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We are going to discuss some important classes of nonlinear integral equations such as integral equations ofVolterra-Chandrasekhar
type, quadratic integral equations of fractional orders, nonlinear integral equations of Volterra-Wiener-Hopf type, and nonlinear
integral equations of Erdélyi-Kober type. Those integral equations play very significant role in applications to the description of
numerous real world events. Our aim is to show that the mentioned integral equations can be treated from the view point of
nonlinear Volterra-Stieltjes integral equations.The Riemann-Stieltjes integral appearing in those integral equations is generated by
a function of two variables. The choice of a suitable generating function enables us to obtain various kinds of integral equations.
Some results concerning nonlinear Volterra-Stieltjes integral equations in several variables will be also discussed.

1. Introduction

In the theory of integral equations and their numerous appli-
cations, one can encounter some classes of integral equations
having an important significance. This fact is mainly con-
nected with applications of the mentioned classes of integral
equations to the description of several real world events
which appear in engineering, mechanics, physics, mathemat-
ical physics, electrochemistry, bioengineering, porousmedia,
viscoelasticity, control theory, transport theory, kinetic the-
ory of gases, radiative transfer, and other important branches
of exact science and applied mathematics (cf. [1–12]).

Let us distinguish and describe some important classes of
nonlinear integral equations mentioned tacitly above.

The first class we are going to present is the class
of the so-called quadratic integral equations of Volterra-
Chandrasekhar type (see [1, 7, 13, 14], e.g.). The interest in
the study of those integral equations was initiated around
1950 by the famous astrophysicist Chandrasekhar [1], who
investigated the following integral equation:

𝑥 (𝑡) = 𝑙 + 𝑥 (𝑡) ∫

1

0

𝑡

𝑡 + 𝑠

𝜑 (𝑠) 𝑥 (𝑠) 𝑑𝑠, (1)

being the so-called quadratic (nonlinear) integral equation
and called the Chandrasekhar integral equation.

Nowadays, integral equation (1) has been generalized
in a few directions but in general two principal types of
generalizations of (1) are investigated, namely, the quadratic
integral equation of Fredholm-Chandrasekhar type

𝑥 (𝑡) = 𝑎 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑠)) ∫

𝑎

0

V (𝑡, 𝑠, 𝑥 (𝑠))
𝑡 + 𝑠

𝑑𝑠 (2)

and the quadratic integral equation of Volterra-Chandrasekhar
type

𝑥 (𝑡) = 𝑎 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠))
𝑡 + 𝑠

𝑑𝑠. (3)

We will focus on integral equations having form (3), that is,
on nonlinear integral equations of Volterra-Chandrasekhar
type.

The second class of nonlinear integral equations which
will be discussed is the class of the so-called nonlinear integral
equations of fractional order. Such equations have the form

𝑥 (𝑡) = 𝑎 (𝑡) +

𝑓 (𝑡, 𝑥 (𝑡))

Γ (𝛼)

∫

𝑡

𝑎

V (𝑡, 𝑠, 𝑥 (𝑠))
(𝑡 − 𝑠)

1−𝛼
𝑑𝑠, (4)
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where 𝛼 ∈ (0, 1) is a fixed number and Γ(𝛼) denotes the
gamma function.

Observe that (4) is the so-called singular integral equation
(of Abel type). These equations were very intensively studied
during the last three decades and found a vast number
of applications. Mathematicians working in the theory of
integral equations of fractional orders wrote several papers
and monographs devoted to those equations [4, 5, 8–11, 15–
20].

Thenext, third class of nonlinear integral equationswhich
we would like to present, is associated with the so-called
nonlinear integral equations of Volterra-Wiener-Hopf type.
Such equations are a special case of integral equations with
kernels depending on the difference of arguments and they
also play very important role in applications (cf. [3, 12, 21–
23]).

TheVolterra-Wiener-Hopf integral equation has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0

𝑘 (𝑡 − 𝑠) V (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (5)

where 𝑡 ∈ R
+
= [0,∞) or 𝑡 ∈ [0, 𝑇] with 𝑇 > 0.

Now, let us describe the fourth class of nonlinear inte-
gral equations being the object of our study as well as
being recently very intensively investigated with regard to
its numerous applications [24–30]. That class comprises
integral equations called the nonlinear Erdélyi-Kober integral
equations and having the form

𝑥 (𝑡) = 𝑎 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

𝑚𝑠
𝑚−1

𝑠
𝑝V (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡
𝑚
− 𝑠
𝑚
)
1−𝛼

𝑑𝑠, (6)

where 𝛼, 𝑚, and 𝑝 are positive constant and 𝛼 ∈ (0, 1).
Moreover, 𝑡 ∈ 𝐼 = [0, 1] (or 𝐼 = [𝑎, 𝑏]).

Obviously, the integral equation of Erdélyi-Kober type
creates the generalization of the integral equation of frac-
tional order (4). Indeed, putting in (6) 𝑚 = 1 and including
the factor 𝑠𝑝 into the function V(𝑡, 𝑠, 𝑥), we obtain (4) with
𝑓(𝑡, 𝑥) ≡ 1.

Our aim in this paper is to show that all four classes
of nonlinear integral equations (3)–(6) can be treated from
one point of view. More precisely, we show that with help of
nonlinear Volterra-Stieltjes integral equations we are able to
unify all those classes in such a way that they are particular
cases of the mentioned Volterra-Stieltjes integral equations.

The paper has a review character and is based on the
results from [14, 21, 25, 31].

2. Notation, Definitions, and Auxiliary Results

In this section, we provide notation, definitions, and auxiliary
results which will be needed in our further considerations.
Firstly, we recall a few facts concerning functions of bounded
variation [32]. Thus, assume that 𝑥 is a real function defined
on the fixed interval [𝑎, 𝑏].Then, the symbol⋁𝑏

𝑎
𝑥 denotes the

variation of the function 𝑥 on the interval [𝑎, 𝑏]. If⋁𝑏
𝑎
𝑥 < ∞,

we say that 𝑥 is of bounded variation on [𝑎, 𝑏]. Similarly, if
we have a function 𝑢(𝑡, 𝑠) = 𝑢 : [𝑎, 𝑏] × [𝑐, 𝑑] → R, then we
denote by⋁𝑞

𝑡=𝑝
𝑢(𝑡, 𝑠) the variation of the function 𝑡 → 𝑢(𝑡, 𝑠)

on the interval [𝑝, 𝑞] ⊂ [𝑎, 𝑏], where 𝑠 is a fixed number in
[𝑐, 𝑑]. In a similar way, we define the quantity⋁𝑞

𝑠=𝑝
𝑢(𝑡, 𝑠).

Now, assume that 𝑥 and 𝜑 are two real functions defined
on the interval [𝑎, 𝑏].Then, we can define the Stieltjes integral
(in the Riemann-Stieltjes sense)

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) , (7)

under appropriate assumptions on the functions 𝑥 and 𝜑 (cf.
[32]). For example, if we require that 𝑥 is continuous and 𝜑 is
of bounded variation on [𝑎, 𝑏], then the Stieltjes integral (7)
does exist [32].

Let us mention that in our considerations we will often
use the following two important lemmas [32].

Lemma 1. If 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑏

𝑎

|𝑥 (𝑡)| 𝑑 (

𝑡

⋁

𝑎

𝜑) . (8)

Lemma 2. Let 𝑥
1
, 𝑥
2
be Stieltjes integrable functions on the

interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑, such
that 𝑥

1
(𝑡) ≤ 𝑥

2
(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then,

∫

𝑏

𝑎

𝑥
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑥
2
(𝑡) 𝑑𝜑 (𝑡) . (9)

Obviously, in a similar way we can also consider Stieltjes
integrals of the form

∫

𝑏

𝑎

𝑥 (𝑠) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (10)

where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑
𝑠
indicates

the integration with respect to 𝑠. The details concerning the
integral of this type will be given later.

Now, assume that 𝑥 is a real function defined on the
interval [𝑎, 𝑏]. Denote by 𝜔(𝑥, 𝜀) the modulus of continuity of
the function 𝑥 defined by the formula

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| :

𝑡, 𝑠 ∈ [𝑎, 𝑏] , |𝑡 − 𝑠| ≤ 𝜀} .

(11)

Similarly, if 𝑝(𝑡, 𝑠) = 𝑝 : [𝑎, 𝑏] × [𝑐, 𝑑] → R, then we can
define the modulus of continuity of the function 𝑝(𝑡, 𝑠) with
respect to each variable separately. For example,

𝜔 (𝑝 (𝑡, ⋅) , 𝜀) = sup {󵄨󵄨󵄨
󵄨
𝑝 (𝑡, 𝑢) − 𝑝 (𝑡, V)󵄨󵄨󵄨

󵄨
:

𝑢, V ∈ [𝑐, 𝑑] , |𝑢 − V| ≤ 𝜀} ,
(12)

where 𝑡 is a fixed number in the interval [𝑎, 𝑏].
Inwhat follows, we recall some facts concerningmeasures

of noncompactness which will be used later on [33].
To this end, assume that 𝐸 is an infinite dimensional

Banach space with the norm ‖ ⋅ ‖ and zero element 𝜃. Denote
by 𝐵(𝑥, 𝑟) the closed ball centered at 𝑥 and of radius 𝑟. The
symbol 𝐵

𝑟
will denote the ball 𝐵(𝜃, 𝑟).
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For a given nonempty bounded subset𝑋 of 𝐸, we denote
by 𝜒(𝑋) the so-called Hausdorff measure of noncompactness
of the set𝑋 [33]. This quantity is defined by the formula

𝜒 (𝑋) = inf {𝜀 > 0 : 𝑋 has a finite 𝜀-net in 𝐸} . (13)

Let us mention that the function 𝜒 has several useful
properties and is often applied in nonlinear analysis [33].
Obviously, the concept of a measure of noncompactness may
be defined in amore generalway [33, 34], but for our purposes
the Hausdorff measure of noncompactness defined by (13)
will be completely sufficient.

Indeed, in our further considerations, we will work in
the Banach space 𝐶(𝐼) consisting of real functions defined
and continuous on the interval 𝐼 = [𝑎, 𝑏], with the standard
maximum norm. If 𝑋 is a nonempty and bounded subset of
𝐶(𝐼), then the Hausdorff measure of noncompactness of 𝑋
can be expressed by the formula [33]

𝜒 (𝑋) =

1

2

𝜔
0
(𝑋) , (14)

where

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) , (15)

and the symbol 𝜔(𝑋, 𝜀) stands for the modulus of continuity
of the set𝑋 defined in the following way:

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} . (16)

In our further considerations, we will utilize the fixed
point theorem of Darbo type [33], which is formulated below.

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of the space 𝐸 and let 𝑄 : Ω → Ω be a continuous
mapping such that there exists a constant 𝑘 ∈ [0, 1) for which
𝜒(𝑄𝑋) ≤ 𝑘𝜒(𝑋) for an arbitrary nonempty subset 𝑋 of Ω.
Then, 𝑄 has at least one fixed point in the set Ω.

Further on, we recall some facts concerning the so-called
superposition operator [35]. To this end, assume that 𝐼 =

[𝑎, 𝑏] and 𝑓 : [𝑎, 𝑏] × R → R is a given function. Then,
to every function 𝑥 : 𝐼 → R, we may assign the function 𝐹𝑥
defined by the formula

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , (17)

for 𝑡 ∈ 𝐼. The operator 𝐹 defined in such a way is called the
superposition operator generated by the function 𝑓 = 𝑓(𝑡, 𝑥).
For our further purposes, we will need the following result
concerning the behaviour of the superposition operator 𝐹 in
the space 𝐶(𝐼) [35].

Lemma 4. The superposition operator 𝐹 defined by (17)
transforms the space 𝐶(𝐼) into itself and is continuous if and
only if the function 𝑓 generating the operator 𝐹 is continuous
on the set 𝐼 ×R.

3. A Nonlinear Volterra-Stieltjes Integral
Equation and Its Special Cases

The considerations of this section are focused on the follow-
ing nonlinear Volterra-Stieltjes integral equation:

𝑥 (𝑡) = 𝑎 (𝑡) +

𝑓 (𝑡, 𝑥 (𝑡))

Γ (𝛼)

∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (18)

where 𝑡 ∈ 𝐼 = [0, 1] and Γ(𝛼) (similarly as earlier) denotes
the gamma function. Moreover, 𝛼 is a fixed number in the
interval (0, 1). Let us notice that the interval [0, 1] can be
replaced by any interval [𝑎, 𝑏].

The details concerning assumptions imposed on the
components of (18) will be given later. Now, we show
that integral equation (18) unifies all previously considered
integral equations (3)–(6).

At the beginning, denote by Δ the triangle

Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1} , (19)

and consider the function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R defined in the
following way:

𝑔 (𝑡, 𝑠) =

{

{

{

𝑡 ln 𝑡 + 𝑠
𝑡

for 0 < 𝑠 ≤ 𝑡
0 for 𝑡 = 0.

(20)

It is easy to see that the above function 𝑔(𝑡, 𝑠) is continuous
on the triangle Δ. On the other hand, we get

𝑑
𝑠
𝑔 (𝑡, 𝑠) = (

𝜕

𝜕𝑠

𝑔 (𝑡, 𝑠)) 𝑑𝑠 =

𝑡

𝑡 + 𝑠

𝑑𝑠. (21)

Hence, we see that the integral equation of Volterra-
Chandrasekhar type (3) (or (1), in the simplest case) can be
treated as a special case of (18).

Further, consider the function 𝑔(𝑡, 𝑠) defined by the
formula

𝑔 (𝑡, 𝑠) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝑠)

𝛼
] , (22)

where (𝑡, 𝑠) ∈ Δ. Obviously, we have

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

1

(𝑡 − 𝑠)
1−𝛼
𝑑𝑠, (23)

which shows that the integral equation of fractional order (4)
is also a particular case of (18).

To show that the Volterra-Wiener-Hopf integral equation
(5) is a special case of (18), let us consider the function 𝑔(𝑡, 𝑠)
given by the formula

𝑔 (𝑡, 𝑠) = ∫

𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧, (24)

under appropriate assumptions imposed on the function 𝑘 =
𝑘(𝑢) (cf. [21]). Obviously, we have

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

𝜕

𝜕𝑠

(∫

𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧) 𝑑𝑠 = 𝑘 (𝑡 − 𝑠) 𝑑𝑠, (25)

and we see that (5) is in fact a special case of (18).
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Finally, let us take into account the nonlinear Erdélyi-
Kober integral equation (6). Then, putting

𝑔 (𝑡, 𝑠) = 𝑡
𝛼𝑚
− (𝑡
𝑚
− 𝑠
𝑚
)
𝛼

, (26)

for (𝑡, 𝑠) ∈ Δ, we have that

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

𝛼𝑚𝑠
𝑚−1

(𝑡
𝑚
− 𝑠
𝑚
)
1−𝛼
𝑑𝑠. (27)

Thus, we see that the integral equation (6) is also a special case
of (18).

Now, we formulate theorem on the existence of solutions
of Volterra-Stieltjes integral equation (18) imposing assump-
tions of such a type that the obtained theorem will ensure
also the existence of solutions of all particular cases of (18)
mentioned above.

We will consider the existence of solutions of (18) under
the following hypotheses.

(i) The function 𝑎 = 𝑎(𝑡) is continuous on the interval 𝐼.
(ii) The function 𝑓(𝑡, 𝑥) = 𝑓 : 𝐼 × R → R is continuous

and satisfies the Lipschitz condition with respect to
the second variable; that is, there exists a constant 𝑘 >
0 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (28)

for all 𝑡 ∈ 𝐼 and 𝑥, 𝑦 ∈ R.
(iii) The function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R is continuous.
(iv) The function 𝑠 → 𝑔(𝑡, 𝑠) is of bounded variation on

the interval [0, 𝑡] for each fixed 𝑡 ∈ 𝐼.
(v) For any 𝜀 > 0, there exists 𝛿 > 0 such that, for all

𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡

1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿, the following

inequality holds:

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] ≤ 𝜀. (29)

(vi) 𝑔(𝑡, 0) = 0 for any 𝑡 ∈ 𝐼.
(vii) V : Δ × R → R is continuous such that |V(𝑡, 𝑠, 𝑥)| ≤

𝜙(|𝑥|) for all (𝑡, 𝑠) ∈ Δ and for each 𝑥 ∈ R, where
𝜙 : R
+
→ R
+
is a nondecreasing function.

Now, we provide a few properties of the function 𝑔 =

𝑔(𝑡, 𝑠) which will be needed in our further considerations.
Obviously, we will assume that 𝑔 satisfies assumptions (iii)–
(vi).

Let us notice that these properties were proved in [14].

Lemma 5. Let assumptions (iii)–(v) be satisfied. Then, for an
arbitrarily fixed number 𝑡

2
∈ 𝐼 (𝑡
2
> 0) and for any 𝜀 > 0, there

exists 𝛿 > 0 such that if 𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿 then

𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) ≤ 𝜀. (30)

Lemma 6. Under assumptions (iii)–(v), the function

𝑡 󳨀→

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) (31)

is continuous on the interval 𝐼.

Corollary 7. There exists a finite positive constant𝐾 such that

𝐾 = sup{
𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) : 𝑡 ∈ 𝐼} . (32)

In fact, the above statement is an immediate consequence
of the continuity of the function

𝑡 󳨀→

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) . (33)

Further, let us denote by 𝐹
1
the finite constant (cf.

assumption (iii)) defined by the formula

𝐹
1
= max {󵄨󵄨󵄨

󵄨
𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ 𝐼} . (34)

Now, we are prepared to formulate the last assumption
utilized in our considerations.

(viii) There exists a positive solution 𝑟
0
of the inequality

‖𝑎‖ + 𝐾 (𝑘𝑟 + 𝐹1
) 𝜙 (𝑟) ≤ 𝑟, (35)

such that 𝑘𝐾𝜙(𝑟
0
) < 1.

Ourmain result is formulated in the form of the following
theorem.

Theorem 8. Under assumptions (i)–(viii), there exists at least
one solution 𝑥 = 𝑥(𝑡) of (18) belonging to the space 𝐶(𝐼).

Proof. At the beginning, let us introduce two functions𝑀(𝜀),
𝑁(𝜀) defined in the following way:

𝑀(𝜀) = sup{
𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] :

𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} ,

𝑁 (𝜀) = sup{
𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) : 𝑡

1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} .

(36)

Notice that in view of assumption (v) we have that𝑀(𝜀) → 0

as 𝜀 → 0. Similarly, 𝑁(𝜀) → 0 as 𝜀 → 0 which is an easy
consequence of Lemma 5.

Next, for a fixed 𝑥 ∈ 𝐶(𝐼) and 𝑡 ∈ 𝐼, let us denote

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

(𝑉𝑥) (𝑡) = ∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) ,

(𝑄𝑥) (𝑡) = 𝑎 (𝑡) + (𝐹𝑥) (𝑡) (𝑉𝑥) (𝑡) .

(37)
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Further, fix arbitrarily 𝜀 > 0 and take 𝑡
1
, 𝑡
2
∈ 𝐼 such that

𝑡
1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝜀. Then, in view of our assumptions

and Lemmas 1 and 2, for a fixed 𝑥 ∈ 𝐶(𝐼), we obtain
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

2
) − (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
2

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠) − ∫

𝑡
1

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

−∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

−∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡
2

𝑡
1

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑s(
𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠)) − V (𝑡

1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

[𝑔 (𝑡
2
, 𝑝) − 𝑔 (𝑡

1
, 𝑝)])

≤ 𝜙 (‖𝑥‖) ∫

𝑡
2

𝑡
1

𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠)) − V (𝑡

1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ 𝜙 (‖𝑥‖) ∫

𝑡
1

0

𝑑
𝑠
(

𝑠

⋁

𝑝=0

[𝑔 (𝑡
2
, 𝑝) − 𝑔 (𝑡

1
, 𝑝)])

≤ 𝜙 (‖𝑥‖) [

𝑡
2

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) −

𝑡
1

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠)]

+ 𝜔 (𝜀)

𝑡
1

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) + 𝜙 (‖𝑥‖)

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)]

≤ 𝜙 (‖𝑥‖)

𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠)

+ 𝜔 (𝜀)

𝑡
2

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) + 𝜙 (‖𝑥‖)𝑀 (𝜀)

≤ 𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀) ,

(38)

where we denoted

𝜔 (𝜀)

= sup {󵄨󵄨󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑦) − V (𝑡

1
, 𝑠, 𝑦)

󵄨
󵄨
󵄨
󵄨
:

(𝑡
1
, 𝑠) , (𝑡

2
, 𝑠) ∈ Δ,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑦 ∈ [− ‖𝑥‖ , ‖𝑥‖]} .

(39)

Moreover, the functions𝑀(𝜀), 𝑁(𝜀) are defined by (36) and
the constant𝐾 is defined by (32).

Observe that in view of the uniform continuity of the
function V on the setΔ×[−‖𝑥‖, ‖𝑥‖]we infer that𝜔(𝜀) → 0 as
𝜀 → 0. Linking this fact with Lemma 5 and the properties of
the functions𝑀(𝜀) and𝑁(𝜀) indicated previously, we deduce
from (38) that the function 𝑉𝑥 is continuous on the interval
𝐼.

On the other hand, the function 𝐹𝑥 is continuous on
𝐼 which is an easy consequence of assumption (ii) and
Lemma 4. Thus, keeping in mind the above established facts,
assumption (i), and (37), we conclude that the function𝑄𝑥 is
continuous on the interval 𝐼. This means that the operator 𝑄
transforms the space 𝐶(𝐼) into itself.

In what follows, we show that the operator 𝑄 is contin-
uous on the space 𝐶(𝐼). To this end, let us first observe that
in view of the properties of the superposition operator 𝐹 (cf.
Lemma 4) it is sufficient to show that the operator 𝑉 defined
by (37) is continuous on 𝐶(𝐼).

To do this, fix 𝜀 > 0 and 𝑥 ∈ 𝐶(𝐼). Next, take an arbitrary
function𝑦 ∈ 𝐶(𝐼)with ‖𝑥−𝑦‖ ≤ 𝜀.Then, in view of Lemma 1,
for an arbitrary fixed 𝑡 ∈ 𝐼, we obtain
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡) − (𝑉𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥 (𝑠)) − V (𝑡, 𝑠, 𝑦 (𝑠))󵄨󵄨󵄨

󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝)) .

(40)

Now, let us denote

𝑃 = ‖𝑥‖ + 𝜀,

𝜔
𝑃
(V, 𝜀) = sup {|V (𝑡, 𝑠, 𝑤) − V (𝑡, 𝑠, 𝑢)| :

(𝑡, 𝑠) ∈ Δ, 𝑤, 𝑢 ∈ [−𝑃, 𝑃] , |𝑤 − 𝑢| ≤ 𝜀} .

(41)

Then, from (40), we derive the following inequalities:
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡) − (𝑉𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

𝜔
𝑃
(V, 𝜀) 𝑑

𝑠
(

𝑠

⋁

𝑧=0

𝑔 (𝑡, 𝑧))

≤ 𝜔
𝑃
(V, 𝜀)

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) ≤ 𝐾𝜔
𝑃
(V, 𝜀) .

(42)

Hence, in virtue of the uniform continuity of the function V
on the set Δ× [−𝑃, 𝑃], we deduce that𝑉 is continuous on the
space 𝐶(𝐼).
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In what follows, let us fix arbitrarily 𝑥 ∈ 𝐶(𝐼). Then,
taking into account the imposed assumptions and applying
Lemmas 1 and 2, for a fixed 𝑡 ∈ 𝐼, we get

|(𝑄𝑥) (𝑡)| ≤ |𝑎 (𝑡)|

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝑡))

󵄨
󵄨
󵄨
󵄨
∫

𝑡

0

|V (𝑡, 𝑠, 𝑥 (𝑠))| 𝑑𝑠(
𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝))

≤ ‖𝑎‖ + [
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
]

× ∫

𝑡

0

𝜙 (‖𝑥‖) 𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝))

≤ ‖𝑎‖ + (𝑘 ‖𝑥‖ + 𝐹1
) 𝜙 (‖𝑥‖)

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) .

(43)

Hence, in view of Corollary 7, we derive the following
estimate:

‖𝑄𝑥‖ ≤ ‖𝑎‖ + (𝑘 ‖𝑥‖ + 𝐹1
)𝐾𝜙 (‖𝑥‖) . (44)

Then, keeping in mind assumption (viii), we deduce that
there exists a number 𝑟

0
such that 𝑄 transforms the ball 𝐵

𝑟
0

into itself and 𝑘𝐾𝜙(𝑟
0
) < 1.

In what follows, let us take a nonempty subset 𝑋 of the
ball 𝐵

𝑟
0

and 𝑥 ∈ 𝑋. Next, fix 𝜀 > 0 and choose 𝑡
1
, 𝑡
2
∈ 𝐼 such

that 𝑡
1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝜀. Then, applying (38), we obtain

󵄨
󵄨
󵄨
󵄨
(𝑄𝑥) (𝑡

2
) − (𝑄𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡
2
) − 𝑎 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

2
) − (𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

1
) − (𝐹𝑥) (𝑡

1
) (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀)

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

2
) − (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) − (𝐹𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀) + [
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
2
)) − 𝑓 (𝑡

2
, 0)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 0)
󵄨
󵄨
󵄨
󵄨
]

× {𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀)}

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× {
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
2
)) − 𝑓 (𝑡

2
, 𝑥 (𝑡
1
))
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
1
)) − 𝑓 (𝑡

1
, 𝑥 (𝑡
1
))
󵄨
󵄨
󵄨
󵄨
}

≤ 𝜔 (𝑎, 𝜀) + (𝑘 ‖𝑥‖ + 𝐹1
)

× {𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀)}

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
1
, 𝑝))

× {𝑘
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜔
1

𝑟
0

(𝑓, 𝜀)} ,

(45)

where we denoted

𝜔
1

𝑟
0

(𝑓, 𝜀) = sup {󵄨󵄨󵄨
󵄨
𝑓 (𝑡
2
, 𝑥) − 𝑓 (𝑡

1
, 𝑥)
󵄨
󵄨
󵄨
󵄨
:

𝑡
1
, 𝑡
2
∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑥 ∈ [−𝑟

0
, 𝑟
0
]} .

(46)

Further, from (45), we get
󵄨
󵄨
󵄨
󵄨
(𝑄𝑥) (𝑡

2
) − (𝑄𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝜙 (𝑟
0
) ∫

𝑡
1

0

𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
1
, 𝑝)) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)}

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(47)

Hence, we have

𝜔 (𝑄𝑥, 𝜀)

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(48)

Consequently, we derive the following inequality:

𝜔 (𝑄𝑋, 𝜀)

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) +𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑋, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(49)

Now, taking into account the fact that 𝜔(𝜀) → 0,𝑀(𝜀) →
0, and 𝑁(𝜀) → 0 as 𝜀 → 0 and keeping in mind that the
function 𝑓 is uniformly continuous on the set 𝐼 × [−𝑟

0
, 𝑟
0
],

we derive from (49) the following estimate:

𝜔
0
(𝑄𝑋) ≤ 𝑘𝐾𝜙 (𝑟

0
) 𝜔
0
(𝑋) . (50)
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From the above estimate, assumption (viii), and Theorem 3,
we infer that there exists at least one fixed point 𝑥 of the
operator𝑄 in the ball 𝐵

𝑟
0

. Obviously, the function 𝑥 = 𝑥(𝑡) is
a solution of (18). This completes the proof.

In order to illustrate the result contained in Theorem 8,
we provide an example.

Example 9. Let us consider the following nonlinear integral
equation of Erdélyi-Kober type:

𝑥 (𝑡) = 𝑡 exp 𝑡

+

1

Γ (1/2)

∫

𝑡

0

(4/3) 𝑠
7/3
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡
4/3
− 𝑠
4/3
)
1/2

𝑑𝑠,

(51)

for 𝑡 ∈ 𝐼 = [0, 1]. At first, let us observe that this equation can
be written in the form (6). Indeed, we have

𝑥 (𝑡) = 𝑡 exp 𝑡

+

1

Γ (1/2)

∫

𝑡

0

(4/3) 𝑠
1/3
𝑠
2
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡
4/3
− 𝑠
4/3
)
1/2

𝑑𝑠.

(52)

Thus, (52) is a particular case of (6) if we put 𝑎(𝑡) = 𝑡 exp 𝑡,
𝛼 = 1/2,𝑚 = 4/3, 𝑝 = 2, and

V (𝑡, 𝑠, 𝑥) = 𝑡 + sin 𝑠2 + 𝑥2/3. (53)

Further, let us notice that (52) can be treated as a particular
case of Volterra-Stieltjes integral equation (18) if we take into
account the fact that the function 𝑔 = 𝑔(𝑡, 𝑠) appearing in (18)
has the form (26); that is,

𝑔 (𝑡, 𝑠) = 𝑡
2/3
− (𝑡
4/3
− 𝑠
4/3
)

1/2

. (54)

It is easily seen that such a function 𝑔(𝑡, 𝑠) satisfies assump-
tions (iii)–(vi) of Theorem 8. Moreover, we see that 𝑓(𝑡, 𝑥) ≡
1 and |V(𝑡, 𝑠, 𝑥)| ≤ 2 + 𝑥2/3.

Thus, applying Theorem 8, we can accept that 𝜙(𝑟) = 2 +
𝑟
2/3. We omit further, technical details (cf. [25]) but the final
conclusion asserts that (52) has a solution in the space 𝐶(𝐼)
belonging to the ball 𝐵

4
.

4. Further Results and Remarks

The result contained in Theorem 8 does not cover some
cases being important with regard to applications. Obviously,
we can also formulate a more general theorem than that
presented above and concerning the existence of solutions of
(18) which are defined, continuous, and bounded on R

+
and

are satisfying some other conditions (e.g., having a limit at
infinity).

On the other hand, we can always adapt a suitable version
of Theorem 8 in combination with the considered particular
class of integral equations discussed above.

For example, if we consider the Volterra-Wiener-Hopf
integral equation (5), then its generalized Volterra-Stieltjes
counterpart has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0

V (𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (55)

with the function 𝑔(𝑡, 𝑠) of the form (24). Then, we can
formulate the following existence result concerning (55) [21]
(cf. also [36]).

Theorem 10. Assume that the following hypotheses are satis-
fied.

(i) The function 𝑎 = 𝑎(𝑡) is continuous and bounded on
R
+
. Moreover, there exists the limit lim

𝑡→∞
𝑎(𝑡) (of

course, this limit is finite).
(ii) v : R

+
× R → R is continuous and there exists a

function 𝜓 : R
+
→ R

+
being nondecreasing on R

+
,

𝜓(0) = 0, and lim
𝑡→0

𝜓(𝑡) = 0 such that
󵄨
󵄨
󵄨
󵄨
V (𝑠, 𝑥) − V (𝑠, 𝑦)󵄨󵄨󵄨

󵄨
≤ 𝜓 (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
) , (56)

for all 𝑠 ∈ R
+
and 𝑥, 𝑦 ∈ R.

(iii) The function 𝑠 → V(𝑠, 0) is bounded on R
+
.

(iv) 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R is uniformly continuous on the
triangle Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡}.

(v) The function 𝑠 → 𝑔(𝑡, 𝑠) is of bounded variation on
the interval [0, 𝑡] for each fixed 𝑡 ∈ R

+
.

(vi) For any 𝜀 > 0, there is 𝛿 > 0 such that, for all 𝑡
1
, 𝑡
2
∈

R
+
, 𝑡
1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿, the inequality

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] ≤ 𝜀 (57)

holds.
(vii) 𝑔(𝑡, 0) = 0 for all 𝑡 ≥ 0.
(viii) The function 𝑡 → ⋁

𝑡

𝑠=0
𝑔(𝑡, 𝑠) is bounded on R

+
.

(ix) There exists a positive solution 𝑟
0
of the inequality

‖𝑎‖ + (𝜓 (𝑟) + 𝑉1
)𝐾 ≤ 𝑟, (58)

where ‖𝑎‖ = sup{|𝑎(𝑡)| : 𝑡 ≥ 0}, 𝑉
1
= sup{|V(𝑠, 0)| :

𝑠 ≥ 0}, and 𝐾 = sup{⋁𝑡
𝑠=0
𝑔(𝑡, 𝑠) : 𝑡 ≥ 0}.

Then, (55) has at least one solution 𝑥 = 𝑥(𝑡) which is defined,
continuous, and bounded on R

+
and has a finite limit at

infinity.

Further, let us mention that the crucial role inTheorem 8
is played by assumption (v) (the same assumption appears as
assumption (vi) in Theorem 10). That assumption seems to
be rather difficult to be verified in practice. But it turns out
that, in considerations which cover all our particular classes
of the above indicated integral equations, we can replace the
mentioned assumption by less restrictive ones which are very
convenient in verification.

For example, we formulate below the assumption of such
a type which is connected withTheorem 10 (see [21]).
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(x) For arbitrary 𝑡
1
, 𝑡
2
∈ R
+
such that 𝑡

1
< 𝑡
2
, the function

𝑠 → 𝑔(𝑡
2
, 𝑠)−𝑔(𝑡

1
, 𝑠) is nonincreasing on the interval

[0, 𝑡
1
].

Then, we have the following lemma [21].

Lemma 11. Let assumptions (iv) and (vii) of Theorem 10 be
satisfied. Moreover, we assume that the function 𝑔 = 𝑔(𝑡, 𝑠)

satisfies condition (𝑥). Then, 𝑔 satisfies assumption (vi) of
Theorem 10.

It can be shown that Lemma 11 enables us to formu-
late convenient requirements concerning, for example, the
function 𝑘 = 𝑘(𝑢) appearing in (6), which guarantee
that the Volterra-Wiener-Hopf counterpart of (55) satisfies
assumptions imposed in Theorem 10. We omit details which
can be found in [21].

5. Remarks concerning Nonlinear
Volterra-Stieltjes Integral Equations
in Two Variables

In this final section, we indicate the possibility of investi-
gations concerning the nonlinear Volterra-Stieltjes integral
equationswith an unknown function of two ormore variables
(cf. [31]). For example, the Volterra-Stieltjes integral equation
in two variables has the form
𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

× ∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) ,

(59)

for (𝑡, 𝑥) ∈ 𝐼2, where 𝐼 = [0, 1]. Obviously, the interval [0, 1]
can be replaced by any closed and bounded interval [𝑎, 𝑏].

We will not formulate in detail assumptions concern-
ing the functions involved in (59). Those assumptions are
combinations and a refinement of assumptions imposed in
Theorem 8 (cf. [31]).

It is worthwhile mentioning that the Volterra-Stieltjes
integral equation in two variables (59) covers a lot of
particular cases being a combination of nonlinear integral
equations of the type (3)–(6). For example, we can consider
the functional integral equation with functions involved
depending on two variables which has the form

𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥)

+

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼) Γ (𝛽)

∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑡 − 𝑠)
1−𝛼
(𝑥 − 𝑦)

1−𝛽
𝑑𝑠 𝑑𝑦,

(60)

for 𝑡, 𝑥 ∈ 𝐼 and for 𝛼, 𝛽 being fixed numbers in the interval
(0, 1). Obviously, (60) is a particular case of (59) if we put

𝑔
1
(𝑡, 𝑠) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝑠)

𝛼
] ,

𝑔
2
(𝑥, 𝑦) =

1

𝛽

[𝑥
𝛽
− (𝑥 − 𝑦)

𝛽

] ,

(61)

for (𝑡, 𝑠) ∈ Δ
1
and (𝑥, 𝑦) ∈ Δ

2
, where Δ

1
= {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤

𝑡 ≤ 1} and Δ
2
= {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ 𝑥 ≤ 1}.

On the other hand, we can also consider the functional
integral equation with functions depending on two variables,
which has other mixed forms composed of functions 𝑔 =

𝑔(𝑡, 𝑠) appearing in previously investigated integral equations
(3)–(6).

Thus, we can consider the nonlinear Volterra-Stieltjes
integral equation with an unknown function depending on
two variables and having the form

𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥)

+

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼)

∫

𝑡

0

∫

𝑥

0

𝑡V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑡 + 𝑠) (𝑥 − 𝑦)
1−𝛼

𝑑𝑠 𝑑𝑦,

(62)

for 𝑡, 𝑥 ∈ 𝐼 and for 𝛼 being a fixed number in the interval
(0, 1).

Observe that (62) is a particular case of (59) if we put

𝑔 (𝑡, 𝑠) =

{

{

{

𝑡 ln 𝑡 + 𝑠
𝑡

for 0 < 𝑠 ≤ 𝑡
0 for 𝑡 = 0,

𝑔
2
(𝑥, 𝑦) =

1

𝛼

[𝑥
𝛼
− (𝑥 − 𝑦)

𝛼

] ,

(63)

for (𝑥, 𝑦) ∈ Δ
2
.

Hence, we see that (62) represents the mixed type of
Chandrasekhar and fractional order integral equations.

Obviously, it is not difficult to construct othermixed types
of nonlinear integral equations with unknown functions in
two variables which are particular cases of (59). For example,
we can construct nonlinear integral equation in two variables
of mixed type of Erdélyi-Kober and fractional order, of
Erdélyi-Kober and Wiener-Hopf type, and so on.

The details are rather involved and we will not present
details (cf. [31]).
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of a nonlinear Erdélyi-Kober integral equation,” Abstract and
Applied Analysis, vol. 2014, Article ID 184626, 7 pages, 2014.

[26] M. A. Darwish and K. Sadarangani, “On Erdélyi-Kober type
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