝑢
6
− 𝑢𝑢
𝑥𝑥𝑥𝑥

Λ(3) = 𝑢5 + 𝑢
𝑥𝑥𝑥𝑥
− 5𝑢
𝑥
𝑢
𝑥𝑥

−5𝑢2𝑢
𝑥𝑥
− 5𝑢𝑢2

𝑥

𝜙
(3)
=
1

6
𝑢
6
−
5

4
𝑢
3
𝑢
𝑥𝑥
−
5

3
𝑢𝑢
𝑥
𝑢
𝑥𝑥
+
1

2
𝑢𝑢
𝑥𝑥𝑥𝑥

𝜓(3) = −
1

2
𝑢2
𝑥𝑥𝑥𝑥
−
1

2
𝑢10 − 25𝑢𝑢3

𝑥
𝑢
𝑥𝑥
−
25

2
𝑢2
𝑥
𝑢2
𝑥𝑥
−
25

2
𝑢2𝑢4
𝑥
+
1

2
𝑢
𝑡
𝑢
𝑥𝑥𝑥

−
5

3
𝑢
𝑡
𝑢
2

𝑥
−
5

4
𝑢
2
𝑢
𝑡
𝑢
𝑥
− 𝑢
5
𝑢
𝑥𝑥𝑥𝑥
+
5

3
𝑢𝑢
𝑥
𝑢
𝑡𝑥
− 25𝑢

3
𝑢
2

𝑥
𝑢
𝑥𝑥
+ 5𝑢
5
𝑢
𝑥
𝑢
𝑥𝑥

+5𝑢2𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 5𝑢𝑢2

𝑥
𝑢
𝑥𝑥𝑥𝑥
−
1

2
𝑢𝑢
𝑡𝑥𝑥𝑥
+
5

4
𝑢3𝑢
𝑡𝑥
+ 5𝑢7𝑢

𝑥𝑥
+ 5𝑢6𝑢2

𝑥

+5𝑢
𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
− 25𝑢2𝑢

𝑥
𝑢2
𝑥𝑥
+
1

2
𝑢
𝑥
𝑢
𝑡𝑥𝑥
−
1

2
𝑢
𝑡𝑥
𝑢
𝑥𝑥
−
25

2
𝑢4𝑢2
𝑥𝑥

Λ(4) = 5𝑡𝑢2𝑢
𝑥𝑥
− 25𝑡𝑢2𝑢

𝑥𝑥
+ 𝑥𝑢

−25𝑡𝑢
𝑥
𝑢
𝑥𝑥
+ 5𝑡𝑢

𝑥𝑥𝑥𝑥

𝜙(4) =
1

6
𝑡𝑢6 −
25

4
𝑡𝑢2𝑢2
𝑥
−
25

4
𝑡𝑢3𝑢
𝑥𝑥
−
25

3
𝑡𝑢𝑢
𝑥
𝑢
𝑥𝑥
+
5

2
𝑡𝑢𝑢
𝑥𝑥𝑥𝑥
+
1

2
𝑥𝑢2

𝜓
(4)
= −
25

4
𝑡𝑢
𝑡
𝑢
𝑥
+
5

4
𝑢
3
𝑢
𝑥
− 5𝑡𝑢

5
𝑢
𝑥𝑥𝑥𝑥
+
1

2
𝑢
𝑥
𝑢
𝑥𝑥
+ 25𝑡𝑢𝑢

2

𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 25𝑡𝑢

2
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 5𝑥𝑢𝑢

𝑥
𝑢
𝑥𝑥

−125𝑡𝑢3𝑢2
𝑥
𝑢
𝑥𝑥
− 125𝑡𝑢2𝑢

𝑥
𝑢2
𝑥𝑥
− 125𝑡𝑢𝑢3

𝑥
𝑢
𝑥𝑥
−
1

2
𝑥𝑢2
𝑥𝑥
−
5

6
𝑥𝑢6 −
5

2
𝑡𝑢2
𝑥𝑥𝑥𝑥
−
5

3
𝑥𝑢3
𝑥
+
5

3
𝑢𝑢2
𝑥

−
3

2
𝑢𝑢
𝑥𝑥𝑥
+ 25𝑡𝑢5𝑢

𝑥
𝑢
𝑥𝑥
+ 25𝑡𝑢

𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
−
5

2
𝑡𝑢10 −
125

2
𝑡𝑢2
𝑥
𝑢2
𝑥𝑥
−
25

3
𝑡𝑢
𝑡
𝑢2
𝑥
+
5

2
𝑡𝑢
𝑡
𝑢
𝑥𝑥𝑥

+
5

2
𝑡𝑢
𝑥
𝑢
𝑡𝑥𝑥
+ 25𝑡𝑢

6
𝑢
2

𝑥
+ 25𝑡𝑢

7
𝑢
𝑥𝑥
−
5

2
𝑡𝑢
𝑡𝑥
𝑢
𝑥𝑥
−
5

2
𝑡𝑢𝑢
𝑡𝑥𝑥𝑥
+
25

4
𝑡𝑢
3
𝑢
𝑡𝑥

+𝑥𝑢
𝑥
𝑢
𝑥𝑥𝑥
+ 5𝑥𝑢3𝑢

𝑥𝑥
− 𝑥𝑢𝑢

𝑥𝑥𝑥𝑥
−
125

2
𝑡𝑢4𝑢
𝑥𝑥
−
125

2
𝑡𝑢2𝑢4
𝑥
+
5

2
𝑥𝑢2𝑢2
𝑥
+
25

3
𝑡𝑢𝑢
𝑥
𝑢
𝑡𝑥

Λ(5) = −
4

3
𝑢7 + 9𝑢4𝑢

𝑥𝑥
+ 8𝑢3𝑢2

𝑥

−2𝑢
2
𝑢
𝑥𝑥𝑥𝑥
+ 14𝑢

2
𝑢
𝑥
𝑢
𝑥𝑥
− 𝑢𝑢
2

𝑥𝑥

+2𝑢𝑢
𝑥
𝑢
𝑥𝑥
+
28

3
𝑢𝑢3
𝑥
+ 7𝑢2
𝑥
𝑢
𝑥𝑥

+𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
− 2𝑢
𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 𝑢
𝑡𝑥

𝜙
(5)
= −
1

6
𝑢
8
+
1

2
𝑢
4
𝑢
2

𝑥
+
3

2
𝑢
5
𝑢
𝑥𝑥
+
14

5
𝑢
3
𝑢
𝑥
𝑢
𝑥𝑥
+
28

15
𝑢
2
𝑢
3

𝑥
+
5

4
𝑢
4

𝑥

+
27

4
𝑢𝑢2
𝑥
𝑢
𝑥𝑥
+
7

4
𝑢2𝑢
𝑥
𝑢
𝑥𝑥𝑥
−
1

4
𝑢2𝑢
𝑥𝑥
−
1

2
𝑢3𝑢
𝑥𝑥𝑥𝑥
+
1

3
𝑢𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

−
2

3
𝑢𝑢
𝑥
𝑢
𝑥𝑥𝑥𝑥
+
5

3
𝑢
𝑥
𝑢2
𝑥𝑥
+
5

3
𝑢2
𝑥
𝑢
𝑥𝑥𝑥
+
1

2
𝑢𝑢
𝑡𝑥
+
1

2
𝑢
𝑡
𝑢
𝑥
−
1

2
𝑢
𝑥
𝑢
𝑥𝑥𝑥𝑥𝑥

𝜓(5) =
2

3
𝑢𝑢
𝑡𝑥
𝑢
𝑥𝑥𝑥
+
1

3
𝑢3
𝑥𝑥𝑥
+
19

18
𝑢6
𝑥
+
1

2
𝑢4
𝑥𝑥
− 8𝑢3𝑢2

𝑥
𝑢
𝑥𝑥𝑥𝑥
− 𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥

−9𝑢
4
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
− 7𝑢
2

𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+
140

3
𝑢
3
𝑢
3

𝑥
𝑢
𝑥𝑥
−
20

3
𝑢
7
𝑢
𝑥
𝑢
𝑥𝑥
−
28

3
𝑢𝑢
3

𝑥
𝑢
𝑥𝑥𝑥𝑥

+𝑢𝑢2
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+
1

4
𝑢
𝑡
𝑢3
𝑥
+ 16𝑢𝑢2

𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
+ 12𝑢3𝑢

𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
+
1

2
𝑢
𝑥
𝑢
𝑡𝑥𝑥𝑥𝑥
− 2𝑢𝑢

𝑥
𝑢
𝑥𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥

−14𝑢2𝑢
𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
−
13

4
𝑢2𝑢
𝑥
𝑢
𝑡𝑥𝑥
−
1

2
𝑢2𝑢
𝑡
𝑢
𝑥𝑥𝑥
+
133

6
𝑢6𝑢2
𝑥𝑥
+ 10𝑢4𝑢4

𝑥
−
7

3
𝑢2
𝑥
𝑢
𝑡𝑥𝑥

+𝑢
𝑡
𝑢
2

𝑥𝑥
−
1

2
𝑢
𝑥𝑥
𝑢
𝑡𝑥𝑥𝑥
+
1

2
𝑢
𝑡𝑥𝑥
𝑢
𝑥𝑥𝑥
−
1

2
𝑢
𝑡𝑥
𝑢
𝑥𝑥𝑥𝑥
− 𝑢𝑢
𝑥𝑥
𝑢
𝑡𝑥𝑥
+
86

3
𝑢𝑢
𝑥𝑥
𝑢
4

𝑥
+ 14𝑢

2
𝑢
3

𝑥
𝑢
𝑥𝑥𝑥

+3𝑢
𝑥
𝑢
2

𝑥𝑥
𝑢
𝑥𝑥𝑥
− 5𝑢𝑢

𝑥
𝑢
3

𝑥𝑥
+ 4𝑢
2
𝑢
2

𝑥𝑥
𝑢
𝑥𝑥𝑥
+ 45𝑢

4
𝑢
𝑥
𝑢
2

𝑥𝑥
− 3𝑢
2
𝑢
𝑥
𝑢
𝑥𝑥𝑥
+ 10𝑢

4
𝑢
2

𝑥
𝑢
𝑥𝑥𝑥

+
67

2
𝑢2𝑢2
𝑥
𝑢2
𝑥𝑥
−
3

2
𝑢5𝑢
𝑡𝑥
+
3

2
𝑢4𝑢
𝑡
𝑢
𝑥
−
1

4
𝑢𝑢2
𝑥
𝑢
𝑡𝑥
+
4

3
𝑢7𝑢
𝑥𝑥𝑥𝑥
−
20

3
𝑢9𝑢
𝑥𝑥

+
15

4
𝑢
2
𝑢
𝑡𝑥
𝑢
𝑥𝑥
−
35

6
𝑢
8
𝑢
2

𝑥
−
1

2
𝑢𝑢
𝑡𝑡
+
1

2
𝑢
3
𝑢
𝑡𝑥𝑥𝑥
+
5

9
𝑢
1
2 −
1

2
𝑢𝑢
𝑡
𝑢
𝑥
𝑢
𝑥𝑥
+ 26𝑢

5
𝑢
2

𝑥
𝑢
𝑥𝑥

+
2

3
𝑢6𝑢
𝑥
𝑢
𝑥𝑥𝑥
+ 𝑢
𝑥
𝑢2
𝑥𝑥𝑥𝑥
+ 𝑢2𝑢2

𝑥𝑥𝑥𝑥
−
17

3
𝑢3𝑢3
𝑥𝑥
+
70

3
𝑢2𝑢5
𝑥
−
70

9
𝑢6𝑢3
𝑥
−
1

2
𝑢2
𝑥
𝑢2
𝑥𝑥𝑥

−
1

2
𝑢4𝑢2
𝑥𝑥𝑥
+
40

3
𝑢3
𝑥
𝑢2
𝑥𝑥
−
2

3
𝑢4
𝑥
𝑢
𝑥𝑥𝑥
+
7

3
𝑢
𝑥
𝑢
𝑡𝑥
𝑢
𝑥𝑥

+
14

5
𝑢
𝑡
𝑢
2
𝑢
2

𝑥
−
4

3
𝑢
𝑡
𝑢
𝑥
𝑢
𝑥𝑥𝑥
+
2

3
𝑢𝑢
𝑥
𝑢
𝑡𝑥𝑥𝑥
−
14

5
𝑢
3
𝑢
𝑥
𝑢
𝑡𝑥
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2.5. Modified Sawada-Kotera Equation. Consider the fifth
order modified SK equation:

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥𝑥𝑥
− (5𝑢

𝑥
𝑢
𝑥𝑥
+ 5𝑢𝑢

2

𝑥
+ 5𝑢
2
𝑢
𝑥𝑥
− 𝑢
5
)
𝑥
. (16)

For PDE (16), two conserved densities were derived by
first computing Lax pair (see [26]). The higher order
conservation laws fluxes exist for higher order multipliers
and are not reported in [26]. Consider the multipliers of
form Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑡𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑥
) in GeM rou-

tines, then it will yield two simple and three higher order
multipliers not containing any arbitrary function.The simple
multipliers yield same fluxes as derived in [26], and three
new fluxes corresponding to higher order multipliers are
computed. The multipliers and associated conserved vectors
computed by first homotopy formula are listed in Table 3.

3. Conclusions

The conservation laws for the evolution equation, Benjamin
equation, lubrication models, sinh-Poisson equation, Kaup-
Kupershmidt equation, and modified Sawada-Kotera equa-
tion were derived by using the symbolic software GeM.
First of all, we considered the evolution equation, and the
commands for all GeMMaple routines, were explicitly given.
The first order multipliers were defined in GeM Maple
routines and threemultipliers were obtained.The expressions
for fluxes were computed by direct method and first and
second homotopy formulas and equivalent expressions for
fluxes were obtained. The scaling symmetry method was
not applicable here as no scaling symmetry exists for the
nonlinear evolution equation. The conservation laws fluxes
for the lubrication models, sinh-Poisson equation, Kaup-
Kupershmidt equation, and modified Sawada-Kotera equa-
tion were derived by the first homotopy formula. For the
modified Sawada-Kotera equation, three new fluxes were
derived.

The fluxes derived here can be used in constructing the
solutions of underlying PDEs and will be considered in the
future work.
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