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An asynchronous RUL fusion estimation algorithm is presented for the hidden degradation process with multiple asynchronous
monitoring sensors based on multisource information fusion. Firstly, a state-space type model is established by modeling the
stochastic degradation as a Wiener process and transforming asynchronous indirectly observations in the fusion period to the
fusion time. The statistical characteristics of involved noises and their correlations are analyzed. Secondly, the estimate of the
hidden degradation state is obtained by applying Kalman filtering with correlated noises to the established state-space model,
where the synchronized observations are fused. Also, the unknown model parameters are recursively identified based on the
Expectation-Maximization (EM) algorithm with the Generic Algorithm (GA) adopted to solve the maximization problem. Finally,
the probability distribution of RUL is obtained using the fused degradation state estimation and the updated identification result of
the model parameters. Simulation results show that the proposed fusion method has better performance than the RUL estimation
with single sensor.

1. Introduction

Modern engineering systems are becoming large in scale,
huge in investment, and more and more sophisticated in
structure with the development of science and technology. As
a result, once an accident occurs in these systems, it would
cause tremendous damage and enormous loss of property
[1]. As time goes on, degradation of equipment in systems
will inevitably occur due to complex operating environment
and many other reasons, which leads to the reduction of
system reliability and safety [2, 3]. Consequently, it is of great
importance to predict the RUL of the system components
in order to correctly evaluate the health state of the system
and make appropriate maintenance plans to ensure the safe
operation of the system and increase economic returns.

The complexity of the system itself and the running
environment makes it hard to establish a mechanism model
for RUL estimation. In recent years, theRUL estimation based
on monitoring data attracts a lot of research attentions due
to its wide application range and the ability to quantify the
uncertainties of the estimation results [4, 5]. Si et al. in [6]

reviewed the statistical data driven approaches for RUL
estimation.The existingmethods were classified into two cat-
egories: direct condition monitoring data based approaches
and indirect condition monitoring data based approaches,
which can be further divided into stochastic filtering based
methods [7–10], covariance based hazardmodel methods [11,
12], Wiener-process-based methods [13, 14], Gamma process
based methods [15, 16], and Markovian-based methods [17]
and others.

Although there are fruitful researches on RUL estimation
based on stochastic modeling with monitoring data, most of
works are specific to single sensor. However, the complexity
of the system itself and the running environment makes
the RUL prediction have large uncertainties. At the same
time, the information from single source tends to be quite
limited. In response to the above issues, multiple sensors are
usually utilized to monitor the condition of the system in
order to reduce the uncertainties of the system and improve
the accuracy of the RUL estimation [3]. Wei et al. in [18]
proposed amultisensor information based Remaining Useful
Life estimation method with anticipated performance for a
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Figure 1: Observations from multiple sensors.

kind of stochastic linear degradation withWiener properties.
The degradation process as well as the RUL distribution with
a random thresholdwas identified recursively by adopting the
distributed fusion filtering and a two-stage parameter estima-
tion approach. Meanwhile, the sensor selection problem was
also discussed by quantitatively analyzing the benefits of the
fusion manipulation. Dong and He in [19] presented a hid-
den semi-Markov-model basedmethodology formultisensor
equipment health diagnosis and prognosis. Sensor fusion
was implemented by adjusting the weight assigned to each
sensor based on the discriminant function analysis. A new
health indicator was constructed in [20] by fusing the mutual
information of multiple features extracted from the vibration
signal to predict the RUL of Machinery. Li and He in [21]
proposed a methodology to predict the RUL of both wheels
and trucks by fusing data from three types of detectors,
including wheel impact load detector, machine vision sys-
tems, and optical geometry detectors. Although multisource
information is used in the above works to improve the
performance of RUL estimation, observations from multiple
sensors were assumed to be collected at the same time, that is,
time consistent as shown in Figure 1(a). However, in practical
engineering, observations from multiple sensors are usually
not aligned in time due to different sampling periods, distinct
initial sampling time, and many other reasons [22, 23]. This
results in that multisensor observations are not synchronous
but asynchronous as shown in Figure 1(b) and poses new
challenges to the RUL estimation.

Consequently, motivated by the above discussions, the
asynchronous RUL fusion estimation problem is studied in
this paper. We assume that the hidden degradation which is
modeled asWiener process with unknownmodel parameters
is observed by an arbitrary number of asynchronous sensors,
whose sampling frequencies and initial sampling times are
all arbitrary.The asynchronous sensor observations are firstly
synchronized to the fusion time and then fused using the
Kalman filtering technology to get the fused estimate of the
latent degradation state with the correlations between various
noises introduced by the synchronization process analyzed.
The unknown model parameters are also recursively identi-
fied using the synchronized observations based on the EM

algorithm with the maximization problem solved by GA.
Finally, the RUL is derived based on the fused estimates of
the latent degradation state and unknown model parameters
and the simulation example is provided to demonstrate the
feasibility and effectiveness of the proposed algorithm.

The organization of this paper is as follows. The fusion
estimation problem of RUL for stochastic degradation pro-
cess with multiple asynchronous sensors is formulated in
Section 2. The proposed asynchronous RUL fusion esti-
mation algorithm is derived in Section 3. Section 4 gives
simulation results and conclusions are drawn in Section 5.

2. Problem Formulation

Wiener process is widely used to model the stochastic
degradation of a system attributed to its good mathematical
characteristics such as the infinite separability. In general,
a linear Wiener-process-based degradation model can be
represented as

𝑋(𝑡) = 𝜙 + 𝜂𝑡 + 𝜎𝐵 (𝑡) , (1)

where𝑋(𝑡) is the random variable representing the degrada-
tion at time 𝑡, 𝜙 is the initial degradation state, 𝜂 and 𝜎 are,
respectively, the drift and diffusion coefficient, and 𝐵(𝑡) is the
standard Brownianmotion reflecting the stochastic dynamics
of the degradation process.

We assume the degradation process (1) is observed by
a number of 𝑀 asynchronous sensors. Denote 𝑡𝑘−1 and𝑡𝑘, respectively, as the previous and oncoming fusion time
instants. Since these asynchronous sensorsmay have different
sampling periods and the sampling intervals may even be
nonuniform, more than one measurement could probably
be obtained by a given sensor during the fusion interval(𝑡𝑘−1, 𝑡𝑘]. Denote 𝑡𝑚𝑘 as the time when the latest measurement𝑦𝑚𝑘 , which is the nearest to 𝑡𝑘, is observed by sensor𝑚, where𝑦𝑚𝑘 is the indirect observation of the degradation process
described by

𝑦𝑚𝑘 = ℎ𝑚𝑥 (𝑡𝑚𝑘 ) + V (𝑡𝑚𝑘 ) , (2)

where 𝑥(𝑡𝑚𝑘 ) is the realization of 𝑋(𝑡) at time 𝑡𝑚𝑘 and V(𝑡𝑚𝑘 ) ∼𝑁(0, 𝑟𝑚) is the observation noise.
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Consequently, the objective of this paper is to predict the
distribution of RUL of degradation process (1) based on the
cumulative measurements 𝑌𝑘 = {𝑦𝑖𝑘 , 𝑘 = 1, . . . , 𝑘, 𝑖 =1, . . . ,𝑀}, where the RUL of a system at time 𝑡𝑘 is defined
as

ℓ𝑘 = inf {ℓ𝑘 : 𝑋 (𝑡𝑘 + ℓ𝑘) ≥ 𝜔 | 𝑋 (0) < 𝜔} , (3)

where 𝜔 is the predefined threshold level.

3. The Proposed RUL Fusion
Estimation Algorithm

3.1. Fusion Estimation of the Degradation State. From the
degradation process (1), we know that the transition of the
degradation state satisfies

𝑥 (𝑡𝑗) = 𝑥 (𝑡𝑖) + 𝜂 (𝑡𝑗 − 𝑡𝑖) + 𝑤 (𝑡𝑗, 𝑡𝑖) , (4)

where 𝑤(𝑡𝑗, 𝑡𝑖) = 𝜎(𝐵(𝑡𝑗) − 𝐵(𝑡𝑖)) ∼ 𝑁(0, 𝜎2(𝑡𝑗 − 𝑡𝑖)). By
substituting (4) into (2) with 𝑡𝑗 and 𝑡𝑖 in (4) replaced with𝑡𝑘 and 𝑡𝑚𝑘 , respectively, it follows that
𝑦𝑚𝑘 = ℎ𝑚𝑥 (𝑡𝑘) − ℎ𝑚𝜂 (𝑡𝑘 − 𝑡𝑚𝑘 ) − ℎ𝑚𝑤 (𝑡𝑘, 𝑡𝑚𝑘 ) + V (𝑡𝑚𝑘 )

= ℎ𝑚𝑥 (𝑡𝑘) − ℎ𝑚𝜂 (𝑡𝑘 − 𝑡𝑚𝑘 ) + 𝜉𝑚𝑘 , (5)

where 𝜉𝑚𝑘 = V(𝑡𝑚𝑘 ) − ℎ𝑚𝑤(𝑡𝑘, 𝑡𝑚𝑘 ). Then, by defining 𝑦𝑘 =[𝑦1𝑘 , . . . , 𝑦𝑀𝑘 ]𝑇, 𝜉𝑘 = [𝜉1𝑘, . . . , 𝜉𝑀𝑘 ]𝑇, ℎ = [ℎ1, . . . , ℎ𝑀]𝑇, and
V𝑘 = [V(𝑡1𝑘), . . . , V(𝑡𝑀𝑘 )]𝑇, the asynchronous indirect obser-
vations {𝑦1𝑘 , 𝑦2𝑘 , . . . , 𝑦𝑀𝑘 } collected from 𝑀 asynchronous
sensors in (𝑡𝑘−1, 𝑡𝑘] can be regarded as an augmented mea-
surement at 𝑡𝑘 with

𝑦𝑘 = ℎ𝑥 (𝑡𝑘) − 𝜂𝑇𝑘ℎ + 𝜉𝑘, (6)

where

𝑇𝑘 = [[[
[

𝑡𝑘 − 𝑡1𝑘
d

𝑡𝑘 − 𝑡𝑀𝑘
]]]
]
,

𝜉𝑘 = V𝑘 + [[[[
[

ℎ1𝑤(𝑡𝑘, 𝑡1𝑘)...
ℎ𝑀𝑤(𝑡𝑘, 𝑡𝑀𝑘 )

]]]]
]

(7)

and correspondingly

cov {𝜉𝑘} = cov {V𝑘} + cov {𝑤𝑘} (8)

with

cov {V𝑘} = [[[
[

𝑟𝑗1
d

𝑟𝑗𝑀
]]]
]
,

cov (𝑤𝑘) =
[[[[[[[[
[

ℎ1ℎ1𝜎2 (𝑡𝑘 − 𝑡𝑘1) ℎ1ℎ2𝜎2 (𝑡𝑘 − 𝑡𝑘2) ⋅ ⋅ ⋅ ℎ1ℎ𝑀𝜎2 (𝑡𝑘 − 𝑡𝑘𝑀)
ℎ2ℎ1𝜎2 (𝑡𝑘 − 𝑡𝑘2) ℎ2ℎ2𝜎2 (𝑡𝑘 − 𝑡𝑘2) ⋅ ⋅ ⋅ ℎ2ℎ𝑀𝜎2 (𝑡𝑘 − 𝑡𝑘𝑀)... ... ... ...
ℎ𝑀ℎ1𝜎2 (𝑡𝑘 − 𝑡𝑘𝑀) ℎ𝑀ℎ2𝜎2 (𝑡𝑘 − 𝑡𝑘𝑀) ⋅ ⋅ ⋅ ℎ𝑀ℎ𝑀𝜎2 (𝑡𝑘 − 𝑡𝑘𝑀)

]]]]]]]]
]
.

(9)

Obviously, we see that cov{𝜉𝑘} is a function of parameters{𝜎2, 𝑟𝑚, ℎ𝑚}, and we denote it as cov{𝜉𝑘} = Σ𝑘(𝜎2, 𝑟𝑚, ℎ𝑚) for
simplicity.

From (4), we can directly have

𝑥 (𝑡𝑘) = 𝑥 (𝑡𝑘−1) + 𝜂 (𝑡𝑘 − 𝑡𝑘−1) + 𝑤 (𝑡𝑘, 𝑡𝑘−1) . (10)

It follows that

cov {𝑤 (𝑡𝑘 − 𝑡𝑘−1) , 𝜉𝑚𝑘 }
= cov {𝑤 (𝑡𝑘 − 𝑡𝑘−1) , −ℎ𝑚𝑤 (𝑡𝑘 − 𝑡𝑚𝑘 )}
= −ℎ𝑚𝜎2 (𝑡𝑘 − 𝑡𝑚𝑘 ) ,

(11)

cov {𝑤 (𝑡𝑘 − 𝑡𝑘−1) , 𝜉𝑘} = −𝜎2
[[[[[[[[
[

ℎ1 (𝑡𝑘 − 𝑡1𝑘)
ℎ2 (𝑡𝑘 − 𝑡2𝑘)...
ℎ𝑀 (𝑡𝑘 − 𝑡𝑀𝑘 )

]]]]]]]]
]

𝑇

= −𝜎2 (𝑇𝑘ℎ)𝑇

(12)

Then, by applying the Kalman filtering with correlated
noises to the degradation process (10) and the augmented
observation equation (6) [24, 25], the optimal estimate of the
degradation state 𝑥 at time 𝑡𝑘 can be obtained in a recursive
form as follows.
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Firstly, the predicted estimate and its error covariance are
given by

𝑥𝑘|𝑘−1 = 𝐸 {𝑥 (𝑡𝑘) | 𝑌𝑘−1} = 𝑥𝑘−1|𝑘−1 + 𝜂 (𝑡𝑘 − 𝑡𝑘−1) ,
𝑃𝑘|𝑘−1 = var {𝑥 (𝑡𝑘) | 𝑌𝑘−1} = 𝑃𝑘−1 + 𝜎2 (𝑡𝑘 − 𝑡𝑘−1) . (13)

Secondly, the updated estimate and its error covariance
are got by fusing the asynchronous indirect observations𝑦𝑘 =[𝑦1𝑘 , . . . , 𝑦𝑀𝑘 ]𝑇 in (𝑡𝑘−1, 𝑡𝑘] as

𝑥𝑘 = 𝑥𝑘|𝑘−1 + 𝑃𝑘 [ℎ − 𝜎2𝑇𝑘ℎ𝑃𝑘|𝑘−1 ]
𝑇 (𝑀𝑘 (𝜎2, ℎ𝑚, 𝑟𝑚))−1 (𝑦𝑘 − ℎ𝑥𝑘|𝑘−1 + 𝜂𝑇𝑘ℎ) ,

𝑃𝑘 = 1
1/𝑃𝑘|𝑘−1 + [ℎ − 𝜎2𝑇𝑘ℎ/𝑃𝑘|𝑘−1]𝑇 (𝑀𝑘 (𝜎2, ℎ𝑚, 𝑟𝑚))−1 [ℎ − 𝜎2𝑇𝑘ℎ/𝑃𝑘|𝑘−1]𝑇 ,

(14)

where 𝑥𝑘 = 𝐸{𝑥(𝑡𝑘) | 𝑌𝑘}, 𝑃𝑘 = var{𝑥(𝑡𝑘) | 𝑌𝑘}, and

𝑀𝑘 (𝜎2, ℎ𝑚, 𝑟𝑚) = cov {𝜉𝑘}
− (cov {𝑤 (𝑡𝑘 − 𝑡𝑘−1) , 𝜉𝑘})𝑇 (cov {𝑤 (𝑡𝑘 − 𝑡𝑘−1) , 𝜉𝑘})𝑃𝑘|𝑘−1 . (15)

Remark 1. Note from (8), (9), and (12) that we know that𝑀
is also a function of unknown parameters {𝜎2, ℎ𝑚, 𝑟𝑚}.
3.2. Unknown Parameter Fusion Identification. As we know,
in real applications, the only information we have is the
indirect observations 𝑌𝑘 = {𝑦𝑖𝑘 , 𝑘 = 1, . . . , 𝑘, 𝑖 = 1, . . . ,𝑀}
from the 𝑀 asynchronous sensors, in that, to obtain the
fused estimate 𝑥𝑘 of degradation state according to (13)
and (14), we need to estimate unknown parameters Θ ={𝜂, 𝜎2, ℎ𝑚, 𝑟𝑚} at first. In this paper, the EM algorithm is
implemented to identifyΘ based on the online asynchronous
sensor observations.

EM algorithm is a widely used iterative algorithm for
maximum likelihood parameter estimation with unobserved
latent variables. Each iteration of EM algorithm involves two
steps: the expectation step (E-step) and themaximization step
(M-step). In the E-step, a function for the expectation of the
log-likelihood is established based on the current estimate
of the unknown parameter. In the 𝑀-step, the parameter
estimate is updated through maximizing the expected func-
tion found in the 𝐸-step, and then the updated parameter
estimate is utilized to determine the distribution of the latent
variables in the E-step of next iteration. By this way, EM
algorithm iterates between the two steps until convergence
[14, 18].

The joint log-likelihood function at time 𝑡𝑘 is defined as

𝐿𝑘 (Θ) = ln𝑝 (𝑦𝑘, 𝑥𝑘 | Θ)
= ln𝑝 (𝑥𝑘 | Θ) + ln𝑝 (𝑦𝑘 | 𝑥𝑘, Θ) , (16)

where {𝑦𝑘, 𝑥𝑘} is the complete data set. Based on the Gauss
white noise assumptions, we have 𝑦𝑘 ∼ 𝑁(ℎ𝑥𝑘 − 𝜂𝑇𝑘ℎ,Σ𝑘(𝜎2, 𝑟𝑚, ℎ𝑚)) and 𝑥𝑘 ∼ 𝑁(𝑥𝑘−1 + 𝜂(𝑡𝑘 − 𝑡𝑘−2), 𝜎2(𝑡𝑘 − 𝑡𝑘−1));
further it follows that

𝐿𝑘 (Θ) = ln
{{{{{

1
√2𝜋𝜎2 (𝑡𝑘 − 𝑡𝑘−1) exp{−

[𝑥𝑘 − 𝑥𝑘−1 − 𝜂 (𝑡𝑘 − 𝑡𝑘−1)]22𝜎2 (𝑡𝑘 − 𝑡𝑘−1) }}}}}}
+ ln {(2𝜋)−𝑀/2 Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚)−1/2 exp {−12 (𝑦𝑘 − ℎ𝑥𝑘 + 𝜂𝑇𝑘ℎ)𝑇 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1 (𝑦𝑘 − ℎ𝑥𝑘 + 𝜂𝑇𝑘ℎ)𝑇}}

= −12 ln [2𝜋𝜎2 (𝑡𝑘 − 𝑡𝑘−1)] −
[𝑥𝑘 − 𝑥𝑘−1 − 𝜂 (𝑡𝑘 − 𝑡𝑘−1)]22𝜎2 (𝑡𝑘 − 𝑡𝑘−1) − 𝑀2 ln (2𝜋) − 12 ln Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚)

− 12 (𝑦𝑘 − ℎ𝑥𝑘 + 𝜂𝑇𝑘ℎ)𝑇 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1 (𝑦𝑘 − ℎ𝑥𝑘 + 𝜂𝑇𝑘ℎ) .

(17)
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As we said, the EM algorithm consists of two steps: E-step
andM-step in each iteration.

(i) E-step

𝜗 (Θ | Θ̂𝑙𝑘) = 𝐸𝑋(𝑡𝑘)|𝑌𝑘 ,Θ̂(𝑙)𝑘 [ln𝑝 (𝑦𝑘, 𝑥𝑘 | Θ)] ∝ −12
⋅ ln (𝜎2) − 12𝜎2 (𝑡𝑘 − 𝑡𝑘−1) [𝑥2𝑘

(𝑙) + 𝑥2
𝑘−1|𝑘

(𝑙)

− 2𝑥𝑘𝑥𝑘−1|𝑘(𝑙) − 2𝜂 (𝑡𝑘 − 𝑡𝑘−1) (𝑥(𝑙)𝑘 − 𝑥(𝑙)𝑘−1|𝑘)
+ 𝜂2 (𝑡𝑘 − 𝑡𝑘−1)2] − 12 ln Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚)
− 12 [𝑦𝑇𝑘 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1 𝑦𝑘
− 2𝑦𝑇𝑘 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1 ℎ𝑥(𝑙)𝑘
+ 𝑥2
𝑘

(𝑙)ℎ𝑇 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1 ℎ
+ 𝜂ℎ𝑇𝑇𝑘 (Σ𝑘 (𝜎2, 𝑟𝑚, ℎ𝑚))−1
⋅ (2𝑦𝑘 − 2ℎ𝑥(𝑙)𝑘 + 𝜂𝑇𝑘ℎ)] ,

(18)

where 𝑥(𝑙)
𝑘
= 𝐸{𝑥(𝑡𝑘) | 𝑌𝑘, Θ̂(𝑙)𝑘 }, 𝑥2𝑘(𝑙) = 𝐸{𝑥2(𝑡𝑘) |𝑌𝑘, Θ̂(𝑙)

𝑘
} = (𝑥(𝑙)

𝑘
)2+𝑃(𝑙)
𝑘
, 𝑥(𝑙)
𝑘−1|𝑘

= 𝐸{𝑥(𝑡𝑘−1) | 𝑌𝑘, Θ̂(𝑙)𝑘 },
𝑥2
𝑘−1|𝑘

(𝑙) = 𝐸{𝑥2(𝑡𝑘−1) | 𝑌𝑘, Θ̂(𝑙)𝑘 } = (𝑥(𝑙)𝑘−1|𝑘)2 + 𝑃(𝑙)𝑘−1|𝑘,𝑥𝑘𝑥𝑘−1|𝑘(𝑙) = 𝐸{𝑥(𝑡𝑘)𝑥(𝑡𝑘−1) | 𝑌𝑘, Θ̂(𝑙)𝑘 } = 𝑃(𝑙)
𝑘,𝑘−1|𝑘

+
𝑥(𝑙)
𝑘−1|𝑘

𝑥(𝑙)
𝑘
, and

𝑥(𝑙)𝑘−1|𝑘 = 𝑥(𝑙)𝑘−1 + 𝑃(𝑙)
𝑘−1𝑃(𝑙)
𝑘|𝑘−1

(𝑥(𝑙)𝑘 − 𝑥(𝑙)𝑘|𝑘−1) ,

𝑃(𝑙)𝑘−1|𝑘 = 𝑃(𝑙)𝑘−1 − 𝑃(𝑙)
𝑘−1

(𝑃(𝑙)
𝑘|𝑘−1

)2 (𝑃
(𝑙)
𝑘|𝑘−1 − 𝑃(𝑙)𝑘 ) ,

𝑃(𝑙)𝑘,𝑘−1|𝑘 = 𝑃
(𝑙)
𝑘
𝑃(𝑙)
𝑘−1𝑃(𝑙)
𝑘|𝑘−1

,

(19)

where 𝑥(𝑙)
𝑘|𝑘−1

, 𝑃(𝑙)
𝑘|𝑘−1

, 𝑥(𝑙)
𝑘
, and 𝑃(𝑙)

𝑘
can be calculated

from (13) and (14) with Θ = {𝜂, 𝜎2, ℎ𝑚, 𝑟𝑚} replaced
with Θ(𝑙)

𝑘
= {𝜂(𝑙)
𝑘
, (𝜎2)(𝑙)
𝑘
, (ℎ𝑚)(𝑙)
𝑘
, (𝑟𝑚)(𝑙)
𝑘
}, respectively

[24].
(ii) M-step: at time 𝑡𝑘, the estimate ofΘ for the 𝑙+1th EM

iteration is calculated by

Θ̂𝑙+1𝑘 = argmax
Θ

𝜗 (Θ | Θ̂𝑙𝑘) . (20)

In order to get the value of Θ̂𝑙+1𝑘 ,GA [26, 27] is adopted
to solve the maximization problem of (20). GA is a

heuristic algorithm inspired by the process of natural
selection, which is widely used for solving optimiza-
tion problems. The evolution of GA is an iterative
process. It starts with an initial population, usually
generated randomly, and the fitness of each individual
in the population is evaluated, where the fitness
function is the objective function of the optimization
problem being solved. The new generation, which is
used for the next iteration, is then formed through
bioinspired operators, such as selection, mutation,
and crossover, based on the fitness. Generally, the
algorithm terminates when either a maximum num-
ber of generations has been generated or a satisfactory
fitness level has been reached for the population.

The iteration of the EM algorithm is terminated if the
convergence condition |Θ̂(𝑙+1) − Θ̂(𝑙) ≤ 𝜍| is satisfied, where𝜍 is a preset threshold.
3.3. RUL Fusion Estimation. From (3), we can see that the
RUL is defined as the first passage time of stochastic degra-
dation process 𝑋(𝑡). As we know, the first passage time of
Wiener process is inverse Gauss distribution, and thus the
probability distribution function 𝑓(ℓ𝑘 | 𝑌𝑘) of RUL can be
obtained by

𝑓 (ℓ𝑘 | 𝑌𝑘)
= (𝜔 − 𝑥𝑘) 𝜎2 + 𝑃𝑘𝜂√2𝜋 (𝑃𝑘 + 𝜎2𝑡𝑘)3

exp{−(𝜔 − 𝑥𝑘 − 𝜂ℓ𝑘)22 (𝑃𝑘 + 𝜎2ℓ𝑘) } ,
(21)

where 𝐸{ℓ𝑘 | 𝑌𝑘} = (𝜔 − 𝑥𝑘)/𝜂 and var{ℓ𝑘 | 𝑌𝑘} = ((𝜔 −𝑥𝑘)𝜎2 + 𝑃𝑘𝜂)/𝜂3.
4. Simulation Results

In this section, a simulation example is provided to illustrate
the feasibility and effectiveness of the proposed asynchronous
RUL fusion estimation algorithm.

The stochastic degradation is formulated by (1) with 𝜙 =0, 𝜂 = 0.3, and 𝜎2 = 0.01. We assume the degradation process
is monitored by two asynchronous sensors with sampling
periods 𝑇1 = 0.16 hours and 𝑇2 = 0.22 hours. The fusion
period is 𝑇𝑓 = 0.2 hours. The observation coefficients of the
two sensors are ℎ1 = 1.03 and ℎ2 = 0.76 with measurement
noise variances 𝑟1 = 0.46 and 𝑟2 = 0.55, respectively.
Obviously, the two sensors are asynchronous because of
different sampling frequencies.

The proposed asynchronous RUL fusion estimation algo-
rithm is used to estimate the RUL of the hidden degradation
process. Figure 2 gives the actual degradation path and the
estimated one. It can be seen from Figure 2 that the estimated
degradation path has good ability to track the actual changes.

In the simulation, the failure threshold 𝑤 is set to 11.3,
and the true failure time (i.e., the first passage time) of
the degradation path given in Figure 2 is at 40 hours. To
illustrate the effectiveness of the proposed fusion algorithm,
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the Probability Distribution Functions (PDFs) of RUL at
different time instants are compared in Figure 3, where the
PDFs drawnby solid lines are obtained by fusing observations
from both of the asynchronous sensors, while the dashed and
the dot dashed lines are results of single sensor 1 and sensor
2, respectively. In order to show this more clearly, the PDFs of
RUL at a specific time (36 hours) are also given in Figure 4.
It can be seen from Figures 3 and 4 that at each fusion time
instant the fused PDF ismore concentrated than that of single
sensor. Meanwhile, the mean of the fused estimate is nearer
to the true RUL (denoted with the asterisk). This means
that the fused estimate has smaller estimation error as well
as smaller error variation, in other words, better estimation
performance, than the estimate obtained from single sensor
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Figure 5: Comparison of the proposed algorithm and the approach
in [18] under synchronous scenario.

observations. Meanwhile, it can be noticed in Figure 3 that
the estimation error decreases with the increase of time.

In addition, it can be seen from Figure 1 that “syn-
chronous” can be regarded as a special case of “asyn-
chronous.” Therefore, the proposed asynchronous fusion
estimation algorithm is compared with the synchronous
fusion estimation method in [18] under synchronous sce-
nario in Figure 5, where 𝑇1 = 𝑇2 = 𝑇𝑓 = 0.2 hours. From
Figure 5, we can see that the proposed algorithmoutperforms
the fusion algorithm in [18], since it has smaller mean error
and more concentrated PDFs of RUL.
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5. Conclusion

In this paper, an asynchronous RUL fusion estimation
algorithm has been proposed for the latent degradation
process with multiple asynchronous monitoring sensors.The
asynchronous indirect observations are firstly synchronized
to the fusion time and then fused using the Kalman filtering
technology to get the estimate of the latent degradation
state with the correlations between the involved noise con-
sidered and the unknown model parameters identified by
the EM and GA. Finally, the fused estimate of the latent
degradation state and the updatedmodel parameters are used
to get the probability distribution of the RUL. Simulation
results demonstrate that fusion of multisource monitoring
information from multiple asynchronous sensors can reduce
the uncertainty in the systems and that improves the RUL
estimation preformation.

Due to the noise correlation introduced by the synchro-
nization process, GA is adopted in this paper to update the
estimate of unknownmodel parameters in the EM algorithm.
Further work can focus on deriving an analytical solution by
decollating the involved noises.
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