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We consider series solutions for the location of the optimal exercise
boundary of an American option close to expiry. By using Monte Carlo
methods, we compute the expected value of an option if the holder uses
the approximate location given by such a series as his exercise strategy,
and compare this value to the actual value of the option. This gives an
alternative method to evaluate approximations. We find the series solu-
tion for the call performs excellently under this criterion, even for large
times, while the asymptotic approximation for the put is very good near
to expiry but not so good further from expiry.

1. Introduction

Options are derivative financial instruments giving the holder the right
but not the obligation to buy (or sell) an underlying asset. They have nu-
merous uses, such as speculation, hedging, generating income, and they
contribute to market completeness. Although options have existed for
much longer, their use has become much more widespread since 1973
when two of the most significant events in the history of options oc-
curred. The first of these was the publication of the Black-Scholes op-
tion pricing formula (Black and Scholes [10]), which enabled investors
to price certain options, and which Merton [46] extended to include a
continuous dividend yield. The second important event was the opening
of the Chicago Board Options Exchange (CBOE), which was really the
first secondary market for options. Before the CBOE opened its doors, it
was extremely difficult for an investor to sell any options that he might
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own, so that he was left with the choice of holding the option to ex-
piry, or exercising early if that was permitted. With the advent of the
CBOE, he had the additional choice of reselling the options to another
investor.

There are various ways of categorizing options, one method being by
the exercise characteristics. Options are usually either European, mean-
ing they can be exercised only at expiry, which is a pre-determined date
specified in the option contract, or American, meaning they can be exer-
cised at or before expiry, at the holder’s discretion. A third, less common,
type is Bermudan, which can be exercised early, but only on a finite num-
ber of pre-specified occasions. European options are fairly easy to value.
However, American options are much harder since because they can be
exercised early, the holder must decide whether and when to exercise
such an option, and this is one of the best-known problems in mathe-
matical finance, leading to an optimal exercise boundary and an optimal
exercise policy, which if followed will maximize the expected return. Ide-
ally, an investor would be able to constantly calculate the expected return
from continuing to hold the option, and if that is less than the return from
immediate exercise, he should exercise the option. This process would
tell the investor the location of the optimal exercise boundary. However,
to date no closed form solutions are known for the location of the op-
timal exercise boundary, except for one or two very special cases. One
such special case is the American call with no dividends, when exercise
is never optimal, so that the value of the option is the same as that of a
European call; indeed, the value of an American call will differ from that
of the European only if there is a dividend of sufficient size to make early
exercise worthwhile. Another special case is the Roll-Geske-Whaley for-
mula (Roll [48]; Geske [31, 32]; Whaley [52]) for the American call with
discrete dividends.

For American options, an investor is primarily concerned with two
aspects of the pricing problem: firstly, the location of the optimal exer-
cise boundary, so that he knows whether or not to exercise the option,
and secondly, the value of the option. For those cases where exact so-
lutions are not known, it is fairly straightforward to solve the problem
numerically, or use one of the numerous approximate solutions and se-
ries solutions which appear in the literature; given the importance of
American options, it is hardly surprising that a number of different ap-
proximations have been proposed over the years to tackle the problem,
and a full review of these is beyond the scope of the present study, but
we will mention some of the more important ones.

Amongst numerical techniques, the more popular methods include
backward recursion methods, such as binomial and trinomial trees (Cox
et al. [27]; Boyle [14]) both of which involve integrating the underlying
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stochastic differential equation (DE) for the price of the underlying S

dS =
(
r −D0

)
Sdt+σSdX, (1.1)

backwards in time from expiry. In this equation, r is the risk free rate, and
σ is the volatility and D0 the dividend yield of the underlying stock, all
of which are taken to be constants in the present study, dX describes the
random walk, and dt is the step size. Black and Scholes [10] derived this
equation in the absence of dividends, and Merton [46] added the effect of
a constant dividend yield. While the assumption of a constant dividend
yield is questionable for an option on a single security, it is justifiable
for other options, such as foreign exchange, index options, and options
on commodities. Finite-difference methods (Brennan and Schwartz [16];
Wu and Kwok [54]; Wilmott [53]) are also popular, and they involve
solving the PDE formulation of the problem for the value V (S,t) of the
option (Black and Scholes [10]; Merton [46]),

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+
(
r −D0

)
S
∂V

∂S
− r = 0, (1.2)

on a discrete grid. This PDE can be derived by applying a no-arbitrage
argument to the stochastic DE (1.1). Geske and Shastri [34] gave an early
comparison of finite-difference and binomial tree methods, although of
course the state-of-the-art in both methods has come a long way since
that study.

Turning to approximate solutions, in the present study, we are evalu-
ating series solutions (in time) for the optimal exercise boundary about
expiry, which were first presented by Barles et al. [6] for the American
put and Dewynne et al. [28] for the call; we will discuss this approxima-
tion in more detail later, but first, we should mention some of the other
approximations that have been suggested, the majority of which are very
good. One popular approach comprises approximating the equations
obeyed by an American option, and then solving these equations ex-
actly. An example of this is the quadratic approximation method used
by MacMillan [41] for the valuation of an American put on a non-
dividend paying stock, which was extended to stocks with dividends by
Barone-Adesi and Whaley [8], Barone-Adesi and Elliott [7], and
Allegretto et al. [3]. This particular approximation, which involved solv-
ing an approximate PDE for the early exercise premium, that is, the
amount by which the value of an American exceeds a European, is very
popular amongst institutional investors. A second approach involves an
integral representation of the early exercise premium, and examples of
this include the studies of Carr et al. [23] and Huang et al. [35]. Huang
et al.’s method involved recursive computation of the optimal exercise
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boundary by estimating the boundary at only a few points and then us-
ing Richardson extrapolation; one advantage claimed by the authors for
this method is that it can readily be adapted to a wide variety of Amer-
ican style options in addition to plain vanilla put and calls. Another
well-known approximation is the Geske-Johnson formula (Johnson [37];
Geske and Johnson [33]; Bunch and Johnson [19]; Blomeyer [11]) for
the American put, which views an American option as a sequence of
Bermudan options with the number of exercise dates increasing. Selby
and Hodges [49] give an overview of the Roll-Geske-Whaley and Geske-
Johnson formulae together with a complete analysis of American call
options with an arbitrary number of (discrete) dividends and a sugges-
tion as to how to improve the numerical implementation of the Geske-
Johnson formula; a review of the current state-of-the-art of the compu-
tational aspects of this problem is given in Gao et al. [30]. Still other
approaches that should be mentioned briefly include that of Aitsahlia
and Lai [1, 2], who have tabulated the values of the options at a number
of points and then obtain the values at intermediate points by interpola-
tion, the method of lines of Carr and Faquet [22], the study by Ju [38] in
which the optimal exercise boundary was approximated as a multipiece
exponential function, and that by Bjerksund and Stensland [9] in which
a flat exercise boundary was assumed. One recent and very promis-
ing technique is the LUBA (lower and upper bound approximation) of
Broadie and Detemple [17]: although no closed form solution is known
for the optimal exercise boundary, it is possible to find very tight up-
per and lower bounds for this boundary. Broadie and Detemple showed
that in addition to the LUBA approximation being very accurate, with
an RMS error of 0.02% in the cases studied, it is also very fast. One nice
feature of Broadie and Detemple’s study was that they included an ex-
tensive comparison between their method and other techniques. Melick
and Thomas [45] explored the LUBA approximation further, using it to
back a PDF out of observed option prices. A very different approach
was taken by Carr [21], who obtained semi-explicit approximations for
American options by randomizing the time until maturity and then re-
ducing the variance of this random time to maturity. The objective of
the randomization in Carr [21] was to simplify the effect of the passage
of time on the value of the option, and indeed this simplification is a
common aim of many of the approximations mentioned above. At its ex-
treme, this simplification gives us a perpetual American option, which
has no time dependence (Merton [46]; Dewynne et al. [28]; Wilmott
[53]), or a quasi-stationary method, such as the quadratic approxima-
tion mentioned above, where the unsteady term in the PDE (∂V/∂τ , be-
ing the derivative of the option value with respect to time) is partially or
completely ignored.
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Figure 1.1. Exercise boundary for the call from (1.3) for E = 0.9, r =
0.05, D0 = 0.04, σ = 0.25. Ser1 uses 1 term in the series, etc.

Rather than ignore or simplify the effect of time, the approximation
considered in the present study is based on a series in time for the loca-
tion of the optimal exercise boundary about expiry. The objective of the
present study is not to rederive or extend these series, but rather to eval-
uate how accurate they are using a different metric to previous studies.
These series solutions were originally presented by Barles et al. [6] for
the American put and Dewynne et al. [28] for the call. A number of ad-
ditional studies have recently appeared on these series solutions. For the
call, Alobaidi and Mallier [4] extended the earlier result of Dewynne et
al. to higher order, giving the series as far as the coefficient of the τ3 term,

xf(τ) ∼ a0 +a1τ
1/2 +a2τ +a3τ

3/2 +a4τ
2 +a5τ

5/2 +a6τ
3 + · · · , (1.3)

where Sf = Eexf is the location of the optimal exercise boundary (E be-
ing the exercise price of the option) and τ = T − t is the time remaining
to expiry. Series (1.3) is a power series in the time remaining until ex-
piry, with the coefficients an as far as n = 6 given in Alobaidi and Mallier
[4], the first two coefficients (a0 and a1) having previously been given
by Dewynne et al. and also in several recent texts such as Wilmott [53].
These coefficients are functions of E, r, σ, and D0. The first coefficient,
a0 gives the location of the free boundary at expiry and can be found by
considering the behaviour of the Black-Scholes-Merton PDE at expiry,
and the remaining coefficients were derived using a local analysis of the
PDE (1.2) close to expiry, which involved rescaling the PDE; more de-
tails of the derivation of the series can be found in the references cited
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above. In Figure 1.1, we show the location of the exercise boundary cal-
culated from this series for the call, using the parameters for the first run
for the call discussed later in the results section. Apart from the constant
boundary (labelled Ser1 in the figure), the behaviour of the boundary
appears similar regardless of the number of terms taken. This happens
because the coefficients of the higher order terms are extremely small,
so even for τ = 20, the higher order terms are fairly unimportant. We
should also mention that Dewynne et al. and Alobaidi and Mallier [4]
also give a series solution for the value of the option itself, in addition
to the location of the optimal exercise boundary which is discussed here;
this series solution for the value of the option is a local solution about the
position of the free boundary at expiry and depends on both the time re-
maining until expiry and the distance from the free boundary. For the
put, several authors (Kuske and Keller [39]; Stamicar et al. [50]; Bunch
and Johnson [20]; Alobaidi and Mallier [5], Evans et al. [29]; Chen and
Chadam [24]; Chen et al. [25]) have recently revisited the problem and
independently rederived the result of Barles et al. using various tech-
niques; for example, Kuske and Keller used a Green’s function to de-
rive an integral equation which they solved iteratively and Alobaidi and
Mallier [5] attempted a local analysis of the Black-Scholes-Merton PDE
close to expiry, along the lines of the study by Dewynne et al. for the call.
For the put, the series is of the form (Evans et al. [29])

Sf(τ) ∼ E

[
1−σ

√
τ log

(
σ2

8πτ(r −D0)2

)]
. (1.4)

As with the call, the coefficients in this series are functions of E, r, σ, and
D0. It should be noted that this series contains logs, and we should men-
tion that differing values of the coefficient of the log term in (1.4) were
given in the various studies mentioned above, which the present author
finds somewhat disconcerting; we have used the form given by Evans
et al. [29] which appears to be the current consensus. In Figure 1.2, we
show the location of the exercise boundary calculated from (1.4) for the
put, using the parameters for the first run for the put discussed later in
the results section. It is interesting to note that, after initially decreas-
ing with increasing τ , the boundary begins to increase once again. Ob-
viously, this behaviour is unphysical, and the actual boundary slopes
downwards.

Strictly speaking, series (1.3) and (1.4) are derived in the limit τ → 0,
that is close to expiry, although we will be using them for larger values of
τ as well. Both of these series are valid for 0 ≤D0 < r; the results for D0 >
r can be written down fairly easily using the put-call symmetry condition
of Chesney and Gibson [26] and McDonald and Schroder [44], namely



Roland Mallier 77

1.2

1

0.8

0.6

0.4

0.2

0

S
f
(τ
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
τ

Figure 1.2. Exercise boundary for the put from (1.4) for E = 1.1, r =
0.05, D0 = 0.01, and σ = 0.25.

that the prices of the call and put are related by

C
[
S,E,D0, r

]
= P

[
E,S,r,D0

]
, (1.5)

while the positions of the optimal exercise boundary for the call and put
are related by

Sc
f

[
t,E,r,D0

]
=

E2

S
p

f

[
t,E,D0, r

] . (1.6)

Several of the above authors have explored how good these series are,
but the approach taken has always been to examine how far the approxi-
mate boundary is located from the exercise boundary calculated by some
other means. An example of this is the recent study by Stamicar et al.
[50], who compared the location of the free boundary for the Ameri-
can put obtained using series (1.4) to the location obtained using other
methods: a (1000 step) binomial tree, the (numerical) solution of an in-
tegral equation and the quadratic approximation; although this compar-
ison was only carried out for extremely small times (τ ≤ 0.05), agree-
ment between (1.4) and the other methods was only as good as the third
significant figure at τ = 0.05. We would suggest than an alternative ap-
proach would be to compare the expected returns that an investor would
receive if he used these asymptotic solutions with the actual value of the
option. Our approach is perhaps more valuable to a real-life investor,
who would be happy if the approximate boundary was far from the real
boundary but his expected returns were very close to the value of the
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option, but considerably less so if the two boundaries were very close
but the expected returns were much less than the value of the option.

We use Monte Carlo simulation to tackle the valuation of the option
when series (1.3) and (1.4) are used as exercise boundaries. This ap-
proach is well-suited for this particular problem, since the underlying
stock price S is assumed to follow a random walk. The use of Monte
Carlo methods for option pricing was pioneered by Boyle [13], and these
methods have since become extremely popular because they are both
powerful and extremely flexible. Although the use of Monte Carlo meth-
ods to value American options is still a nebulous problem, with for ex-
ample several researchers pursuing Malliavin calculus while others are
attempting different approaches (e.g., Tilley [51]; Bossaert [12]; Broadie
and Glasserman [18]; Ibanez and Zapatero [36]; Boyle et al. [15]; and
Mallier [42]), these difficulties stem from the need to locate the optimal
exercise boundary, and for the problem studied here, that is not an issue,
rather, we are calculating what an option is worth if a strategy based on
the location of the boundary given by the asymptotics is followed, and
so the location of our exercise boundary is already known. Returning
to option pricing in general, in this context, Monte Carlo methods in-
volve the direct stochastic integration of the underlying Langevin equa-
tion (1.1) for the stock price, which is assumed to follow a log-normal
random walk or geometric Brownian motion. The heart of any Monte
Carlo method is the random number generator, and our code employed
the Netlib routine RANLIB, which produces random numbers which
are uniformly distributed on the range (0,1) and which were then con-
verted to normally distributed random numbers. This routine was itself
based on the article by L’Ecuyer and Cote [40]. Antithetic variables were
used to speed convergence, and a large number of realizations (100,000)
were performed to ensure accurate results. Our simulations, including
other runs not presented here, were performed on the Beowulf cluster
at the University of Western Ontario. Our Monte Carlo code has been
used by us previously for other work (Mallier and Alobaidi [43]; Mallier
[42]). We took a fairly small step size (dt = 0.0001) for accuracy reasons.
Typically, the stochastic DE (1.1) is integrated numerically, and then the
option valued by calculating the payoff, which is max[S − E,0] in the
case of a vanilla call and max[E − S,0] in the case of a vanilla put. One
point worth mentioning is that the equation is the same for both a put
and a call, so that, as observed by Merton [47], it is the boundary con-
ditions that distinguish options. Returning to the Monte Carlo simula-
tion of (1.1), if we assume that the simulation is started at time t0 and
ends at expiry T , then the other parameters which affect the simula-
tions are the initial stock price S0 = S(t0), the exercise price E and the
initial time to expiry, τ0 = T − t0. For each realization, at each time step,
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we first check to see if the exercise criteria has been satisfied, and either
exercise at that step or continue to the next time step, and repeat this
procedure either the option has been exercised or we reach expiry, at
which time the option is either exercised or expires worthless. For each
realization, we calculate the payoff, max[S(TE) − E,0] for the call and
max[E − S(TE),0] for the put, where TE is the time at which the option
was exercised. We then discount this value back to the starting time to
find its present value. The value of the option is the average over all re-
alizations of this present value. In Section 2, we present our numerical
results, and give the value of the options if the series solutions (1.3) and
(1.4) are used as an exercise strategy. For comparison purposes, we also
give the value of both an American and European option calculated us-
ing a standard binomial tree, so that the reader can assess how useful the
series solutions are. In addition, we compare our results to several of the
other approximations mentioned above, specifically the LUBA, Geske-
Johnson, Quadratic and Method-of-Lines approximations, again so the
reader can assess the usefulness of the series discussed here. These re-
sults are discussed further in Section 3.

2. Results

In this section, we present Monte Carlo simulations of the stochastic DE
(1.1), using a step size of 0.0001 and 100,000 paths in each simulation.
The asymptotic solutions for the optimal exercise boundary (1.3) and
(1.4) were used as our exercise criteria in these simulations: for the put,
if the value of the option was below the exercise boundary (1.4), then
the option was exercised with payoff max[E−S,0], and similarly for the
call, if the option price was above the exercise boundary (1.3), the op-
tion was exercised with payoff max[S − E,0]. For the put, a single set
of simulations were performed using (1.4) as the exercise boundary. By
contrast, for the call, a series of simulations were performed, using be-
tween 1 and 7 terms in series (1.3); when only one term is used, our
boundary is simply a horizontal line, while when two terms are used,
we are using the solution presented by Dewynne et al. [28]. Alobaidi
and Mallier [4] give the coefficients of the first seven terms in the series.
We also compare the results obtained using these asymptotic boundaries
to the true value of an American option obtained using a standard bino-
mial tree with 100,000 steps; we used such a large number of steps in
order to ensure that we had a very accurate reference value to which
to compare our results. In one or two of the simulations, the Monte
Carlo value is slightly higher than the binomial value: this is an anom-
aly caused by two things: firstly, although we are using very small step
sizes and many paths, there will still be very small numerical errors in
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our computations, and secondly, since with Monte Carlo we only use
a finite number of paths, it is possible that the option value using only
those paths is slightly higher than the value if every possible path were
to be used.

2.1. The call

For the call, we present some sample runs in Tables 2.1, 2.2, 2.3, and 2.4.
Each table represents a different run, and results are presented for a va-
riety of times (0.5, 1, 2.5, 5, 10, and 20). In each case, we give the value
of both a European and an American call option, and then the value of
the option if the series solution (1.3) is used as an exercise strategy. The
columns labelled Ser1, Ser2, and so forth, represent the value if 1,2, . . .
terms in the series are used. For the call, with the exception of the col-
umn labelled Ser1 in Tables 2.1 and 2.3, the results appear to be excellent
even for long times such as τ0 = 10 and 20, and using the series bound-
ary enables us to capture almost all of the early exercise premium of an
American call. It is perhaps surprising that the boundary performs so
well so far from expiry, since the series was derived in the limit τ → 0,
but it is also very encouraging. The column labelled Ser1 uses a hori-
zontal boundary (Sf = Eea0 = rE/D0), so the simulations in that column
would be expected to be the least good. Surprisingly, however, for sev-
eral of the simulations, taking more terms in the series makes the re-
sults worse rather than better. Several points should be noted about this:
most obviously, series (1.3) was derived for small τ and will converge
to the optimal exercise boundary in that limit as we increase the number
of terms. However, convergence in this sense means that the boundary
coming from the series physically tends to the optimal exercise bound-
ary. This can be seen from Figure 1.1. If a large enough number of terms
were taken in the series, close to expiration it would also converge to
the optimal exercise boundary under the dollar metric considered here.
From Figure 1.1, we can see that physically, the location of the boundary
can be above or below the value to which it is converging, depending
on the number of terms used in the series, and it is this behaviour which
we suspect is responsible for the behaviour with respect to the dollar
metric mentioned above. In addition, clearly series (1.3) must have a fi-
nite radius of convergence (in physical space), since we know from the
perpetual American call that the optimal exercise boundary tends to a
finite value as τ →∞ while our series will blow up as τ →∞. We would
claim however that Figure 1.1 suggests that we are inside that radius of
convergence for the cases studied here.

Over a much larger sampling of results (across 100 values), a subset
of which is presented graphically in Figure 2.1, we found that, for the
call, the average absolute error in the value of the option obtained using



Roland Mallier 81

Table 2.1. Call: Run 1; S0 = 0.8, E = 0.9, r = 0.05, D0 = 0.04, σ = 0.25.
Euro. and Amer. are values of European and American options com-
puted using a 100,000 step binomial tree. Remaining columns are the
values of an American option computed using a 100,000 path Monte
Carlo simulation taking series (1.3) as the exercise boundary (Ser1
uses one term in the series, Ser2 uses two terms, etc.).

τ0 0.5 1 2.5 5 10 20
Euro. 0.023196 0.044425 0.086952 0.127351 0.161539 0.160889
Amer. 0.023202 0.044504 0.087940 0.132098 0.180190 0.219914
Ser1 0.023408 0.043716 0.077372 0.100222 0.116832 0.125331
Ser2 0.023362 0.044499 0.087299 0.130012 0.177400 0.218152
Ser3 0.023360 0.044484 0.087285 0.129825 0.176785 0.217928
Ser4 0.023361 0.044490 0.087232 0.129666 0.176066 0.215930
Ser5 0.023361 0.044490 0.087232 0.129672 0.176089 0.216186
Ser6 0.023361 0.044490 0.087230 0.129666 0.176168 0.216519
Ser7 0.023361 0.044490 0.087230 0.129666 0.176172 0.216472

Table 2.2. Call: Run 2; as in Table 2.1 but S0 = 0.7, E = 0.4, r = 0.4,
D0 = 0.1, and σ = 0.1.

τ0 0.5 1 2.5 5 10 20
Euro. 0.305647 0.310618 0.321866 0.330500 0.322075 0.260397
Amer. 0.305647 0.310618 0.321950 0.332401 0.339442 0.341323
Ser1 0.305655 0.310630 0.321950 0.332188 0.338805 0.340347
Ser2 0.305655 0.310630 0.321925 0.332240 0.338710 0.338210
Ser3 0.305655 0.310632 0.321924 0.332318 0.339312 0.339703
Ser4 0.305655 0.310631 0.321921 0.332322 0.339311 0.340906
Ser5 0.305655 0.310631 0.321917 0.332319 0.339364 0.341184
Ser6 0.305655 0.310631 0.321917 0.332318 0.339363 0.341221
Ser7 0.305655 0.310631 0.321917 0.332317 0.339360 0.341285

one term in series (1.3) together with Monte Carlo simulation was 2.97%,
and using two to seven terms 0.18%. Over the runs we did, the maximum
error in any run using one term in (1.3) together with Monte Carlo was
13.5%, while if we used two to seven terms it was 0.84%. In Figure 2.1, we
show the percentage absolute error against time for a number of runs for
the call, showing runs which were done using one, two, four, and seven
terms in series (1.3). In the first of these, it can be seen that if we use
only one term (i.e., a constant boundary), the error, while fairly small
for very small tenor, or time remaining until expiry, increases rapidly
with increasing tenor, and by the time we reach T − t = 10, the percentage
error is often fairly large, being about 13% in several runs, which would
clearly be unacceptable in real world applications. By contrast, if we take
more terms in the series (and we note that the plots for three, five, and
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Table 2.3. Call: Run 3; as in Table 2.1 but S0 = 0.8, E = 0.8, r = 0.05,
D0 = 0.04, and σ = 0.25.

τ0 0.5 1 2.5 5 10 20
Euro. 0.057068 0.079963 0.121167 0.157192 0.183686 0.173108
Amer. 0.057105 0.080202 0.122984 0.164248 0.207828 0.242927
Ser1 0.056832 0.077295 0.104736 0.120718 0.131258 0.136862
Ser2 0.057231 0.080076 0.121674 0.161699 0.204715 0.241911
Ser3 0.057231 0.080064 0.121495 0.161352 0.203957 0.241179
Ser4 0.057230 0.080054 0.121478 0.161038 0.202717 0.238469
Ser5 0.057230 0.080054 0.121478 0.161066 0.202783 0.238703
Ser6 0.057230 0.080054 0.121479 0.161078 0.202828 0.239001
Ser7 0.057230 0.080054 0.121479 0.161076 0.202825 0.238997

Table 2.4. Call: Run 4; as in Table 2.1 but S0 = 0.8, E = 0.6, r = 0.1,
D0 = 0.08, and σ = 0.1.

τ0 0.5 1 2.5 5 10 20
Euro. 0.197894 0.195609 0.188215 0.173994 0.141084 0.081668
Amer. 0.2 0.2 0.200445 0.202105 0.204393 0.205797
Ser1 0.2 0.2 0.2 0.2 0.2 0.2
Ser2 0.2 0.2 0.200509 0.201784 0.202807 0.198361
Ser3 0.2 0.2 0.200491 0.202009 0.204418 0.205653
Ser4 0.2 0.2 0.200538 0.201945 0.203979 0.203402
Ser5 0.2 0.2 0.200531 0.201988 0.204259 0.205781
Ser6 0.2 0.2 0.20052758 0.201997804 0.204316949 0.205777624
Ser7 0.2 0.2 0.200526 0.202003 0.204302 0.205820

six terms, which are not presented here, are similar to those for two, four,
and seven terms), the percentage error does not appear to depend that
much on tenor, and even for times as large as T − t = 10, this error remains
well under 1% for the runs studied here. As a point of comparison for
the accuracy of these results, in real life, option prices trade in discrete
increments (the tick size). On the CBOE, for example, the minimum tick
size for DJIA options trading below $300 is $5, and $10 for those above
$300, while for equity options, the minimum tick size for options trading
below $300 is $6.25, and $12.50 for those above $300, so that for an equity
option trading below $300, the tick size is in excess of 2%, meaning that
the loss in value from using series (1.3) as the basis of an exercise strategy
is considerably smaller than the tick size.

In addition, in Tables 2.5 and 2.6, our results for the value of an option
obtained using the series solution combined with Monte Carlo simula-
tion are compared to previously published values obtained using other
methods, specifically the LUBA approximation, the 2-point Geske-
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Table 2.5. Call: Comparison with other methods; τ = 0.5, E = 100,
r = 0.07, D0 = 0.03, σ = 0.3. Euro. and Amer. are values of Euro-
pean and American options computed using a 100,000 step bino-
mial tree. Ser7 is the value of an American option computed using a
100,000 path Monte Carlo simulation taking 7 terms in series (1.3) as
the exercise boundary. LUBA is the LUBA approximation (Broadie
and Detemple [17]). GJ is the (2-point) Geske-Johnson approxima-
tion (Geske and Johnson [33]). Quad. is the quadratic approximation
(MacMillan [41]; Barone-Adesi and Whaley [8]). ML is the method
of lines based on n = 3 time steps (Ju [38]).

S0 80 90 100 110 120
Euro. 1.664 4.495 9.251 15.797 23.706
Amer. 1.664 4.495 9.251 15.797 23.706
Ser7 1.658 4.475 9.23 15.773 23.688
LUBA 1.664 4.495 9.251 15.798 23.706
GJ 1.664 4.495 9.251 15.798 23.706
Quad. 1.665 4.495 9.251 15.799 23.709
ML 1.663 4.500 9.284 15.845 23.774

Table 2.6. Call: Comparison with other methods; as in Table 2.5 but
τ = 3.0.

S0 80 90 100 110 120
Euro. 12.132 17.343 23.301 29.882 36.972
Amer. 12.145 17.368 23.348 29.963 37.103
Ser7 12.179 17.405 23.394 29.983 37.136
LUBA 12.167 17.368 23.383 30.001 37.142
GJ 12.137 17.355 23.331 29.946 37.091
Quad. 12.282 17.553 23.586 30.259 37.459
ML 12.137 17.391 23.380 30.009 37.146

Johnson approximation, the quadratic approximation and the method
of lines. The parameter values chosen are the same as those used by
Broadie and Detemple [17] for their comparison of their LUBA approx-
imation to other methods. On the basis of these tables, while we would
not claim that the series approximation (1.3) studied here is necessarily
more accurate than the other approximations included in the tables, it
is clearly competitive with those other approximations in terms of ac-
curacy, and given our comments on the tick sizes for equity options
above, the results provided by series (1.3) coupled with Monte Carlo
would be more than accurate enough for an investor in the real world.
Where we would claim series (1.3) has an advantage over many of the
other approximations is in its ease of calculation: it could literally be
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Figure 2.1. Percentage error in the value of a call option using series
(1.3) for a number of sample runs. (a) 1 term in the series; (b) 2 terms;
(c) 4 terms; (d) 7 terms.

programmed into a financial calculator. We would claim that this combi-
nation of ease of calculation combined with acceptable accuracy should
make it an attractive method to investors.

2.2. The put

In Tables 2.7, 2.8, 2.9, and 2.10, we show some sample results for the
put. Three values of the option are shown for each time: the European
value and the American value, both of which were computed using a
binomial tree, and the series value, that is the value using the approxi-
mation (1.4) as the exercise boundary. It should be noted that because
of the logarithm inside the square root, this approximation is only valid
for τ ≤ σ2/(8π(r −D0)2); for each of the runs presented here, the largest
time for which results are presented (e.g., 1.5442 in Table 2.7) is very



Roland Mallier 85

Table 2.7. Put: Run 1; S0 = 1.0, E = 1.1, r = 0.05, D0 = 0.01, σ = 0.25.
Euro. and Amer. are values of European and American options com-
puted using a 100,000 step binomial tree. Ser is the value of an Amer-
ican option computed using a 100,000 path Monte Carlo simulation
taking series (1.4) as the exercise boundary.

τ0 0.5 1 1.5542
Euro. 0.118224 0.131892 0.141266
Amer. 0.123107 0.140754 0.154635
Ser. 0.122967 0.136486 0.1

Table 2.8. Put: Run 2; as in Table 2.7 but S0 = 1.0, E = 1.0, r = 0.1,
D0 = 0.04, and σ = 0.25.

τ0 0.5 0.6907
Euro. 0.054505 0.060662
Amer. 0.057783 0.065476
Ser. 0.056123 0.023997

close to this value. We see that for times very close to expiry, the approx-
imation is very good, but for more distant times, it is fairly poor. For
example, in Tables 2.7 and 2.9, the asymptotic boundary captures almost
the entire American value when τ = 0.5, while for that same time, the as-
ymptotic boundary and the optimal exercise boundary in Table 2.10 both
lead to immediate exercise so that both have the same value. The results
for τ = 0.5 in Table 2.8 are not quite as good: for this particular run, the
asymptotic boundary captures only 47% of the early exercise premium,
that is the difference between the European value and the American
value. As we get further away from expiry, the results for the asymp-
totics become less good, and in two of the four cases shown, the value
of the option using the asymptotics is actually less than the European
value for larger times. It would appear then that the asymptotic bound-
ary for the put is only really useful very close to expiry; paradoxically,
this is the region where the difference in value between the American
and European options tends to be smallest close to expiry, and knowl-
edge of the optimal exercise boundary is least useful: an investor hold-
ing an option until expiry in this region will lose very little compared to
one who follows the optimal exercise policy.

As with the call, we compared results using series (1.4) to results ob-
tained using a 100,000 step binomial tree over a much larger sampling
of options. We found that, for the put, if we used both the constant and
the log term in series (1.4), the results were reasonably good for small
times, but very poor for larger times. If we used only the constant term,
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Table 2.9. Put: Run 3; as in Table 2.7 but S0 = 4.0, E = 4.0, r = 0.2,
D0 = 0.16, and σ = 0.25.

τ0 0.5 1 1.5542
Euro. 0.222570 0.269814 0.287994
Amer. 0.236074 0.303693 0.347739
Ser. 0.236583 0.302210 0.115171

Table 2.10. Put: Run 4; as in Table 2.7 but S0 = 0.9, E = 1.2, r = 0.5,
D0 = 0.02, and σ = 0.25.

τ0 0.5 1 2.5 2.7631
Euro. 0.284112 0.278906 0.272305 0.271114
Amer. 0.3 0.301452 0.313596 0.315639
Ser. 0.3 0.300236 0.3 0.3

the results are extremely poor even for small times. For τ = 0.5, we found
that average absolute error in the value of the option obtained using one
term (the constant term) in series (1.4) together with Monte Carlo sim-
ulation was 67.31%, but if we used both terms it was only 0.28%. Over
the runs we did for τ = 0.5, the maximum error in any run using only the
constant term in (1.4) together with Monte Carlo was 100% (the code
returned a value of zero, when the actual value was nonzero), while if
we used both terms, it was 0.53%. However, for larger times (τ between
2.23 and 3), the results were very poor, with an average error of 76.53%
and maximum error of 100% using just the constant term, and an aver-
age error of 11.27% and a maximum error of 71.02% using both terms.
In Figure 2.2, we present a subset of these results graphically. Figure 2.2a
is for a constant boundary (i.e., the log term in (1.4) is absent), and it
can be seen from the figure that these results are dreadful. We have in-
cluded two separate figures for the case when the log term is present
(Figures 2.2b and 2.2c). The first of these shows the behaviour for small
tenor (T − t < 1 say), for which the approximation appears fairly good,
although not as good as the call, while the second shows that the be-
haviour for larger tenor (1 < T − t < 6 here) is almost as bad as for the
constant term. Earlier, we mentioned that the approximation (1.4) was
only valid for τ ≤ σ2/(8π(r −D0)2) because of the logarithm inside the
square root, and it is as we approach this critical value that the approxi-
mation becomes very poor.

Finally, as we did for the call, in Tables 2.11 and 2.12, our results for
the value of an option obtained using the series solution combined with
Monte Carlo simulation are compared to previously published values
obtained using other methods, specifically the LUBA approximation, the
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Figure 2.2. Percentage error in the value of a put option using series
(1.4) for a number of sample runs. (a) constant term only; (b) and (c)
both terms in series.

2-point Geske-Johnson approximation, the quadratic approximation and
the method of lines. The parameter values chosen are the same as those
used in earlier studies. We should mention that some of the results from
other methods included in this table were originally presented in the lit-
erature for the call with D0 > r and the results for the put with D0 < r
presented here were obtained using put-call symmetry (1.5). Paradoxi-
cally, the put series actually appears to be fairly good for the parameter
values considered in Tables 2.11 and 2.12, although of course the scatter
plots discussed above indicate that in many cases the truth is otherwise.

3. Discussion

In Section 2, we presented Monte Carlo simulations showing the return
an investor holding an American option would expect if he used the
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Table 2.11. Put: Comparison with other methods; τ = 0.5, S0 = 100,
r = 0.07, D0 = 0.03, and σ = 0.4. Ser is the value of an American op-
tion computed using using a 100,000 path Monte Carlo simulation
taking series (1.4) as the exercise boundary. Other columns are as in
Table 2.5.

E 80 90 100 110 120
Euro. 2.654 5.623 10.022 15.773 22.653
Amer. 2.689 5.722 10.239 16.181 23.360
Ser. 2.694 5.714 10.214 16.156 23.305
LUBA 2.689 5.723 10.240 16.182 23.357
GJ 2.661 5.676 10.198 16.195 23.477
Quad. 2.711 5.742 10.242 16.152 23.288
ML 2.668 5.715 10.241 16.187 23.370

Table 2.12. Put: Comparison with other methods; as in Table 2.11
but τ = 3.0.

E 80 90 100 110 120
Euro. 10.309 14.162 18.532 23.363 28.598
Amer. 11.326 15.722 20.793 26.495 32.781
Ser7 11.302 15.653 20.664 26.306 32.439
LUBA 11.327 15.724 20.793 26.489 32.772
GJ 11.275 15.787 21.029 26.939 33.448
Quad. 11.625 16.028 21.084 26.749 32.982
ML 11.278 15.683 20.752 26.464 32.756

series approximation to the optimal exercise boundary as his exercise
strategy. For the call, we found that using the series solution (1.3) would
capture almost all of the values of an American call, even for large times,
provided at least two terms in the series were used. Surprisingly, us-
ing more terms did not always guarantee more accuracy, as the results
in Tables 2.1, 2.2, 2.3, and 2.4 attest. Of course, for such large times, it
is questionable whether the Black-Scholes-Merton model is applicable,
since it assumes constant volatility and constant interest rates, but our
results for the call are none-the-less extremely encouraging. Because the
agreement between the simulations and the values obtained using bino-
mial trees is so good, an investor could use the series solution for the
optimal exercise boundary as his exercise policy (as we have done in
our simulations) and thereby be able to reap almost the entire early ex-
ercise premium of the call. The reason this is useful to an investor is that
the series is so easy to evaluate that it could literally be programmed
into a financial calculator and evaluated in fractions of a second, mak-
ing it far more accessible to the average options investor than the large



Roland Mallier 89

numerical codes often required to calculate the location of the boundary.
As we noted in the introduction, over the years, a number of approx-
imations have been proposed for the valuation of Americans and the
calculation of the optimal exercise boundary, and the majority of these
approximations are excellent. Our argument would be that series (1.3) is
attractive because it is both reasonably accurate and also extremely easy
to evaluate.

For the put, because of the log term in the approximation (1.4), the ap-
proximate location of the boundary can only be computed for compara-
tively small times, and we found that the asymptotic solution behaved
well for very small times, but poorly, and in some cases very poorly, for
times that were a little larger. Keeping more terms in the series would
probably improve the performance of the boundary for the put, but there
is presently no consensus as to the coefficients of the next terms in the
series. Perhaps when the next few terms are available, it might be worth-
while to repeat the simulations for the put. Until that occurs, we would
not recommend an investor use the series for the put, other than very
close to expiry, because of its poor performance.

We turn now to the Greeks, meaning the sensitivity of the option’s
price to changes in the parameters or more precisely the derivatives of
the option’s price with respect to those parameters. Some of these are
used extensively, for example ∆ = ∂V/∂S is used in hedging. Since the
series solutions discussed here are approximations for the early exer-
cise boundary rather than the value of the option, we must compute
the Greeks numerically using central differences: for example, we
have

∆ =
∂V

∂S
=
V (S+ δ, t)−V (S− δ, t)

2δ
+O(

δ2),
Γ =

∂2V

∂S2
=
V (S+ δ, t) +V (S− δ, t)− 2V (S,t)

δ2
+O(

δ2),
(3.1)

where V (S,t), V (S + δ, t), and V (S − δ, t) could be obtained by using
Monte Carlo simulation as in Section 2, using series (1.3) and (1.4) as the
optimal exercise boundary. As always when the Greeks are calculated in
this way, their value will only be accurate if the value of the options in
these formulae are accurate. For the call, the value of the Greeks should
be pretty accurate, just as the value of the option was in Section 2.1. Con-
versely, since the series for the put behaved poorly in Section 2.2, ex-
cept for very small times, we would expect the value of the Greeks to be
rather inaccurate for the put.
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