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We will consider a class of neutral functional differential equations. Some infinite integral conditions for the oscillation of all
solutions are derived. Our results extend and improve some of the previous results in the literature.

1. Introduction

During the past few decades, neutral differential equations
have been studied extensively and the oscillatory theory for
these equations is well developed; see [1–19] and the refer-
ences cited therein. In fact, the developments of oscillation
theory for the neutral differential equations began in 1986
with the appearance of the paper of Ladas and Sficas [15]. A
survey of the most significant efforts in this theory can be
found in the excellent monographs of Győri and Ladas [12]
and Agarwal et al. [1].

Consider the first-order neutral differential equations of
the form

[𝑟 (𝑡) (𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏))]


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
,
(1)

where
𝑟, 𝑞 ∈ 𝐶 [[𝑡

0
,∞) , (0,∞)] ,

𝑝 ∈ R, 𝜏 ∈ (0,∞) , 𝜎 ∈ R
+.

(2)

There are numerous numbers of oscillation criteria ob-
tained for oscillation of all solutions of (1). In particular,many
various sufficient conditions for oscillation are established in
[3–5, 9–15, 18, 19]. In reviewing the literature, (1) is much
studied in the case when

∫
∞

𝑡0

𝑞 (𝑡) 𝑑𝑡 = ∞, (3)

which has been considered as an essential condition for the
oscillation.

However, Yu et al. [19] considered (1) when 𝑟(𝑡) ≡ 1, 𝑝 =
−1 in the case when (3) does not hold (in this case (1) is said
to have integrally small coefficients).

In [9], Gopalsamy et al. studied (1) when 𝑟(𝑡) ≡ 1, −1 ≤
𝑝 ≤ 0 and proved that every solution of (1) is oscillatory if

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜎

𝑞 (𝑠) 𝑑𝑠 > 1 + 𝑝. (4)

In [5], some finite integral conditions for oscillation of all
solutions of (1) when 𝑟(𝑡) ≡ 1 are given under less restrictive
hypothesis on𝑝. See alsoGrammatikopoulos et al. [10], Ladas
and Sficas [15], and Al-Amri [4].

Recently, Ahmed et al. [2, 3] investigated the oscillation
behaviour of (1) and obtained some new oscillation results.
Additional results on the oscillation behaviour of (1) can also
be found in the articles of Kulenović et al. [14], Kubiaczyk and
Saker [13], and Greaf et al. [11].

In [18], infinite integral conditions for oscillation of all
solutions of (1) in the case when 𝑟(𝑡) ≡ 1 are obtained
when the coefficient 𝑝 takes some different ranges. A primary
purpose of this paper is to further study the oscillation of
solutions of (1). Our results extend and generalize some of
the relevant results in [1–19].

Define the functions 𝑧(𝑡) and 𝑤(𝑡) as follows:

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) , (5)

𝑤 (𝑡) = 𝑧 (𝑡) + 𝑝𝑧 (𝑡 − 𝜏) . (6)

If 𝑥(𝑡) is an eventually positive solution of the equation

(𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏))


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, (7)
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then 𝑧(𝑡) and𝑤(𝑡) are also solutions of (7). Furthermore, 𝑧(𝑡)
is a differentiable solution, while 𝑤(𝑡) is twice differentiable.
(see Győri and Ladas [12]).

As usual, a solution of (1) is said to be oscillatory if it has
arbitrarily large zeros and nonoscillatory if it is either eventu-
ally positive or eventually negative. Equation (1) is said to be
oscillatory if all its solutions are oscillatory.

In the sequel, unless otherwise specified, when we write
a functional inequality, we assume that it holds for all suffi-
ciently large 𝑡.

2. Auxiliary Lemmas

To specify the proofs of our main results, we need the follow-
ing essential lemmas.

Lemma 1 (see [12]). Assume that (3) holds. Let 𝑥(𝑡) be an
eventually positive solution of (7). Then

(a) 𝑧(𝑡) is a decreasing function and either

lim
𝑡→∞

𝑧 (𝑡) = −∞, (8)

or

lim
𝑡→∞

𝑧 (𝑡) = 0. (9)

(b) The following statements are equivalent:

(i) Equation (8) holds;
(ii) 𝑝 < −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = ∞;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) > 0, 𝑤(𝑡) > 0.

(c) The following statements are equivalent:

(i) Equation (9) holds;
(ii) 𝑝 > −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = 0;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) < 0, 𝑤(𝑡) > 0.

Lemma 2 (see [16]). Assume that

lim
𝑡→∞

sup∫
𝑡+𝜏𝑖

𝑡

𝑝
𝑖
(𝑠) 𝑑𝑠 > 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖. (10)

If 𝑥(𝑡) is an eventually positive solution of the delay differential
equation

𝑥 (𝑡) +
𝑛

∑
𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
) = 0, (11)

then, for the same 𝑖,

lim
𝑡→∞

inf
𝑥 (𝑡 − 𝜏

𝑖
)

𝑥 (𝑡)
< ∞. (12)

Lemma 3 (see [16]). If the equation

𝑥 (𝑡) +
𝑛

∑
𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
) = 0 (13)

has an eventually positive solution, then one has eventually that

∫
𝑡+𝜏𝑖

𝑡

𝑝
𝑖
(𝑠) 𝑑𝑠 ≤ 1; 𝑖 = 1, 2, . . . . (14)

Lemma 4 (see [12]). Assume that

𝑃
𝑖
, 𝜏
𝑖
∈ 𝐶 [[𝑡

0
,∞) ,R+] , 𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑛. (15)

Then the differential inequality

𝑥 (𝑡) +
𝑛

∑
𝑖=1

𝑃
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) ≤ 0, 𝑡 ≥ 𝑡

0 (16)

has an eventually positive solution if and only if the equation

𝑥 (𝑡) +
𝑛

∑
𝑖=1

𝑃
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) = 0, 𝑡 ≥ 𝑡

0 (17)

has an eventually positive solution.

3. Main Results

In this section, we establish some infinite integral conditions
for all solutions of (1) to oscillate. We assume that condition
(3) holds.

Theorem 5. Let conditions (2) and (3) hold with −1 ≤ 𝑝 ≤ 0,

∫
𝑡+𝜎

𝑡

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 > 0, (18)

∫
∞

𝑡0

[
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
ln(𝑒∫

𝑡+𝜎

𝑡

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠)] 𝑑𝑡 = ∞. (19)

Then every solution of (1) is oscillatory.

Proof. Assume that (1) has a nonoscillatory solution on
[𝑡
0
,∞). Then, without loss of generality, there is a 𝑡

1
∈

[𝑡
0
,∞), sufficiently large, so that 𝑥(𝑡) > 0, 𝑥(𝑡 − 𝜏) > 0 and

𝑥(𝑡 − 𝜎) > 0 on [𝑡
1
,∞). Set 𝑧(𝑡) to be defined as in (5). Then

by Lemma 1, it follows that

𝑧 (𝑡) > 0. (20)

As 𝑥(𝑡) > 𝑧(𝑡), it follows from (1) that

(𝑟 (𝑡) 𝑧 (𝑡)) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ 0. (21)

Dividing the last inequality by 𝑟(𝑡) > 0, we obtain

𝑧 (𝑡) +
𝑟 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡) +

𝑞 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡 − 𝜎) ≤ 0. (22)

Let

𝑧 (𝑡) = exp(−∫
𝑡

𝑡0

𝑟 (𝑠)

𝑟 (𝑠)
𝑑𝑠)𝑦 (𝑡) . (23)
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This implies that 𝑦(𝑡) > 0. Substituting in (22) yields

𝑦 (𝑡) +
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
𝑦 (𝑡 − 𝜎) ≤ 0, 𝑡 ≥ 𝑡

0
. (24)

So by Lemma 4, we have that the delay differential equation

𝑦 (𝑡) +
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
𝑦 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡

0
(25)

has an eventually positive solution as well. Let

𝜆 (𝑡) = −
𝑦 (𝑡)

𝑦 (𝑡)
. (26)

Then 𝜆(𝑡) is positive and continuous, and there exists 𝑡
1
≥ 𝑡
0

such that 𝑦(𝑡
1
) > 0, and

𝑦 (𝑡) = 𝑦 (𝑡
1
) exp(−∫

𝑡

𝑡1

𝜆 (𝑠) 𝑑𝑠) . (27)

Furthermore, 𝜆(𝑠) satisfies the generalized characteristic
equation

𝜆 (𝑡) = 𝑄 (𝑡) exp(∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠) , (28)

where

𝑄 (𝑡) =
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
. (29)

Let

Υ (𝑡) = ∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠. (30)

Therefore

𝜆 (𝑡) = 𝑄 (𝑡) exp( 1

Υ (𝑡)
Υ (𝑡) ∫

𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠) . (31)

Applying the inequality (cf. Erbe et al. [8, page 32]),

𝑒𝑎𝑥 ≥ 𝑥 +
ln (𝑒𝑎)
𝑎

∀𝑥, 𝑎 > 0, (32)

to (31), we have

𝜆 (𝑡) ≥ 𝑄 (𝑡) (
1

Υ (𝑡)
∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠 +
ln (𝑒Υ (𝑡))

Υ (𝑡)
) , (33)

or

𝜆 (𝑡) (∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) − 𝑄 (𝑡) ∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠

≥ 𝑄 (𝑡) (ln 𝑒 ∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) .

(34)

Then, for 𝐵 > 𝑇, we have

∫
𝐵

𝑇

𝜆 (𝑡) (∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡 − ∫
𝐵

𝑇

𝑄 (𝑡) ∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠 𝑑𝑡

≥ ∫
𝐵

𝑇

𝑄 (𝑡)(ln 𝑒

𝑡+𝜎

∫

𝑡

𝑄 (𝑠) 𝑑𝑠)𝑑𝑡.

(35)

By interchanging the order of integration, we get

∫
𝐵

𝑇

𝑄 (𝑡) (∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡 ≥ ∫
𝐵−𝜎

𝑇

(∫
𝑠+𝜎

𝑠

𝑄 (𝑡) 𝜆 (𝑠) 𝑑𝑡) 𝑑𝑠.

(36)

Hence

∫
𝐵

𝑇

𝑄 (𝑡) (∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡 ≥ ∫
𝐵−𝜎

𝑇

𝜆 (𝑠) (∫
𝑠+𝜎

𝑠

𝑄 (𝑡) 𝑑𝑡) 𝑑𝑠.

(37)

Then

∫
𝐵

𝑇

𝑄 (𝑡) (∫
𝑡

𝑡−𝜎

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡 ≥ ∫
𝐵−𝜎

𝑇

𝜆 (𝑡) (∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡.

(38)

From (35) and (38), we find that

∫
𝐵

𝐵−𝜎

𝜆 (𝑡) (∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡

≥ ∫
𝐵

𝑇

𝑄 (𝑡) (ln 𝑒 ∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡.

(39)

However, using Lemma 3, it follows that

∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠 < 1 (40)

eventually. Therefore, from (40) in (39), we get

∫
𝐵

𝐵−𝜎

𝜆 (𝑡) 𝑑𝑡 ≥ ∫
𝐵

𝑇

𝑄 (𝑡) ln(𝑒∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡. (41)

That is,

𝑦 (𝐵 − 𝜎)

𝑦 (𝐵)
≥ ∫
𝐵

𝑇

𝑄 (𝑡) ln(𝑒∫
𝑡+𝜎

𝑡

𝑄 (𝑠) 𝑑𝑠) 𝑑𝑡, (42)

which implies by condition (19) that

lim
𝑡→∞

𝑦 (𝑡 − 𝜎)

𝑦 (𝑡)
= ∞. (43)

On the other hand, from Lemma 2, we have

lim
𝑡→∞

𝑦 (𝑡 − 𝜎)

𝑦 (𝑡)
< ∞. (44)

This is a contradiction with (43). The proof is complete.

Example 6. Consider the equation

[𝑒𝑡+1 (𝑥 (𝑡) −
1

2
𝑥 (𝑡 − 2))]



+ 𝑒𝑡−1 [
1 + 𝑡

𝑡
] 𝑥 (𝑡 − 1) = 0,

𝑡 ≥ 𝑒,
(45)
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where

𝑟 (𝑡) = 𝑒𝑡+1, 𝑞 (𝑡) = 𝑒𝑡−1 [
1 + 𝑡

𝑡
] ,

𝑝 = −
1

2
, 𝜎 = 1, 𝜏 = 2.

(46)

Observe that

𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
=

𝑒𝑡−1 [(1 + 𝑡) /𝑡]

𝑒𝑡+1−1
=
1

𝑒
(1 +

1

𝑡
) . (47)

Then

∫
𝑡+𝜎

𝑡

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 =

1

𝑒
∫
𝑡+1

𝑡

(1 +
1

𝑠
) 𝑑𝑠 > 0,

∫
∞

𝑡0

[
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
ln(𝑒∫

𝑡+𝜎

𝑡

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠)] 𝑑𝑡

= ∫
∞

𝑒

[
1

𝑒
(1 +

1

𝑡
) ln(𝑒∫

𝑡+1

𝑡

1

𝑒
(1 +

1

𝑠
) 𝑑𝑠)] 𝑑𝑡

≥
1

𝑒
∫
∞

𝑒

ln(1 + ln(1 + 1

𝑡
)) = ∞.

(48)

All conditions of Theorem 5 are satisfied. Then all solutions
of (45) oscillate.

Theorem 7. Let conditions (2) and (3) hold with −1 < 𝑝,
𝑟(𝑡) ≡ 𝑟 > 0, 𝜎 > 𝜏. Assume further that 𝑞(𝑡) is 𝜏- periodic;

1

𝑟 (1 + 𝑝)
∫
𝑡+𝜎−𝜏

𝑡

𝑞 (𝑠) 𝑑𝑠 > 0; (49)

∫
∞

𝑡0

[
𝑞 (𝑡)

𝑟 (1 + 𝑝)
ln(𝑒∫

𝑡+𝜎−𝜏

𝑡

𝑞 (𝑠)

𝑟 (1 + 𝑝)
𝑑𝑠)]𝑑𝑡 = ∞. (50)

Then every solution of (1) is oscillatory.

Proof. Assume that (1) has a nonoscillatory solution on
[𝑡
0
,∞). Then, without loss of generality, there is a 𝑡

1
∈

[𝑡
0
,∞), sufficiently large, so that 𝑥(𝑡) > 0, 𝑥(𝑡 − 𝜏) > 0 and

𝑥(𝑡 −𝜎) > 0 on [𝑡
1
,∞). Let 𝑧(𝑡) and𝑤(𝑡) be defined as in (5)

and (6). It is easily seen, by direct substituting, that 𝑧(𝑡) and
𝑤(𝑡) are also solutions of (1) when 𝑝 and 𝑟 are constants; that
is

𝑟𝑧 (𝑡) + 𝑝𝑟𝑧 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) = 0, (51)

𝑟𝑤 (𝑡) + 𝑝𝑟𝑤 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) = 0. (52)

By Lemma 1, we have that 𝑧(𝑡) is decreasing and 𝑤(𝑡) > 0.
Also, we have indeed that

𝑤 (𝑡) = −
1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≥ −

1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎 − 𝜏)

= −
1

𝑟
𝑞 (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜎 − 𝜏) = 𝑤 (𝑡 − 𝜏) .

(53)

Then

𝑤 (𝑡) ≥ 𝑤 (𝑡 − 𝜏) . (54)

Using (54) in (52) implies that

𝑟 (1 + 𝑝)𝑤 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0. (55)

As 𝑝 > −1, we have 1 + 𝑝 > 0. Then

𝑤 (𝑡 − 𝜏) +
1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0. (56)

In view of the 𝜏-periodicity of 𝑞(𝑡), (56) implies that

𝑤 (𝑡) +
1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − (𝜎 − 𝜏)) ≤ 0. (57)

As 𝑤(𝑡) is positive solution, so by Lemma 4, the delay
differential equation

𝑤 (𝑡) +
1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − (𝜎 − 𝜏)) = 0 (58)

has an eventually positive solution as well. Let

𝜆 (𝑡) = −
𝑦 (𝑡)

𝑦 (𝑡)
. (59)

Then 𝜆(𝑡) is positive and continuous, and there exists 𝑡
1
≥ 𝑡
0

such that 𝑦(𝑡
1
) > 0, and

𝑦 (𝑡) = 𝑦 (𝑡
1
) exp(−∫

𝑡

𝑡1

𝜆 (𝑠) 𝑑𝑠) . (60)

Furthermore, 𝜆(𝑠) satisfies the generalized characteristic
equation

𝜆 (𝑡) = 𝑄
1
(𝑡) exp(∫

𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠) , (61)

where

𝑄
1
(𝑡) =

𝑞 (𝑡)

𝑟 (1 + 𝑝)
. (62)

Let

Υ
1
(𝑡) = ∫

𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠. (63)

Therefore

𝜆 (𝑡) = 𝑄
1
(𝑡) exp( 1

Υ
1
(𝑡)

Υ
1
(𝑡) ∫
𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠) . (64)

Applying the inequality (32) to (64), we have

𝜆 (𝑡) ≥ 𝑄
1
(𝑡) (

1

Υ
1
(𝑡)

∫
𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠 +
ln (𝑒Υ

1
(𝑡) )

Υ
1
(𝑡)

) , (65)
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or

𝜆 (𝑡) (∫
𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) − 𝑄

1
(𝑡) ∫
𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠

≥ 𝑄
1
(𝑡) (ln 𝑒 ∫

𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) .

(66)

Then, for 𝐵 > 𝑇, we have

∫
𝐵

𝑇

𝜆 (𝑡) (∫
𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡 − ∫

𝐵

𝑇

𝑄
1
(𝑡) ∫
𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠 𝑑𝑡

≥ ∫
𝐵

𝑇

𝑄
1
(𝑡) (ln 𝑒 ∫

𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡.

(67)

By interchanging the order of integration, we get

∫
𝐵

𝑇

𝑄
1
(𝑡) (∫

𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡

≥ ∫
𝐵−𝜎+𝜏

𝑇

(∫
𝑠+𝜎−𝜏

𝑠

𝑄
1
(𝑡) 𝜆 (𝑠) 𝑑𝑡) 𝑑𝑠.

(68)

Hence

∫
𝐵

𝑇

𝑄
1
(𝑡) (∫

𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡

≥ ∫
𝐵−𝜎+𝜏

𝑇

𝜆 (𝑠) (∫
𝑠+𝜎−𝜏

𝑠

𝑄
1
(𝑡) 𝑑𝑡) 𝑑𝑠.

(69)

Then

∫
𝐵

𝑇

𝑄
1
(𝑡) (∫

𝑡

𝑡−𝜎+𝜏

𝜆 (𝑠) 𝑑𝑠) 𝑑𝑡

≥ ∫
𝐵−𝜎+𝜏

𝑇

𝜆 (𝑡) (∫
𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡.

(70)

From (67) and (70), we find that

∫
𝐵

𝐵−𝜎+𝜏

𝜆 (𝑡) (∫
𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡

≥ ∫
𝐵

𝑇

𝑄
1
(𝑡) (ln 𝑒 ∫

𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡.

(71)

However, using Lemma 3, it follows that

∫
𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠 < 1 (72)

eventually. Therefore, from (72) in (71), we get

∫
𝐵

𝐵−𝜎+𝜏

𝜆 (𝑡) 𝑑𝑡 ≥ ∫
𝐵

𝑇

𝑄
1
(𝑡) ln(𝑒∫

𝑡+𝜎

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡 (73)

or

𝑦 (𝐵 − (𝜎 − 𝜏))

𝑦 (𝐵)
≥ ∫
𝐵

𝑇

𝑄
1
(𝑡) ln(𝑒∫

𝑡+𝜎−𝜏

𝑡

𝑄
1
(𝑠) 𝑑𝑠) 𝑑𝑡, (74)

which implies by condition (50) that

lim
𝑡→∞

𝑦 (𝑡 − (𝜎 − 𝜏))

𝑦 (𝑡)
= ∞. (75)

On the other hand, from Lemma 2, we have

lim
𝑡→∞

𝑦 (𝑡 − 𝜎)

𝑦 (𝑡)
< ∞. (76)

This is a contradiction with (75). The proof is complete.

Example 8. Consider the equation

(𝑥 (𝑡) −
1

2
𝑥 (𝑡 − 𝜋))



+ (1 + cos 2𝑡) 𝑥 (𝑡 − 2𝜋) = 0,

𝑡 > 0,

(77)

where

−1 ≤ 𝑝 = −
1

2
, 𝜎 = 2𝜋, 𝜏 = 𝜋,

𝑟 (𝑡) = 1, 𝑞 (𝑡) = 1 + cos 2𝑡.
(78)

Observe that

1

𝑟 (1 + 𝑝)
∫
𝑡+𝜎−𝜏

𝑡

𝑞 (𝑠) 𝑑𝑠 =
1

1 − 1/2
∫
𝑡+𝜋

𝑡

(1 + cos 2𝑠) 𝑑𝑠

= 2 [𝑠 +
1

2
sin 2𝑠



𝑡+𝜋

𝑡

= 2 (𝑡 + 𝜋 − 𝑡 + sin 2 (𝑡 + 𝜋)

− sin 2𝑡)

= 2 (𝜋 + sin 2𝑡 − sin 2𝑡) = 2𝜋 > 0.
(79)

Also,

∫
∞

𝑡0

[
𝑞 (𝑡)

𝑟 (1 + 𝑝)
ln(𝑒∫

𝑡+𝜎−𝜏

𝑡

𝑞 (𝑠)

𝑟 (1 + 𝑝)
𝑑𝑠)]𝑑𝑡

= ∫
∞

0

2 (1 + cos 2𝑡) ln(𝑒∫
𝑡+𝜋

𝑡

2 (1 + cos 2𝑠) 𝑑𝑠) 𝑑𝑡

= ∫
∞

0

2 (1 + cos 2𝑡)

× [1 + ln(2∫
𝑡+𝜋

𝑡

(1 + cos 2𝑠) 𝑑𝑠)] 𝑑𝑡

= 2 (1 + ln 2𝜋) ∫
∞

0

(1 + cos 2𝑡) 𝑑𝑡

= 2 (1 + ln 2𝜋) (𝑡 + 1

2
sin 2𝑡)



∞

0

= ∞.

(80)

Then all conditions of Theorem 7 are satisfied and therefore
all solutions of (77) oscillate.
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Remark 9. Theorems 5 and 7 generalize and extendTheorems
3.1 and 3.2 of Saker and Elabbasy [18], respectively, and
Theorem 6.4.3 in Gyori and Ladas [12], where 𝑟(𝑡) ≡ 1. See
also the results of Ahmed et al. [2] and Kubiaczyk and Saker
[13].
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[14] M. R. S. Kulenović, G. Ladas, and A. Meimaridou, “Necessary
and sufficient condition for oscillations of neutral differential
equations,” Australian Mathematical Society Journal B: Applied
Mathematics, vol. 28, no. 3, pp. 362–375, 1987.

[15] G. Ladas and Y. G. Sficas, “Oscillations of neutral delay differ-
ential equations,” Canadian Mathematical Bulletin, vol. 29, no.
4, pp. 438–445, 1986.

[16] B. Li, “Oscillation of first order delay differential equations,”
Proceedings of the American Mathematical Society, vol. 124, no.
12, pp. 3729–3737, 1996.

[17] N. Parhi and R. N. Rath, “On oscillation and asymptotic be-
haviour of solutions of forced first order neutral differential
equations,” Proceedings of the Indian Academy of Sciences:
Mathematical Sciences, vol. 111, no. 3, pp. 337–350, 2001.

[18] S. H. Saker and E.M. Elabbasy, “Oscillation of first order neutral
delay differential equations,” Kyungpook Mathematical Journal,
vol. 41, no. 2, pp. 311–321, 2001.

[19] J. S. Yu, Z. Wang, and C. X. Qian, “Oscillation of neutral delay
differential equations,” Bulletin of the Australian Mathematical
Society, vol. 45, no. 2, pp. 195–200, 1992.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


