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The second-order partial differential equations have good performances on noise smoothing and edge preservation. However, for
low signal-to-noise ratio (SNR) images, the discrimination between edges and noise is a challenging problem. In this paper, the
authors propose a kernel based telegraph-diffusion equation (KTDE) for noise removal. In this method, a kernelized gradient
operator is introduced in the second-order telegraph-diffusion equation (TDE), which leads to more effective noise removal
capability. Experiment results show that this method outperforms several anisotropic diffusion methods and the TDE method
for noise removal and edge preservation.

1. Introduction

Noise removal is an important step in image processing,
but there is a tradeoff between noise removal and edge
preservation. Different adaptive methods are needed for
this object. In the last two decades, the partial differential
equation (PDE) methods have been broadly used in image
noise removal. These methods include anisotropic diffusion
equations [1] and total variation models [2] as well as curve
evolution equations [3].The first kind of thesemethods called
anisotropic diffusion is introduced by Perona and Malik [1]
in which the denoised image is the solution of a nonlinear
second-order PDE. Let 𝑢 denote the image intensity function,
𝑐(⋅) the diffusion coefficient, and 𝑡 the time; then the PM
diffusion model is

𝜕𝑢

𝜕𝑡

− ∇ ⋅ (𝑐 (∇𝑢) ∇𝑢) = 0, (1)

where ∇⋅ and ∇ denote the divergence and the gradient,
respectively. Since then a variety of nonlinear diffusion
denoising techniques were proposed [4–10]. But the blocky
effects can be caused by second-order PDE. Then some
fourth-order anisotropic diffusion methods were also pro-
posed for the blocky effect elimination [11–16], which replace

the gradient operator in second-order PDE with a Laplace
operator. In [17], a telegraph-diffusion model was proposed,
which can give more sharp edges than other PDEs based
models. In [18], a fourth-order telegraph-diffusion was pro-
posed for image denoising and edge preservation. These
PDE methods can distinguish edge points and noise points
by utilizing a gradient operator and iteratively eliminate
the noise in the diffusion process. They respect region
boundaries or small structures, so these techniques can
simultaneously eliminate noise and preserve or even enhance
edges. Although these methods can restore images with
discontinuities, they cannot give outstanding performance on
low SNR images. Many images such as medical images and
natural images are corrupted by heavy noise. In these images,
noise variations may be comparable to or even greater than
edge variations, so it is difficult to produce satisfactory results
using conventional PDE methods. The gradient operator
cannot achieve an effective separation of edges and noise.

In this paper, a kernel based telegraph-diffusion equation
(KTDE) is proposed. There are two primary advantages of
this new method. First, we use the telegraph-diffusion model
proposed by Ratner and Zeevi [17], which leaves much more
sharp edges than other diffusion methods. Second, kernel
function is incorporated into the partial differential equation
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due to its better signal/noise separation ability. It maps the
input space to a higher-order feature space, in which the
discrimination of edges and noise becomes a linear problem.
Theproposedmethodhas been applied to natural images, and
experiment results outperform those produced by original
PM diffusion and other improved models.

The remainder of this paper is organized as follows.
Section 2 introduces the telegraph-diffusion filter and the
concept of the kernel method. Section 3 describes the pro-
posed kernel based telegraph-diffusionmethod.The numeri-
cal implementation of the proposed method is given in this
section. The experiment results are compared with other
diffusion methods in Section 4. Section 5 concludes this
paper.

2. Telegraph-Diffusion and Kernel Method

2.1. Telegraph Diffusion. The nonlinear diffusion filter pro-
posed by Perona and Malik [1] is given by

𝜕𝑢

𝜕𝑡

= ∇ ⋅ (𝑐 (‖∇𝑢‖) ∇𝑢) , (2)

where 𝑢 is the noisy image, 𝑡 is the evolution time, and 𝑐(⋅) is
a diffusivity function, which decides the degree of denoising
and preservation of singularities, for example, noise and
edges.The diffusivity function is a positive and nonincreasing
function of ‖∇𝑢‖. Perona andMalik suggested two diffusivity
functions:

𝑐 (‖∇𝑢‖) =

1

1 + (‖∇𝑢‖ /𝑘)
2
, (3)

𝑐 (‖∇𝑢‖) = exp[−(‖∇𝑢‖
𝑘

)

2

] , (4)

where 𝑘 is the so-called contrast parameter. If ‖∇𝑢‖ ≫ 𝑘,
𝑐(‖∇𝑢‖) → 0, then the diffusion is suppressed; if ‖∇𝑢‖ ≪ 𝑘,
𝑐(‖∇𝑢‖) → 1, then the diffusion is encouraged and noise is
smoothed. In general, a large value of 𝑘 leads to a smoother
result in homogeneous regions than a smaller one. It is known
that the solution of (2) is equal to the minimization of the
energy function [19, 20]:

𝐸 (𝑢) = ∫

Ω

𝑓 (‖∇𝑢‖) 𝑑Ω, (5)

where Ω is the image domain and 𝑓(⋅) is an increasing
nonnegative function with

𝑐 (𝑠) =

𝑓

(𝑠)

𝑠

, (6)

and 𝐸(𝑢) is minimized leading to a piecewise constant ap-
proximation of 𝑢. Recently, a new approach called telegraph-
diffusion model has been presented in [17]

𝜕
2
𝑢

𝜕𝑡
2
+ 𝜆

𝜕𝑢

𝜕𝑡

− ∇ ⋅ (𝑐 (‖∇𝑢‖) ∇𝑢) = 0, (7)

where 𝜆 is the damping coefficient. It is a parabolic-hyperbol-
ic equation and it can create denoising and edge preserving
effect. The TDE model is derived from PM model by adding

second time derivative of the image, which can effectively
eliminate the diffusion effect in the vicinity of edges and some
important textures to some degree. So this model leavesmore
sharp edges. When the noise is large, (7) will be unstable
which is similar to that of the PM model. To overcome this
problem, an improved TDE (ITDE) method was proposed in
[21]

𝜕
2
𝑢

𝜕𝑡
2
+ 𝜆

𝜕𝑢

𝜕𝑡

− ∇ ⋅ (𝑔 (




(∇𝐺
𝜎
) ∗ 𝑢





) ∇𝑢) = 0, (8)

where 𝐺
𝜎
is a Gaussian filter with standard deviation 𝜎. In

[21] Cao et al. gave the proof of the existence and uniqueness
of weak solutions of model (8). As they pointed out, most of
the evolution equations on image restoration are parabolic
equations. But hyperbolic PDEs could improve the quality
of the detected edges and so enhance the images better than
parabolic PDEs. Equations (7) and (8) inherit this merit in
edge preservation and image denoising. So they have better
performance for human vision. But when the SNR is low, they
cannot give satisfactory results.

2.2.TheKernel BasedDiffusionMethod. For low SNR images,
the separation of edges and noise can be viewed as a non-
linearly separable classification problem. Yu et al. [22]. sug-
gested mapping the intensity values to a higher-dimensional
reproducing kernel Hilbert space (RKHS) to make their
differences more discriminant for edge and noise separation.
The kernel method is applied in second-order diffusion filter
and the resulting filter is called kernel anisotropic diffusion
(KAD) filter. In [23], a regularized gradient kernel anisotropic
diffusion is proposed for image filtering.

Suppose that the input data is represented by 𝑋(𝑋 ⊆ 𝑅),
and 𝐹(𝐹 ⊆ 𝑅

𝑛
) is a feature space associated with 𝑋 by a

nonlinear mapping functionΦ:

Φ : 𝑋 → 𝐹, 𝑥 → Φ (𝑥) , (9)

where 𝑥 is an input in 𝑋, which is mapped to a feature space
with dimensionality of 𝑛. So the nonlinear separable classes
in the original space can be linearly separated. In most cases,
the mapΦ cannot be found. However, Mercer kernels induce
an inner product in the high-dimensional space under the
mappingΦ:

𝐾 (𝑋, 𝑌) = Φ(𝑋)
𝑇
Φ (𝑌) . (10)

Thus kernel methods compute the inner product of two
input vectors in feature space 𝐹 without having to explicitly
compute the mapping function, nor the inner product in 𝐹.
Methods that use dot products can be converted to the kernel
methods that use kernel functions for pattern classification.
The kernel methods can efficiently represent complicated
nonlinear relations of the input data and retain computational
simplicity. Commonly used kernel functions are polynomial
kernels, radial-basis function kernels:

𝐾(𝑥, 𝑦) = (𝑥
𝑇
𝑦 + 1)

𝑑

, (11)

𝐾(𝑥, 𝑦) = exp(−




𝑥 − 𝑦






2

2𝜎
2

) . (12)



Mathematical Problems in Engineering 3

The proposed kernel anisotropic diffusion (KAD) substitutes
the gradient magnitude ‖∇𝑢‖ in the PMmodel with ‖∇Φ(𝑢)‖,
and then the anisotropic diffusion becomes

𝜕𝑢

𝜕𝑡

= div [𝑐 (∇ (‖Φ (𝑢)‖)) ∇𝑢] , (13)

where ‖∇[Φ(𝑢)]‖ can be calculated as

‖∇ [Φ (𝑢)]‖𝑝
=
[

[

1






𝜉
𝑝







∑

𝑞∈𝜉𝑝

(𝐾 (𝑢
𝑝
, 𝑢
𝑝
) + 𝐾 (𝑢

𝑞
, 𝑢
𝑞
)

−2𝐾 (𝑢
𝑝
, 𝑢
𝑞
))
]

]

0.5

,

(14)

where 𝜉
𝑝
is the spatial neighborhood of pixel 𝑝 and |𝜉

𝑝
| is

the cardinality of 𝜉
𝑝
. Usually eight neighboring pixels are

selected around 𝑝, so the cardinality of 𝜉
𝑝
is 8. If we use the

radial-basis function kernel 𝐾(𝑋, 𝑌) = exp(−|𝑋 − 𝑌|
2
/2𝜎
2
)

in which 𝐾(𝑋,𝑋) = 𝐾(𝑌, 𝑌) = 1, ‖∇[Φ(𝑢)]‖
𝑝
becomes

‖∇[Φ(𝑢)]‖𝑝
=
[

[

1

|𝜉
𝑝
|

∑

𝑞∈𝜉𝑝

(2 − 2𝐾 (𝑢
𝑝
, 𝑢
𝑞
))
]

]

0.5

. (15)

In contrast to using the kernel function in anisotropic
diffusion method, we propose to apply the kernel function
in the telegraph-diffusion method for noise removal. Our
motivation is based on the separation ability of the kernel
function for low SNR images.

3. The Proposed Method

3.1. Kernel Based Telegraph-Diffusion Equation. Inspired by
the merit of kernel method and telegraph-diffusion equation,
we propose the following kernel based telegraph-diffusion
equation (KTDE):

𝜕
2
𝑢

𝜕𝑡
2
+ 𝜆

𝜕𝑢

𝜕𝑡

− ∇ ⋅ (𝑐 (‖∇ (Φ (𝑢))‖) ∇𝑢) = 0, (16)

where 𝜆 > 0 is a damping coefficient. The proposed method
is derived from the KAD method by adding second time
derivative. The diffusivity function is selected as

𝑐 (‖∇ (Φ (𝑢))‖) =

1

1 + (‖∇ (Φ (𝑢))‖ /𝑘)
2
, (17)

𝑐 (‖∇ (Φ (𝑢))‖) = exp[−(‖∇ (Φ (𝑢))‖

𝑘

)

2

] , (18)

‖∇[Φ(𝑢)]‖𝑝
=
[

[

1






𝜉
𝑝







∑

𝑞∈𝜉𝑝

(2 − 2𝐾 (𝑢
𝑝
, 𝑢
𝑞
))
]

]

0.5

, (19)

where 𝜉
𝑝
represents the spatial neighborhood of pixel 𝑝

(we select eight neighboring pixels around 𝑝), |𝜉
𝑝
| is the

cardinality of 𝜉
𝑝
, and 𝐾(⋅, ⋅) is the radial-basis function. As

proposed in [22], the linearly separable relationships between
edges and noise no longer exist in low SNR images, and the
telegraph-diffusion equation can be improved by introducing
a more effective edges/noise separation technique to substi-
tute the gradient operator. The kernel function is used to
map the input space to a higher-order feature space and then
discriminate between edges and noise in the feature space
because of its capabilities in nonlinear pattern representation.
In the proposed method, the ‖∇[Φ(𝑢)]‖ is the gradient
magnitude in the feature space, so it can separate edges and
noise effectively.

In this diffusion filter, there are two parameters that
should be estimated: the edge detection threshold and the
stopping time. For edge detection threshold 𝑘, we use the
median absolute deviation which is adjusted for kernel
anisotropic diffusion in [22]

𝑘 = 𝑐 ⋅MAD (‖∇ (Φ (𝑢))‖) , (20)

where 𝑐 = 1.4826 normalizes the MAD to that of
normal distribution with zero-mean and unit vari-
ance. MAD(‖∇(Φ(𝑢))‖) = median[|‖∇(Φ(𝑢))‖ −

median(‖∇(Φ(𝑢))‖)|].
In diffusion methods, it is common to terminate the

diffusion after a fixed number of diffusion iterations. This
mechanism is not flexible and it is difficult to produce satis-
factory results. We utilize the mean absolute error criterion
[24] to stop the diffusion. The MAE between two adjacent
diffusion steps can be written as

MAE (𝑢𝑡) = 1

𝑀 ×𝑁

𝑖=𝑀,𝑗=𝑁

∑

𝑖=1,𝑗=1

√(𝑢
𝑡

𝑖,𝑗
− 𝑢
𝑡−1

𝑖,𝑗
)

2

, (21)

where 𝑢𝑡
𝑖,𝑗
and 𝑢𝑡−1

𝑖,𝑗
are the filtered values of the pixels (𝑖, 𝑗) at

iterations 𝑡 and 𝑡 − 1, respectively.𝑀 and𝑁 are the numbers
of rows and columns of the images. When the MAE is small
enough, it means that the difference between two iterations is
very small and the diffusion should be terminated.

3.2. The Implementation of This Model. The processing of a
digital image requires a discrete realization of the proposed
filter. Equation (16) is solved numerically using an iterative
approach.We construct an explicit discrete scheme to numer-
ically solve differential (16). The time step size is Δ𝑡 and a
space grid size is ℎ. We quantize

𝑥 = 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑁

𝑦 = 𝑗ℎ, 𝑗 = 0, 1, 2, . . . ,𝑀,

𝑡 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, . . . ,

(22)

where 𝑀 × 𝑁 is the size of the image. First, the symmetric
boundary conditions are given as follows:

𝑢
𝑛

−1,𝑗
= 𝑢
𝑛

0,𝑗
, 𝑢
𝑛

𝑁+1,𝑗
= 𝑢
𝑛

𝑁,𝑗
, 𝑗 = 0, 1, 2, . . . ,𝑀,

𝑢
𝑛

𝑖,−1
= 𝑢
𝑖,0
, 𝑢
𝑛

𝑖,𝑀+1
= 𝑢
𝑛

𝑖,𝑀
, 𝑖 = 0, 1, 2, . . . , 𝑁.

(23)
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Second, we use the following discrete approximation:

∇
+

𝑥
𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖+1,𝑗
− 𝑢
𝑛

𝑖,𝑗

ℎ

, ∇
−

𝑥
𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖−1,𝑗
− 𝑢
𝑛

𝑖,𝑗

ℎ

∇
+

𝑦
𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗

ℎ

, ∇
−

𝑦
𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖,𝑗−1
− 𝑢
𝑛

𝑖,𝑗

ℎ

∇
+

𝑥
[Φ (𝑢

𝑛

𝑖,𝑗
)] = (2 − 2𝐾 (𝑢

𝑛

𝑖+1,𝑗
, 𝑢
𝑛

𝑖,𝑗
))

1/2

,

∇
−

𝑥
[Φ (𝑢

𝑛

𝑖,𝑗
)] = (2 − 2𝐾 (𝑢

𝑛

𝑖−1,𝑗
, 𝑢
𝑛

𝑖,𝑗
))

1/2

,

∇
+

𝑦
[Φ (𝑢

𝑛

𝑖,𝑗
)] = (2 − 2𝐾 (𝑢

𝑛

𝑖,𝑗+1
, 𝑢
𝑛

𝑖,𝑗
))

1/2

,

∇
−

𝑦
[Φ (𝑢

𝑛

𝑖,𝑗
)] = (2 − 2𝐾 (𝑢

𝑛

𝑖,𝑗−1
, 𝑢
𝑛

𝑖,𝑗
))

1/2

.

(24)

Third, the gradient kernel ‖∇Φ(𝑢𝑛)‖ is estimated using
(19) and 𝑐(‖∇Φ(𝑢

𝑛
)‖) is calculated. Then we calculate the

following function:

𝑔
𝑛

𝑖,𝑗
= 𝑐 (






∇Φ𝑢
𝑛

𝑖,𝑗






) ∇𝑢
𝑛

𝑖,𝑗
,

𝛿𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖,𝑗
− 𝑢
𝑛−1

𝑖,𝑗

Δ𝑡

, 𝛿
2
𝑢
𝑛

𝑖,𝑗
=

𝛿𝑢
𝑛

𝑖,𝑗
− 𝛿𝑢
𝑛−1

𝑖,𝑗

Δ𝑡

.

(25)

The discrete explicit scheme of the (16) could be written as

𝛿
2
𝑢
𝑛+1

𝑖,𝑗
+ 𝜆𝛿𝑢

𝑛+1

𝑖,𝑗
= 𝑐 (∇

+

𝑥
[Φ (𝑢

𝑛

𝑖,𝑗
)]) ∇
+

𝑥
𝑢
𝑛

𝑖,𝑗

+ 𝑐 (∇
−

𝑥
[Φ (𝑢

𝑛

𝑖,𝑗
)]) ∇
−

𝑥
𝑢
𝑛

𝑖,𝑗

+ 𝑐 (∇
+

𝑦
[Φ (𝑢

𝑛

𝑖,𝑗
)]) ∇
+

𝑦
𝑢
𝑛

𝑖,𝑗

+ 𝑐 (∇
−

𝑦
[Φ (𝑢

𝑛

𝑖,𝑗
)]) ∇
−

𝑦
𝑢
𝑛

𝑖,𝑗
,

𝑢
0

𝑖,𝑗
= 𝑢
−1

𝑖,𝑗
= 𝑢
𝑖,𝑗
, 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁.

(26)

Through the above equation, we can obtain 𝑢
1

𝑖,𝑗
by 𝑢−1
𝑖,𝑗

and
𝑢
0

𝑖,𝑗
.The programwill be iterative until it satisfies the stopping

condition.

4. Experiment Results and Discussion

In this section, we describe the experiment results to assess
the performance of the proposed method. The performance
of the proposed method is compared with that of PDE
anisotropic diffusion (PM model), KAD method, TDE
method, and ITDE method. We implement the proposed
algorithm using Matlab 7.10.0. We tested on some test images
with additive Gaussian white noise of different levels. The
suggestive parameters are set to maximize the performance
of the filters. So for different test images, the parameters are
different. The most commonly used diffusivity function in
anisotropic diffusion is the one in (4). So in our experiments,
we select (18) as the diffusivity function in our method
and select (4) in other compared methods. The radial-
basis function kernel is used for its generalization ability
and computational simplicity although other kernels with

5 10 15 20 25 30 35 40 45 50
22.8
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23.8

24

24.2

24.4

24.6

24.8

SN
R

𝜆

𝜎 = 20

𝜎 = 30

Figure 1: Comparison of different 𝜆 on “lena” image.

appropriate parameter setting can also produce satisfactory
results. In order to guarantee the stability of the numerical
solver, the time step 𝑑𝑡 should be small enough. However,
if 𝑑𝑡 is too small, the number of iterations for convergence
will increase, which makes the method time consuming.
We choose Δ𝑡 equals 0.1 in all diffusions. For the kernel
based method including KAD and the proposed method,
the kernel width 𝜎 in (12) is chosen by the “trial-and-error”
[22] technique. A wide range of 𝜎 values can produce steady
results.We select 𝜎 ranging from 8 to 15 according to different
noise levels and different images in our experiments. The
diffusion stops when MAE is less than 0.005.

We first discuss the effects of damping coefficient 𝜆. From
the numerical implementation model of this algorithm, the
iterative equation can be written as

𝑢
𝑛

𝑖,𝑗
= (

1

1 + 𝜆Δ𝑡

) [(2 + 𝜆Δ𝑡) 𝑢
𝑛−1

𝑖,𝑗
− 𝑢
𝑛−2

𝑖,𝑗
+ Δ𝑡
2
∇𝑔
𝑛−1

𝑖,𝑗
] .

(27)

It is interesting to note that when 𝜆 is large, (16) converges
to the KAD algorithm after a very long time. When 𝜆 is
small, it may diffuse fast and lead to edge being smoothed. In
order to objectively evaluate the performance of the different
algorithms, we use signal-to-noise ratio (SNR), which is
defined as follows:

SNR = 10log
10
(

∑
𝑖,𝑗
(𝑢
0

𝑖,𝑗
)

2

∑
𝑖,𝑗
(𝑢
0

𝑖,𝑗
− 𝑢
𝑖,𝑗
)

2
)𝑑𝐵, (28)

where 𝑢0 is the original noiseless image and 𝑢 denotes the
recovered image.

Figure 1 shows the SNR value of filtered Lena image on
different 𝜆 value. We used noisy Lena image with different
noise level �̂� = 20 and �̂� = 30, respectively. We select 𝜆 from
5 to 50 and find that 𝜆 ranging from 10 to 20 is appropriate for
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Edge detection and noise removal on synthetic images.

our method. When it is larger than 20, there are no notable
improvements in visual effect and SNR improvement but it
leads to time consumption.When 𝜆 is between 10 and 20, the
algorithm converges faster. Image noise can be removed and

edges are preserved. So in most of our experiments, we select
𝜆 ranging from 10 to 20 for computational convenience.

Figure 2 shows the proposed method on synthetic image
for edge detection and noise removal. It can be found that the
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of different methods on “Tiffany” image. (a) The noisy image, �̂� = 20, (b) PM diffusion, (c) KAD method, (d) TDE,
(e) ITDE, and (f) the proposed KTDE.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Comparison of different methods on “Lena” image. (a) The noisy image, �̂� = 25, (b) PM diffusion, (c) KAD method, (d) TDE, (e)
ITDE, and (f) the proposed KTDE.



8 Mathematical Problems in Engineering
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(c) (d)

(e) (f)

Figure 5: Comparison of different methods on “peppers” image. (a) The noisy image, �̂� = 30, (b) PM diffusion, (c) KAD method, (d) TDE,
(e) ITDE, and (f) the proposed KTDE.
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Table 1: The comparison of SNR on noisy images with Gaussian white noise �̂� = 20.

Method PM KAD TDE ITDE KTDE
Lena 24.0680 24.3613 24.0961 24.2727 24.5754
Tiffany 23.3850 23.5351 23.4762 23.5653 24.2414
House 25.0831 25.8424 24.7632 25.0878 25.8611
Barbara 20.6853 20.4471 20.0258 20.9658 21.2630
Peppers 24.7149 25.2177 24.7121 25.4822 26.0452

Table 2: The comparison of SNR on noisy images with Gaussian white noise �̂� = 30.

Method PM KAD TDE ITDE KTDE
Lena 23.0347 23.2775 22.8559 23.3016 23.5468
Tiffany 22.5260 22.6469 21.3544 22.7838 22.8834
House 23.7300 23.8632 22.5367 23.8953 24.6396
Barbara 18.7728 18.8927 18.4283 19.1953 20.7627
Peppers 23.3754 23.6147 22.2105 23.4351 24.3382

proposed method has good performance on edge detection
and noise removal.

To verify the effectiveness of our proposed kernel based
TDE (KTDE)method for image denoising, it was evaluated in
comparison with PM second PDE method [1], KAD method
[22], TDE method [17], and ITDE method [21]. In Figure 3,
the denoising effects of thesemethods are tested on a standard
digital image. We add Gaussian white noise in Figure 3(a),
which is independently and identically distributed (i.i.d)
Gaussian real variables. Figures 3(b)–3(f) show the denoised
image of different methods. It is obvious that our method has
better capability on noise removal and edge preservation.Our
method does not cause blocky effect and spots. Meanwhile,
the edges and important textures are well preserved. We
added a heavy Gaussian white noise in Figures 4(a) and 5(a),
and the results yielded by PM anisotropic diffusion equation
and the KAD method, TDE method, and ITDE method are
shown in Figures 4(b)–4(e) and Figures 5(b)–5(e).The results
of our method are shown in Figures 4(f) and 5(f). They leave
more sharp edges than the other four methods while the
noise can be suppressed efficiently. We can conclude that our
method has better performance on low SNR images.

In Tables 1 and 2, the comparison between the perfor-
mances of these filters in terms of SNR of the denoised images
is presented.The proposedmethod gives the denoised images
higher SNR. The good performance of the proposed method
is apparent. So the proposed method has better performance
in noise removal compared with the other PDE methods.

5. Conclusion

A kernel based telegraph-diffusion equation to suppress
image noise is proposed in this paper. When images are
corrupted by heavy noise, the relationships between edges
and noise are transformed to linearly separable ones by ker-
nel function. This kernel based telegraph-diffusion method
improves the effectiveness of the diffusion method in denois-
ing low SNR images. It exhibits superior performance in both
noise reduction and edge localization. Experiment results

have shown that this new method outperforms original
anisotropic diffusion method, kernel anisotropic diffusion
method, and the original telegraph-diffusion method. Fine
details, sharp corners, and thin lines are preserved. The pro-
posed method inherits the advantage of telegraph-diffusion
and kernel function. It can be used for preprocessing step for
further image processing.
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