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Video captioning refers to the task of generating a natural language sentence that explains the content of the input video clips.
This study proposes a deep neural network model for effective video captioning. Apart from visual features, the proposed model
learns additionally semantic features that describe the video content effectively. In our model, visual features of the input video
are extracted using convolutional neural networks such as C3D and ResNet, while semantic features are obtained using recurrent
neural networks such as LSTM. In addition, our model includes an attention-based caption generation network to generate the
correct natural language captions based on the multimodal video feature sequences. Various experiments, conducted with the two
large benchmark datasets, Microsoft Video Description (MSVD) andMicrosoft Research Video-to-Text (MSR-VTT), demonstrate
the performance of the proposed model.

1. Introduction

As video data increases, there has been a recent surge of inter-
est in automatic video content analysis. Furthermore, tech-
nological advancement in computer vision, natural language
processing, and machine learning has resulted in an increase
of interest in complex intelligence problems relating to the
simultaneous understanding of natural language and video
clips. Video-based complex intelligence problems typically
include video captioning and video question answering. As
illustrated by the example shown in Figure 1, video captioning
refers to the task of generating a natural language sentence
that explains the content of the input video clip.

Video captioning process generally comprises feature
extraction from input video clips and caption generation
based on the extracted features. In many related works,
video captioning was addressed using an encoder-decoder
framework [1–3]. In these frameworks, features are first
extracted by the encoder, followed by caption generation
using the decoder. A convolutional neural network (CNN)
like ResNet [4], VGG [5], and C3D [6] is selected as an
encoder for such frameworks, whereas a recurrent neural
network (RNN) like LSTM [7] is chosen as a decoder.
However, they considered frame features of the video equally,
without any particular focus. Some subsequent works have

attempted to make use of an attention-based mechanism to
learnwhere to focus in the image/video during captioning [8–
10]. On the other hand, they still ignore the gap between low-
level video feature and sentence descriptions, without clearly
representing high-level video concepts. In order to address
the above-mentioned problems, recent works add explicit
high-level semantic concepts of the input image/video [11–
13]. Although significant performance improvements were
achieved, integration of semantic concepts into the LSTM-
based caption generation process is still constrained in these
ways: semantic features are used only (1) for initialization
of the first step of the LSTM or (2) for implementing a soft
attention mechanism to the LSTM-based caption generation
process.

This study proposes a deep neural networkmodel, SeFLA
(SEmantic Feature Learning and Attention-Based Caption
Generation), for effective video captioning by utilizing both
visual and semantic features that describe the video content.
In the proposed model, visual features are extracted using
ResNet CNN, while semantic features are obtained using
LSTM RNN. Moreover, the proposed model adopts an
attention-based mechanism that determines which semantic
feature to focus on at every time step to generate correct
captions effectively based on the multimodal video features.
To assess the performance of the suggested model, various
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“Two boys are playing baseball in the ground”Caption

Video

Figure 1: Example of video captioning.

“Play,” “hit,” “swing”
Dynamic semantics

(a)

“Baseball,” “boy,” “bat,” “ground”
Static semantics

(b)

Figure 2: Examples of dynamic and static semantic features.

experiments are run using the Microsoft Video Description
(MSVD) [14] and Microsoft Research Video-to-Text (MSR-
VTT) [15] datasets, following which the results are discussed.

2. Related Work

Previously, visual content understanding and natural lan-
guage processing were not correlated with each other. Inte-
grating visual content with natural language learning to
generate descriptions for images/videos has been regarded as
a challenging task [16, 17]. Video captioning is a critical step
towards machine intelligence and many applications such as
video retrieval, video understanding, blind navigation, and
automatic video subtitling. Inspired by the successful use
of the encoder-decoder framework employed in machine
translation, many existing works on video captioning employ
a convolutional neural network (CNN) as an encoder, obtain-
ing a fixed-length vector representation of a given video.
On the other hand, they adopt a recurrent neural network
(RNN), typically implemented with long short-termmemory
(LSTM) [7] as a decoder to generate a natural language
caption [1–3]. However, although there is salient part of the
video that contribute more to captioning, they considered
frame features of the video equally, without any particular
focus.

Some recent works attempted tomake use of an attention-
based mechanism to learn where to focus in the image/video
during caption generation [8–10]. Attention mechanism is
a standard part of the deep learning toolkit, contributing
to impressive results in neural machine translation, visual
captioning, and question answering. Attention mechanism
applicable to a video clip can be categorized into temporal
attention, which indicates the frames to focus on in a video
frame sequence and spatial attention, which specifies the key
regions in a frame. In a recent work, an adjusted temporal
attention mechanism is employed to avoid focusing on non-
visual words (e.g., “the” and “a”) during caption generation
[10]. Although the attention-based approaches mentioned
above have achieved excellent results, they still ignore the gap
between low-level video feature and sentence descriptions,
without clearly representing high-level video concepts.

Furthermore, recent works show that adding explicit
high-level semantic concepts of the input image/video
can further improve visual captioning [11–13]. In these
works, detecting explicit semantic concepts encoded in an
image/video and adding this high-level semantic information
into the CNN-LSTM framework have improved performance
significantly. Specifically, [16, 17] proposed to discover and
integrate the rich semantic description, such as objects,
scenes, and actions, to benefit the video caption task. Their
models jointly learn the dynamics within both visual and
textual modalities for video captioning. Although significant
performance improvements were achieved, integration of
semantic concepts into the LSTM-based caption generation
process is still constrained in these ways: semantic features
are used only (1) for initialization of the first step of the
LSTM or (2) for implementing a soft attention mechanism
to the LSTM-based caption generation process. Also, unlike
our SeFLA model, previous works using semantic features
[11, 12] are limited in that they do not distinguish the dynamic
semantic features from the static semantic features.Moreover,
they use a relatively simple LSTM model for generating
captions.

3. Video Captioning Model

3.1. Model Outline. This study proposes a video caption-
ing model that utilizes semantic features along with visual
features that describe video clips for more effective video
captioning. Direct linking of visual features extracted by
a convolutional neural network (CNN), such as ResNet
and VGG, to LSTM-based textual caption generation may
ignore the rich intermediate/high-level description, such
as objects, scenes, and actions. To address the issue, this
study employs additionally two different types of semantic
features: dynamic and static semantic features. As shown in
Figure 2(a), dynamic semantic feature corresponds to the
action taking place within the input video. In contrast, static
semantic feature refers to the object, person, and background
present in the video, as illustrated in Figure 2(b). In other
words, verbs in caption sentence correspond to dynamic
semantic feature and nouns to static semantic features.
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The overall framework of the proposed SeFLA model
is illustrated in Figure 3. It consists of three main parts:
visual feature extraction, semantic feature extraction, and
sentence generation. First, visual features required for caption
generation are extracted using pretrained ResNet and C3D.
The extracted visual features then serve as inputs to the
Dynamic Semantic Network (DSN) and static semantic
network (SSN), which will be introduced in Section 3.2. In
particular, DSN uses visual features of C3D which effectively
represents dynamic feature of the video, whereas SSN uses
ResNet which represents static feature. Dynamic semantic
features and static semantic features are then extracted from
each network, which are subsequently concatenated and
utilized as inputs to the caption generation network (CGN)
introduced in Section 3.3, at each time step. Moreover,
CGN applies the attention mechanism on the concatenated
semantic features to treat each semantic feature differently at
each time step. Visual features extracted via ResNet serve as
inputs not only to the SSN, but also to the LSTM that encodes
visual features. The final output from the encoding LSTM is
given to the initialization step of the CGN. At every time step,
the CGN determines the specific semantic feature to focus
on and computes the probability distribution of the words.
Afterwards, the caption is generated based on the probability
distribution of the output words.

3.2. Semantic Feature Learning. To implement caption gen-
eration using semantic features, they must first be identified
from the input video. As explained previously, semantic
features can be categorized into dynamic semantics that

illustrate actions and static semantics that denote objects,
persons, and backgrounds; clear-cut differences exist between
these. Identification of a dynamic semantic feature based on
a single frame is hardly possible and requires observation
of the video clip for a certain period. On the other hand,
a static semantic feature corresponds to an object, person,
or background present in a particular moment and, thus,
can be identified using a single frame. Hence, extraction
of dynamic and static semantic features was carried out
separately and treated as a matter of multilabel classification
in this study.Dynamic semantic featureswere extracted based
on visual features that effectively illustrated temporal and spa-
tial features of the video, while static semantic features were
extracted based on visual features that effectively described
the spatial features.

The DSN suggested in this research is shown in Figure 4.
First, visual features were extracted in clips, intervals of 16
frames, using a pretrained C3D CNN (see (1)) to exploit the
visual features that effectively described the temporal and
spatial features of the video. V𝑖1, . . . , V𝑖16 in (1) denotes each
single frame in the 𝑖th clip and 𝑛V the total number of frames.
The extracted visual features (𝑐𝑖) are then encoded (𝑒) using
the LSTM RNNmodel, as shown in (2). 𝑐𝑡 refers to the visual
feature corresponding to a single clip encoded at the current
time step (𝑡), while ℎ𝑡−1 denotes the previous hidden state of
the LSTM.

𝑐𝑖 = C3D (V𝑖1, . . . , V𝑖16) , 𝑖 ∈ {0, 1, . . . , 𝑛V16} (1)

𝑒 = LSTM (𝑐𝑡, ℎ𝑡−1) . (2)
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Figure 6: Caption generation network (CGN).

Next, the probability distribution of the dynamic semantic
feature (𝑝𝑑) can be determined from the encoded visual
feature (𝑒), fully connected layer, and sigmoid activation
function, as shown in (3), where𝑊𝑑 denotes theweight values
to be trained and 𝑏𝑑 the bias.

𝑝𝑑 = sigmoid (𝑊𝑑 ⋅ 𝑒 + 𝑏𝑑) . (3)

The proposed SSN is shown in Figure 5. First, temporal
features are extracted from the pretrained ResNet CNN to
utilize visual features that effectively describe the spatial
features of the video. The video is then divided into clips,
intervals of 16 frames each, as expressed by (4), and the
visual features (𝑟𝑖) extracted from the 8th frame (V𝑖8) in the
𝑖th clip are encoded (𝑒) by LSTM in the manner shown
in (5). Subsequently, as shown in (6), fully connected layer
and sigmoid activation function are used to determine the
probability distribution (𝑝𝑠) of the SSN.

𝑟𝑖 = ResNet (V𝑖8) , 𝑖 ∈ {0, 1, . . . , 𝑛V16} (4)

𝑒 = LSTM (𝑟𝑡, ℎ𝑡−1) (5)

𝑝𝑠 = sigmoid (𝑊𝑠 ⋅ 𝑒 + 𝑏𝑠) . (6)

3.3. Attention-Based Caption Generation. This research pro-
poses an attention-based caption generation network (CGN)
for effective caption generation using multimodal features, as
illustrated in Figure 6.

CGN receives dynamic semantic features and static
semantic features as inputs at every time step and identi-
fies the probability distribution. Both dynamic and static
semantic features are concatenated and serve as inputs for
the attention layer. Conventionally, it is advisable to direct
attention to an object within the video if the word to be
generated is a noun, and similarly the focus should be on a
behavior observed in the video if the word is a verb. In this
paper, the attention layer is used to determine the type of
semantic feature to focus on at the current time step when
implementing a CGN. At the attention layer, a weight value
(𝑊𝑎) that reflects the semantic feature to focus on at a current
time step (𝑡) is applied to compute semantic features. The
weighted semantic feature (𝑎𝑡) can be calculated using (7),
where 𝑠𝑡 refers to the semantic feature given as input and 𝑏𝑎
denotes the bias.

𝑎𝑡 = softmax (𝑊𝑎 ⋅ 𝑠𝑡 + 𝑏𝑎) . (7)
The converted semantic features serve as inputs to the decod-
ing LSTM. The decoding LSTM learns sentence structures
based on the input semantic features (𝑎𝑡) and output a status
value (ℎ𝑡) that indicates the word to be generated at the
current time step (𝑡), as expressed in (8). The initial hidden
state (ℎ𝑡=0) of the decoding LSTM is initialized as the final
hidden status value of the encoding LSTM that encodes the
temporal features.

ℎ𝑡 = LSTM (𝑎𝑡, ℎ𝑡−1) . (8)
The outputs from the decoding LSTM are given as inputs to
the fully connected layer. The probability distribution (𝑝𝑡),
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which indicates appropriate words at the current time step
(t), is computed in the fully connected layer according to (9),
where𝑊𝑝 refers to theweight value to be trained, ℎ𝑡 the inputs
given from the decoding LSTM, and 𝑏𝑝 the bias.

𝑝𝑡 = softmax (𝑊𝑝 ⋅ ℎ𝑡 + 𝑏𝑝) . (9)

At each time step, attention values for input semantic features
are computed, and the probability distribution of words is
output via decoding LSTM and fully connected layer. Then,
the output words are strung in order from the first to the
keyword denoting the end of statement “⟨EOS⟩” to generate
a caption.

4. Performance Evaluation

4.1. Dataset. To train and assess the performance of the CGN
suggested in the study, theMSVD dataset and a video caption
dataset collected fromYouTube videos were used.TheMSVD
dataset consisted of 1970 YouTube video clips and 80,000
caption statements corresponding to such clips. The sizes of
training, cross-validation, and test sets were 1200, 100, and
670, respectively.

On the other hand, theMSR-VTT (Video-to-Text) dataset
consists of around 10,000 web video clips. The video clips
are classified into 20 categories: music, people, gaming,
sports/actions, news/events/politics, education, TV shows,
movie/comedy, animation, vehicles/autos, how-to, travel,
science/technology, animals/pets, kids/family, documentary,
food/drink, cooking, beauty/fashion, and advertisement.
They are divided into 6513, 497, and 2990 videos for training,
validation, and test sets, respectively. Each video has around
20 natural language captions.

To train the semantic feature networks suggested in the
study, training datasets were required. To collect datasets
for training, MSVD video caption datasets were used. First,
the Part-Of-Speech (POS) tag function in Natural Language
Toolkit (NLTK) was used to separate nouns and verbs, while
plural nouns and tenses of verbs, past, continuous, and
so on, were converted back to their root forms using the
lemmatize function in NLTK. Among the extracted verbs,
the 500 most frequently appearing words were selected as
labelled data for the dynamic semantic features, while 1500
most frequent nouns were chosen as labelled data for static
semantic features. A video was labelled with 1 if its caption
contained one of the verbs designated as labelled data for
dynamic semantic feature, and 0 otherwise.The static dataset
was compiled in a similar fashion. Each video contained
approximately 7 nouns and 3 verbs present in the datasets.
The semantic feature datasets comprised 1200, 100, and 670
examples for training, cross-validation, and test, respectively,
like the MSVD caption dataset.

4.2. Model Training. For this research, Keras, a deep learning
library in Python, was run in Ubuntu 14.04 LTS environment
to implement the proposed models. The hardware specifi-
cations for the experiments are as follows: CPU: Intel(R)
Core(TM) i7-6700 CPU@ 3.40GHz, RAM: 32GB, and GPU:
GeForce GTX 1080. Input videos were tailored with uniform

Table 1: Performance of semantic feature networks on MSVD
dataset.

Networks Val-accuracy Test-accuracy
DSN 99.42% 99.43%
SSN 99.61% 99.64%

sampling such that each video contained 40 clips, and each
clip consisted of 16 frames. For the semantic feature networks
(SSN and DSN), Adam was used as the model optimization
algorithm, and the binary cross-entropy cost function in (10)
was used for the loss function. Here, 𝑦 denotes the actual
value, while 𝑦 indicates the expected value.

𝐿binary = − [𝑦 log𝑦 + (1 − 𝑦) log (1 − 𝑦)] . (10)

Once the semantic feature networks were fully trained,
semantic features were extracted from all videos in the
caption dataset, which were then used as inputs for the
caption generation network (CGN). For the CGN, RMSprop
was used as the model optimization algorithm, and the
categorical cross-entropy cost function in (11) was selected as
the loss function.

𝐿categorical = −1𝑛∑𝑥 [𝑦 log𝑦 + (1 − 𝑦) log (1 − 𝑦)] . (11)

The batch size and the epoch for learning semantic feature
networks (SSN and DSN) were set at 32 and 500, while those
for the caption generation network (CGN) were 25 and 50,
respectively.

4.3. Experiments. The first experiment was conducted to
assess the performance of the semantic feature extraction net-
work suggested in this study. The accuracy for each semantic
feature extraction network was calculated with Mean Square
Error (MSE) as shown in (12). In (12), 𝑛 represents the output
dimension, 𝑦𝑖 the actual value, and 𝑦𝑖 the expected value.

MSE = 1𝑛
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 . (12)

The level of performance of each network evaluated using
MSE is tabulated in Table 1, where DSN and SSN denote
the dynamic and static semantic network, respectively. The
recorded values in the table indicate a high accuracy of
semantic feature extraction in both networks.

Figure 7 shows the results for the qualitative assessment
of both semantic feature networks. As illustrated in the figure,
the SSN extracts words that indicate that the subjects are
carrying out certain behaviors, whereas the DSN extracts
words that describe the behaviors displayed by the subjects.

The aim of the second experiment was to investigate the
effects of each semantic feature on caption generation perfor-
mance. The CGN used in this experiment was kept the same
as the selective attention CGN suggested in this study, while
the input features were varied. BLEU@𝑁 [18] and CIDEr-D
[19], which are typical caption generation evaluation metrics,
were selected as measures for the performance of CGN. All
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Static semantics: squirrel, peanut, chipmunk, 
nut, rabbit, shell, animal

Dynamic semantics: eat, play, chew

Static semantics: piano, boy, kid, song
keyboard, room, music 

Dynamic semantics: play, sit, sing

Figure 7: Some examples of semantic features.

Table 2: Comparison of different feature sets on MSVD dataset.

Feature sets B@1 B@2 B@3 B@4 CIDEr
CGN 66.1 47.8 37.1 26.5 26.4
DSN + CGN 76.0 58.1 45.7 35.8 50.0
SSN + CGN 78.8 63.4 51.4 41.4 77.8
DSN + SSN + CGN 84.8 70.8 60.0 50.0 94.3

Table 3: Performance comparison with other state-of-the-art mod-
els on MSVD dataset.

Models B@1 B@2 B@3 B@4 CIDEr
SCN [11] - - - 51.1 77.7
LSTM-TSA [12] 82.8 72.0 62.8 52.8 74.0
hLSTMat [10] 82.9 72.2 63.0 53.0 73.8
SeFLA 84.8 70.8 60.0 50.0 94.3

evaluation metrics were computed using codes provided by
Microsoft COCO evaluation server. CGN in Table 2 depicts
the case when captions were generated using solely the visual
features, DSN +CGN the case when only DSNwas used, SSN
+ CGN the case when only SSN was used, and finally DSN +
SSN + CGN the case when both DSN and SSN were utilized
in tandem.

The results in Table 2 indicate that models that utilized
semantic feature networks were more effective than the case
that only used the CGN. A noteworthy observation is that the
DSN + CGN model performed better than the SSN + CGN
model. This may be attributed to the effect of the dynamic
semantic feature that indicates activity present in the video
unlike static semantic feature that can only illustrate objects,
persons, and backgrounds. Also, this may be caused by the
fact that, in a given caption for a video, there are usually one
verb (activity) and multiple nouns (objects). Furthermore,
the model incorporating both the DSN and SSN proved to
be the most effective, implying that the two semantic feature
networks contribute to the caption generation performance
independently.

The third experiment was conducted on MSVD dataset
for a comparative assessment of the SeFLA caption genera-
tion model that was proposed in this study. Table 3 records
the performance of SeFLA in comparison with the other
models proposed in previous studies. SCN [11] in Table 3
was suggested by Gan et al., while LSTM-TSA [12] and
hLSTMat [10] were proposed by Song et al., respectively.

Table 4: Performance comparison with other state-of-the-art mod-
els on MSR-VTT dataset.

Models BLEU@4
MP-LSTM (V) [1] 34.8
MP-LSTM (C) [1] 35.4
MP-LSTM (V + C) [1] 35.8
SA (V) [2] 35.6
SA (C) [2] 36.1
SA (V + C) [2] 36.6
hLSTMt [10] 37.4
hLSTMat [10] 38.3
SeFLA 41.8

SCN and LSTM-TSA incorporate semantic feature networks,
while hLSTMat employs an attention-based layered LSTM as
the RNN for caption generation. Specifically, both SCN and
LSTM-TSA use semantic features as well as visual features.
However, unlike our SeFLA, they are limited in that they do
not distinguish the dynamic semantic features from the static
semantic features.

From Table 3, the performance achieved by SeFLA is
observed to be 84.8% and 94.3% on BLEU@1 and CIDEr,
respectively. This indicates that SeFLA is more effective by
1.9% and 16.6% than the other models for the respective
metrics. However, SeFLA recorded subpar performance in
BLEU@2, BLEU@3, and BLEU@4, illustrating that SeFLA,
although effective in predicting word by word, is relatively
inefficient when consecutively predicting a few words. This
observation is also reflective of SeFLA’s ineffectiveness in gen-
erating prepositional and postpositional particles, in contrast
to its superiority in generating nouns or verbs with the help
of semantic features. Such a problem might arise due to the
lack of datasets to train the CGNon the sentence structures of
LSTM. However, in general standards, the caption generating
capability of SeFLA using semantic features, as proposed by
this study, can be considered efficient.

Table 4 shows the performance comparisons between the
SeFLA model and other models on MSR-VTT dataset. (V)
denotes that the model uses VGGnet as a CNN model for
video encoding, (C) denotes C3D, and (V + C) denotes that
the model use both CNN models.

Table 4 shows that the proposed SeFLA model achieved
41.8% BLEU@4 score, that is, 3.5%, better performance than
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Figure 8: Working time of the SeFLA model on each MSVD test
video.

previous studies on MSR-VTT. The result indicates that the
SeFLA model has better caption generation performance
than previous models with the help of semantic features.

In the fifth experiment, the working time of the SeFLA
model, which is the caption generation time, was measured
on MSVD test dataset. Note that the feature extraction time
is not included in the working time.

Figure 8 shows the results of working time measurement,
and the average working time was 0.89 sec. Each working
time was affected by the number of words in the generated
caption and the length of the input video.

5. Conclusion

This study proposed a deep neural network model capable
of effective video captioning. Apart from visual features, the
proposed model learns additionally semantic features that
describe the video content effectively. In our model, visual
features of the input video are extracted using convolutional
neural networks such as C3D and ResNet, while semantic
features are obtained using recurrent neural networks such
as LSTM. In addition, our model includes an attention-
based caption generation network to generate the correct
natural language captions based on the multimodal video
feature sequences. Various experiments, conducted with the
two large benchmark datasets: Microsoft Video Description
(MSVD) andMicrosoft Research Video-to-Text (MSR-VTT),
demonstrate the performance of the proposed model. Our
future works are as follows. First, a more sophisticated
attention mechanism will be incorporated into our SeFLA
model for further boosting video captioning. Second, we will
investigate how to leverage multimodal features for multiple
sentence generation for videos.
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