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A large number of studies demonstrated that major depressive disorder (MDD) is characterized by the alterations in brain functional
connections which is also identifiable during the brains “resting-state.” But, in the present study, the approach of constructing
functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length
of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST) analysis
and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG)
sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering
were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher
than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the
depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings
suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions

for MDD controls.

1. Introduction

Major depressive disorder is a global mental disorder and
has an unfavourable influence on physical and psycholog-
ical health [1]. In addition to profound personal suffering,
MDD patients lack the necessary social and occupational
functioning [2]. Moreover, The World Health Organization
predicted that depression would become the second leading
cause of illness by the year 2020 [3]. In this light, exploring
the neurobiological signature of MDD from multiple imaging
modalities was considered to sharpen the reach of depression
and develop treatments, including electroencephalogram
(EEG), magnetoencephalogram (MEG), functional magnetic

resonance imaging (fMRI), positron emission tomography
(PET), and single photon emission computed tomography
(SPECT) [4]. In recent years, the research results of MDD
based on different approaches had been presented substan-
tially such as frontal EEG asymmetry, “small-word” network
characteristics, and increased/disrupted cognition connectiv-
ity network [5-8]. These results revealed neurophysiology
characteristics in different aspects for depression disease and
made a great contribution to the study of the depression.
However, there were disputes and contradictions in these
results due to the differences of subjects, experimental envi-
ronment, methods, and other restrictions. So, more methods
and techniques are expected for exploring MDD.
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The human brain is a complex system, characterized by its
dynamical neural communications and mutual interactions
based on synchronous oscillations among different brain
areas [9, 10]. In the human brain, oscillatory patterns reflect
the activity of the brain and provide reliable markers of
the brain function or dysfunction [11, 12]. Therefore it is a
direct and effective way to explore the brain activity based on
the brain oscillatory nature. In present imaging modalities,
electroencephalogram (EEG) is regarded as a convenient
technology to reflect the comprehensive electrophysiological
activity of neuron populations [13]. In recent years, it has
been widely used in biomedical fields to estimate the oscil-
latory patterns on account of higher temporal resolution and
noninvasiveness in mental disorders such as major depressive
disorder (MDD), Alzheimer’s disease, and schizophrenia
disease [14, 15]. EEG oscillations are rhythmic electrical
events coming from the brain and can be used to define
the interaction of different brain regions [16]. Because of
this feature, it is suggested that the information processing
of the brain can be reflected in characteristic EEG oscil-
lation rhythms [17]. Using this approach, a large number
of findings were presented in the study of the depression.
Some results based on EEG oscillations demonstrated that
patients with MDD had more frontal theta, alpha, and beta
oscillations [18-20]. Using EEG oscillations, Lee et al. [21]
suggested that the brain affected by a major depressive
disorder showed a slower decay of the long-range temporal
(auto)correlations (LRTC). Recently, an EEG oscillations
study on MDD reported that depressive brain was mani-
fested in the superposition of distributed multiple oscillations
[22].

At present, studying functional interactions between
brain regions plays a vital role in understanding the dynamic
interactions between the neural systems [23]. For defining
the interaction of different brain regions, the synchronization
of EEG oscillations is an important and effective indicator
which can be estimated by EEG coherence [24]. And EEG
coherence is conceptualised as the correlation in the time
domain between two signals in a given frequency band
[25, 26]. The high EEG coherence reflects synchronized
neuronal oscillations between different brain areas, whereas
low EEG coherence represents independent active neuronal
[25]. This approach has been applied for evaluation and
auxiliary diagnosis of various mental disorders, including
Attention-Deficit/Hyperactivity Disorder, Autism Spectrum
Disorder, MDD, and Alzheimer’s disease. In one study of
MDD, EEG coherence was used to estimate the sleep EEG
rhythms, which suggested that low temporal coherence in
depression reflects a breakdown in the organization of sleep
EEG rhythms within and between two hemispheres [27]. Li et
al. [7] found that the global EEG coherence of patients with
MDD was significantly higher than that of healthy controls
in both gamma bands. Prior EEG coherence based on dis-
criminant function analysis (DFA) rules was used to explore
possible neurophysiological differences between Asperger’s
Syndrome (ASP) and the Autism Spectrum Disorders (ASD)
and successfully distinguished ASP and ASD populations
[28]. Using EEG source-based coherence in Alzheimer’s
disease (AD) showed increased delta coherences between the
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bilateral precentral, left supplementary motor area (SMA),
and right precentral [29].

In recent years, with the analysis of the connectivity based
on EEG data, graph theoretical analysis has been widely
applied. With the rising interest in graph theoretical studies
of brain networks, the problem of the determination of
the connectivity structure in the brain has been a subject
of the intense research. The approaches standing behind
the connectivity have a crucial impact on the results of
the study and complicate a comparison of results across
different studies and different brain imaging techniques [30].
Conventionally, a threshold, or a range of thresholds, is
used to confirm whether connections exist or do not exist.
Currently, this method is most widely used in the study of the
brain functional networks [31-34]. But it might be biased by
the choice of the threshold due to the number of links being
decided by the size of the threshold values. Importantly, most
network characteristics depending on the number of links
in the network would be also influenced such as clustering
coeflicient, characteristic path length, and node degree. It
may be an assignable cause that there were some controversial
findings in the study of the brain functional network. In order
to avoid this bias, some of the studies used the weighted brain
functional network to avoid the choice of threshold [35-37].
Although the weighted network overcomes the problem of
this subjective factor and provides a more realistic represen-
tation of functional networks, there are also problems in the
weighted network. Spurious weak connections are also taken
into account, potentially influencing the brain functional
network.

In this context, using minimum spanning tree (MST) to
represent brain networks may be one promising unbiased
solution to this problem [38]. The MST is a subgraph without
forming cycles that connects all the nodes in the original
weighted network [39]. In this way, MST will obtain the
same number of nodes and links, therefore enabling the
direct comparison of network properties between groups
and avoiding the aforementioned methodological biases and
defect. Due to this advantage, the MST has been wildly used
in a variety of mental diseases. Stam et al. [30] illustrated MST
characterization allowed the representation of the observed
brain networks and may simplify the construction of simple
generative models of normal and abnormal brain network
organizations. MST appeared in a variety of studies. MST was
used as an elegant and sensitive method to capture subtle
developmental organization changes in the brain networks
of children [40]. In a study of Multiple Sclerosis, findings
indicate that MST network analyses were able to detect
network changes in the Multiple Sclerosis (MS) patients [41].
In the study of Alzheimer’s disease, MST was regarded as an
effective method for analyzing cortical networks [42].

The clustering and community structures have been
regarded as one of the most significant features of com-
plex networks [43]. In the brain networks, clustering or
community structure was defined as a subset of highly
interconnected nodes which had similar characteristics [44].
Moreover, we have known that brain networks demonstrate
the property of the hierarchical modularity. Constructing
the brain hierarchical modularity, the hierarchical clustering
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is a special method which characterizes major building
blocks or the hierarchical modularity of brain networks,
corresponding to specialized brain functions [45]. Among
the multitudinous hierarchical clustering algorithms, a tree
agglomerative hierarchical clustering (TAHC) method can
successfully detect clusters in both artificial trees and the
MSTs of weighted social networks. This method was raised
in [43]. Moreover, the hierarchical clustering has regarded
the MST as a foundation of the complex networks [30].
And the hierarchical clustering in combination with the MST
has been used in different cognitive domains. Hierarchical
clustering analysis of the MST showed that the connections
between the parahippocampal gyrus and posterior cingulate
gyrus were disrupted in Alzheimer patients [42]. Impaired
communication between functional clusters in AD was found
in one MEG study [46]. Alexander-Bloch et al. [47] found
disrupted modularity and local connectivity of the brain
functional networks in childhood-onset schizophrenia using
hierarchical clustering analysis of the MST.

This study used eyes-closed resting-state EEG recordings
involving the patients with MDD and the healthy subjects.
The aim of this study was using an unbiased method to
construct the brain network and then explore the network
characters and clustering of nodes for both MDD and
healthy groups. Although the study of “resting-state” is rather
exploratory, we believe that the approach used in this study
is feasible. The choice of threshold has a great impact on
the properties of the brain functional network. So we used
an unbiased MST method to build the main network of the
brain. As far as we know, this method was first used for
the depression disease. Then we estimated the leaf fraction,
mean link weight, and node degree fraction of MST. The
hierarchical partitioning of the brain functional network in
resting-state for MDD and healthy groups was not clear.
So, in this study, TAHC method was used to characterize
major building blocks and hierarchical partitioning of the
brain networks. In the end, we discriminated the differences
between the MDD group and the healthy group and then
summarized and discussed our findings.

2. Subjects and Methods

2.1. Subjects. The study was approved by the local ethics
committee. Written informed consent was obtained before
the study began. Twenty-three patients with MDD (13
males and 10 females, right-handed) were recruited from
the Lanzhou University Second Hospital. The mean age
of the MDD group was 33.17 + 19.83 years. All patients
had no history of the manic episode. 14 healthy subjects
(7 males and 7 females, right-handed) were recruited from
the society with the mean age of 31.29 + 21.71. To ensure
the effectiveness of this study, the participants were aged
between 18 and 55. Besides, primary or higher education level
was required. Strict exclusion criteria were enforced before
the experiment, and exclusion criteria for all participants
included past history or the presence of any medical or
neurological disorders, presence of drug or alcohol abuse,
and past head trauma with loss of consciousness. Before the

experiment, all participants participated in an interview in
which the Mini and PHQ-9 [48] were administered with the
help of an experienced clinical psychiatrist. Mini was used
to ensure the correctness of the classification. The score of
PHQ-9 was used to evaluate state anxiety, general anxiety, and
depression levels. The mean PHQ-9 score of MDD group was
17.10, and the healthy group was 2.57 (F = 11.504, p < 0.001).
In addition, all participants gave informed consent and were
rewarded for their participation.

2.2. EEG Data Processing. The experiment was conducted
in a quiet and dim light room kept away from electro-
magnetic interference. Participants were required to have
a seat on a wooden chair comfortably with eyes closed
but keeping awake during the EEG recording. They were
also asked to avoid blinking and making movements. Five
minutes’ resting-state EEGs were recorded with a128-channel
HydroCel Geodesic Sensor Net and Net Station software,
version 4.5.4. The MATLAB R2013b software package was
used to process the data, and artifacts from vertical and
horizontal eye movements and blinks were removed offline by
an ocular correction algorithm. All channels were referenced
to Cz during the acquisition, and electrode impedances were
below 70kQ. The continuous EEG signals were recorded
at sampling rates of 250 Hz, 0.3-70 Hz frequency band. We
chose the following 72 electrodes: 1-F10, 2-AF8, 3-AF4, 4-F2,
5-FCz, 6-FP2,7-Fz, 8-FCl, 9-FPz,10-AFz, 11-Cz, 12-F1, 13-FP1,
14-AF3,15-F3,16-AF7,17-F5,18-FC5,19-FC3, 20-C1, 21-F9, 22-
F7,23-FT7,24-C3, 25-CP1, 26-FT9, 27-T7, 28-C5, 29-CP3, 30-
T9, 31-T3, 32-TP7, 33-CP5, 34-P5, 35-P3, 36-TP9, 37-T5, 38-
P7,39-P1, 40-Pz, 41-PO7, 42-PO3, 43-01, 44-POz, 45-0z, 46-
PO4, 47-02, 48-P2, 49CP2, 50-POS8, 51-P8, 52-P4, 53-CP4,
54-T6, 55-P6, 56-CP6, 57-TP10, 58-TP8, 59-C6, 60-C4, 61-C2,
62-T4, 63-T8, 64-FC4, 65-FC2, 66-T10, 67-FT8, 68-FC6, 69-
FT10, 70-F8, 71-F6, and 72-F4.

2.3. Coherence. The coherence is defined as the spectral
cross-correlation between two signals normalized by their
power spectra [7]. There are different measuring methods
that analyze the coherence from different pairs of electrodes
per frequency. In this study, the magnitude-squared coher-
ence (MSC) was calculated for a particular frequency f
between two given EEG signals x and y.

_ |Sxy (f)|
¥ Sxx (f) Syy (f)

S.<(f) is the power spectral density (PSD) estimate of x
at the frequency of f and S, (f) is the cross PSD estimate of x
and y at the frequency of f, using Welch’s averaged, modified
periodogram method. The value of the MSC ranges between
0 and 1, where 0 represents no coherence and 1 indicates
maximum linear interdependence between two signals.

In this study, we calculated the coherence between each
possible pair of 72 EEG channels with the respect to each
single frequency. A square 72 * 72 coherence matrix was
obtained for each participants (72 was the number of the
chosen EEG channels), and each element in the coherence
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matrix indicated the coherence between the corresponding
two electrodes. The MDD coherence matrix was defined as
the mean of all coherence matrices of the patients with MDD,
and the definition of coherence matrix for healthy group was
the mean of all coherence matrices of the healthy participants.
The global coherence was defined as the mean value of all
elements in the coherence matrix. It indicated the level of
interdependence of the whole brain. In order to confirm
which frequency bands have significant difference rapidly, we
calculated the global coherence between two groups in each
single frequency within 3-35 Hz.

2.4. MST. The minimum spanning tree is a simple acyclic
connected subgraph of the original weighted network that
can be used to direct comparison of networks with the same
number of nodes and simplifies the network characterization.
Although it is not a priori given, it will still capture most of the
important topological information in the original network
[30]. We constructed the MST based on the aforementioned
EEG coherence matrix by employing Kruskal’s algorithm
[49]. The details of this algorithm used in this study were
as follows: (1) ordering the elements of the EEG coherence
matrix in a degressive order; (2) linking the N nodes with
maximal EEG coherence until all the nodes being linked in
a loopless subgraph consisting N — 1 edges; (3) skipping the
link, if adding this link leading a circle.

In this study, we used 72 channels. So the number of the
nodes in the topology of MST was 72 and the number of edges
was 71. We also analyzed the topology properties of the MSTs
for the two groups. Leaf fraction and the mean weight of all
links included in the MST were calculated to evaluation of
the MST topology. After that, statistical analyses were used to
assess the credibility of differences.

2.5. Hierarchical Clustering. The clustering is an effective
method to explore nontrivial information in the network.
MSTs contain most of the information about the underlying
clusters of the original weighted networks. In this study,
TAHC method was used for the detection of the clusters in
the aforementioned MSTs. The summary of TAHC algorithm
[43] is as follows: first we use geodesic distances between
all possible pairs of nodes of the given graph as an input
to the agglomerative hierarchical clustering algorithm. Next,
compute the similarity between every node pairs in an MST
based on geodesic distances. Then find the most similar pair
of clusters and merge them into a single cluster. Finally,
recalculate similarities between the new cluster and each
of the old clusters based on average-linkage clustering and
remerge clusters until all nodes are merged into a single
cluster.

The geodesic distance between two nodes in a tree is equal
to the number of links in the shortest path. So, geodesic dis-
tances were calculated using Dijkstra Shortest Path algorithm
[50]. Geodesic distances between all possible pairs of nodes in
a graph constituted the geodesic distance matrix C which was
a weighted matrix. In the geodesic distance matrix C, each
node corresponds to a row vector. Based on C, we calculated
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FIGURE 1: The coherence-frequency graph of MDD group and
healthy group. The horizontal axis denoted the frequency and the
vertical axis denoted the global coherence. There was the significant
difference in the theta band (4-8 Hz). In alpha (8-13 Hz) and beta
bands (13-30 Hz), there was no diacritic difference in both groups.

vector similarities using Spearman’s rank correlation between
all row pairs of C.
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p is Spearman’s rank correlation, and the value of the MSC
ranges between 0 and 1. The larger the value is, the higher the
similarity of the two nodes is. # is the number of the entries
in a row. d; is the difference between the two rows of each
observation.

In our study, we analyzed the hierarchical clustering
organization of the group-level MST for each group in inter-
ested frequency bands. Thus, each group-level dendrogram
obtained by the TAHC method corresponds to each group-
level MST. The distribution of nodes in the hierarchical
clustering was described based on a global electrode graph.

3. Results

3.1. Global Coherence. A large number of researches indi-
cated that most of the EEG signals were at low frequen-
cies when the brain was in the resting-state. In order to
explore which frequency bands contain significant differ-
ences between the MDD group and the healthy group rapidly,
we calculated global coherence in each single frequency
within range of 3-35Hz and used a frequency-coherence
line chart to describe the relationship between the global
coherence and the frequency, as seen in Figure 1. In this graph,
we can see that the higher coherence appeared in the alpha
band (8-13 Hz) for both groups. And the global coherence
of the MDD group is significantly higher than that of the
healthy group in the theta band (4-8 Hz). In alpha (8-13 Hz)
and beta bands (13-30 Hz), there is no diacritic difference in
both groups.

3.2. Difference in Coherence. Because the difference obtained
from the global coherence is not obvious in the alpha and
beta bands, we paid more attention to the theta band.
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FIGURE 2: The coherence of MDD group and healthy group in the theta band. The size of the coherence matrix was 72 * 72. In the matrix
map, each chromatic point represented the coherence of two corresponding channels. The horizontal and vertical axes denoted 72 channels.
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FIGURE 3: The results of the distribution which was the difference of the coherence in the theta band. Red nodes represent 72 electrodes,
and the red lines between nodes show the difference in coherence at the threshold of 0.12 and 0.14. The thicker the red line is, the more the

threshold is exceeded.

We calculated the coherence of each pair of the channels. The
coherence matrices were plotted in Figure 2. The coherence
matrices of both groups showed a complex but rather similar
pattern, with various regions of high and low levels of the
interdependence. There was no evident difference of the
distribution for highlight areas in both groups. Compared
with the healthy controls, the patients with MDD had more
strengthened coherence values in some regions correspond-
ing to the red areas. In order to explore the distribution
of this difference, we obtained a difference matrix using
the coherence matrix of the MDD group to subtract the
coherence matrix of the healthy group. We plotted this matrix
in a 3D graph as seen in Figure 3. The topographic maps
were plotted by the threshold of 0.12 and 0.14, which could
clearly indicate the difference between two groups in the theta
band according to our above results. At the threshold of 0.12,

most of the links were distributed in the left hemisphere
of the brain except the front regions. There were also some
links in the right-temporal region. At the threshold of 0.14,
most of the links were distributed in the left hemisphere
of the brain especially in the parietal and temporal regions.
There were few links in the right hemisphere of the brain.
Coherence analysis results showed that the depressed group
had significantly higher coherence in the left hemisphere
of the brain especially in parietal and temporal regions
compared with the healthy controls in the theta band.

3.3. Characteristics of MST in Both Groups. In order to avoid
the biase coming from the choice of the threshold, MST
was used to construct the brain functional network. In one
extreme, all nodes are connected to two other nodes, with
the exception of the two nodes at either end, which have
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FIGURE 4: The brain topographic mappings of the degree fraction. The depth of the color represents the degree size of the nodes.

only one link. The other extreme is a star. In this star, there
is one central node to which all other nodes are connected
with one link. This tree configuration would have more leaf
nodes. Between the two extremes of one path and one star,
many different types of the tree configuration are possible. We
calculated the leaf fraction for both groups. The leaf fraction
of the MDD group was 0.5984 and for the healthy group was
0.5437 (F = 3.1368, p = 0.0035). Compared with the healthy
group, MST of the MDD group tended to a star-network
which had more leaf nodes. We also calculated the mean
weight of all links. The mean weight of the MDD group was
0.8464 and for the healthy group was 0.7967 (F = 2.2168, p =
0.0335). Then the degree fraction of nodes was presented in
the brain topographic mappings. Figure 4 showed the results.
In the topographic map, we could see that clearly the degree
fraction of the MDD group in the temporal regions in two
hemispheres of the brain was higher than that of the healthy
group. But the number of center nodes in the MDD group
was less than that of the healthy group.

3.4. Hierarchical Clustering Analysis. TAHC algorithm was
used to construct the hierarchical clustering of the brain
functional network for both groups. Figure 5 showed the
results. In the hierarchical clustering of the MDD group, it
tended to cluster according to the physical structure of the
brain, and the clusters corresponded to the left and right
hemispheres. In the healthy group, the clustering tended to
the functional structure of the brain, corresponding to the
different functional areas. In order to explore the clusters
detailedly, we plotted the distribution graph of the clusters
in Figure 6. The hierarchical clustering was integrated into 6
clusters for the MDD group and the healthy group. We found
a significant difference in the front region. In this region,
there was a cluster which contained a large number of nodes
in the distribution graph of the healthy group. However the
MDD group had not.

4. Discussion

The results showed an increased global coherence of the
MDD controls compared with the healthy controls in the

theta band. In the left hemisphere of the brain, the MDD
group had higher coherence, especially in the parietal and
temporal regions. Several studies have reported that there was
abnormal EEG absolute power, hemispheric asymmetry, or
coherence with depression patients in some specific frequen-
cies [51]. Hinrikus [52] found that the controls with MDD had
the increased coherence between some brain regions. Tucker
and Dawson [53] also reported that the parietal and temporal
cortical regions were more activated in the left hemisphere
of the depressive patients based on the coherence measure.
In other frequency ranges, the increased coherence was also
found. Fingelkurts et al. [54] reported the increased synchro-
nization was observed in the EEG alpha and theta bands
in the patients with MDD. And an increased topographic
EEG coherence in the frontal brain areas in the MDD group
in the EEG alpha, beta, and theta bands was reported by
Leuchter’s team [55]. However, the findings in the previous
studies are inconsistent and sometimes even contradictory to
each other. Knott et al. [19] found the decreased coherence in
MDD subjects compared to normal controls. It may be due to
the limited number of individual electrodes or the improper
measurement method. For the increased global coherence of
the MDD group, some researchers interpreted it as adaptive
and compensatory mechanisms aimed to overcome the defi-
cient semantic integration [55]. Our findings further support
this adaptive and compensatory mechanism. However, it is
not clear why the higher coherence was obtained in the left
hemisphere of the brain. But the hemispheric asymmetry in
the emotion processing has been observed, and the functional
complementation of left and right hemispheres is important
for adaptive emotion regulation [56]. Deficit of emotion
regulation ability is the main manifestation of the patients
with MDD [57]. So we guess it may be related to the
dysfunction of the left hemisphere. Future studies about
function and activation of the left and right hemispheres are
needed to reach more definitive conclusions.

The functional network of the patients with MDD has
been widely explored and studied. And a large number of
great achievements have already been obtained. But, due
to the differences in environments, subjects, and methods
during the experiment and data analysis process, different
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FIGURE 5: The hierarchical clustering graphs of the MDD group and the healthy group. The number in the graphs corresponds to the name
of channels: 1-F10, 2-AF8, 3-AF4, 4-F2, 5-FCz, 6-FP2, 7-Fz, 8-FCl, 9-FPz, 10-AFz, 11-Cz, 12-F1, 13-FP1, 14-AF3, 15-F3, 16-AF7, 17-F5, 18-FC5,
19-FC3, 20-Cl1, 21-F9, 22-F7, 23-FT7, 24-C3, 25-CP1, 26-FT9, 27-17, 28-C5, 29-CP3, 30-T9, 31-T3, 32-TP7, 33-CP5, 34-P5, 35-P3, 36-TP9, 37-T5,
38-P7, 39-P1, 40-Pz, 41-PO7, 42-PO3, 43-01, 44-POz, 45-Oz, 46-PO4, 47-02, 48-P2, 49CP2, 50-PO8, 51-P8, 52-P4, 53-CP4, 54-T6, 55-P6,
56-CP6, 57-TP10, 58-TP8, 59-C6, 60-C4, 61-C2, 62-T4, 63-T8, 64-FC4, 65-FC2, 66-T10, 67-FT8, 68-FC6, 69-FT10, 70-F8, 71-F6, and 72-F4.

or even opposite results were obtained in the research of
the MDD brain functional networks. Some teams discovered
increased brain functional connectivity in the patients with
MDD [54, 58-60], and decreased brain functional connec-
tion was also found in Yang et al. [61] and Wang et al.
[62] teams. For the functional connection, the choice of
the threshold was commonly used to convert the coherence
into functional connection. It is a reason that could not
be ignored for emergence of the different conclusions. In
this study, we used an unbiased method MST to construct
the main brain functional connection. This method has
been used in multiple mental disorders. As far as we know
this was the first time for this method to be used for the
depression disease. In a previous study, it suggested that
more random networks showed low clustering and a short
path length, corresponding to MSTs’ shorter diameters and
higher leaf numbers [40]. Our finding that leaf fraction of
the MDD group was higher than the healthy group indicated

a shift toward randomization in the brain networks of the
MDD group. Similar conclusions have been mentioned in
the study of brain functional networks. In sleep neuronal
functional networks of depressed patients, Leistedt et al. [63]
indicated the functional reorganization of depressed patients
lost “small-world network” (SWN) characteristics. Zhang et
al. [64] and Li et al. [7] teams also indicated the MDD
patients showed a shift toward randomization in MDD brain
networks compared with the healthy controls. For the MST,
the higher the degree of a node is, the more important
this node is during the brain information processing. Our
finding about degree fraction indicated that temporal regions
played an important role in information processing of the
MDD group. Previous studies had the analogous conclu-
sion. An EEG source location study suggested that larger
degree fraction in temporal regions of the MDD subjects
may be related to the dysregulated temporal pole activity
(14].
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FIGURE 6: The distribution of the hierarchical clustering graphs under the condition of six clusters.

The prefrontal cortex mediates the control of high-level
cognitive functions and is associated with the regulation of
many aspects of the affective system [65]. This idea had
been supported in neuroimaging studies. For the study of
depression, the depression is known to involve a disturbance
of mood and impaired cognitive functions [66, 67]. In previ-
ous studies, the frontal regions obtained more attention and
exploration and played an important role in the development
of the depression [68]. So far, many results reveal that major
depression can be distinguished by specific histopathology
of both neurons and glial cells in the prefrontal cortex [69].
Biver et al. [70] found frontal metabolic disturbances in
the unipolar depression. Disruption of paralimbic pathways
linking frontal cortex in secondary depression was indicated
in [71]. But the most mentioned finding was the frontal
brain asymmetry [72-75], which was described with greater
activation in the right compared to the left frontal lobes
[76]. The asymmetric frontal cortical activity in the MDD
group had been widely presented not only in alpha band
but also in the theta band [24, 77]. Besides EEG study, a
combined MEG, PET, and rTMS Study also pointed out
that prefrontal left-right functional imbalance and disrupted
prefrontothalamic circuitry were plausible mechanisms for
the depression [78]. Hierarchical clustering was a useful
method to divide the brain functional network into several
submodules. The nodes in the same submodule had a strong
similarity, and the information processing among these nodes
was very efficient. Importantly, the submodules typically
corresponded to functional systems of the brain. In our study,
we found that there was a cluster which contained a large
number of nodes in the healthy group. However the MDD
group had not, and the nodes in frontal regions of the MDD
group were divided into two clusters in the left forehead and
the right forehead, respectively. It was the performance of the
forehead imbalance in patients with depression. This result

indicated that there was a left-right functional imbalance in
the frontal regions for MDD controls.

5. Conclusion

In conclusion, abnormally increased EEG coherence of the
MDD group was found in the theta band, and the higher
coherence was described in the left hemisphere of the brain
especially in the parietal and temporal regions. An unbiased
method of MST was used to construct the brain functional
networks for the MDD group and the healthy group. The
higher leaf fraction and mean weight were found in the MDD
group. This finding indicated a shift toward randomization
in the brain networks of the MDD group. Additionally, the
hierarchical clustering opened up a new way for obtaining the
characteristics of the brain functional network. The results
that the MDD controls lose a frontal clustering indicated that
the MDD group lacked the coordination in the forehead. A
possible disadvantage of the MST approach is that it may
miss the information about the network topology and it
may contain the weaker connections in this brain functional
network. Then, in the further study, we will try to use two
levels MST to construct the brain functional networks to
overcome the above problems.
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