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A 1 + 1-dimensional coupled soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi
coordinates are introduced to straighten the flows, from which the algebrogeometric solutions of the coupled 1 + 1-dimensional
equations are obtained in terms of the Riemann theta functions.

1. Introduction

The study of explicit solutions for soliton equations is very
important in modern mathematics, physics, and other sci-
ences. There are several systematic approaches to obtain
explicit solutions of the soliton equations, such as the inverse
scattering transformation, the algebrogeometricmethod, and
the Hirota bilinear method (see, e.g., [1–4] and references
therein). Algebrogeometric (or quasiperiodic) solutions are
very important explicit solutions for soliton equations,
recently, based on the nonlinearization technique of Lax pairs
and direct method proposed by Cao [5]. This new scheme
is further shown to be a very powerful tool, through which
algebrogeometric solutions of (1+1)-dimensional and (2+1)-
dimensional continuous and discrete soliton equations can be
obtained; see Cao et al. [6, 7], Geng et al. [8, 9], and Dai and
Fan [10].

In this paper, we will construct the Hamiltonian structure
and search for the algebrogeometric solution of the following
coupled 1 + 1-dimensional soliton equations:

𝑞
𝑡
= 𝑟
𝑥𝑥

− 3𝑞
2
𝑟
𝑥
+ 𝑞
𝑥
𝑟
2
+ 2𝑞𝑟𝑟

𝑥
,

𝑟
𝑡
= 𝑞
𝑥𝑥

+ 3𝑟
2
𝑟
𝑥
− 𝑟
𝑥
𝑞
2
− 2𝑞𝑟𝑞

𝑥
.

(1)

Our purpose is to construct the Hamiltonian structure
and give the algebrogeometric solutions of the coupled 1 +

1-dimensional soliton equations based on its obtained Lax

pairs. The paper is organized as follows. In Section 2, we use
Lenard operator pairs to derive another form of the coupled
1 + 1-dimensional soliton equations. In Section 3, based
on the trace identity [11, 12], we construct the Hamiltonian
structure of the coupled 1 + 1-dimensional soliton equations.
In Section 4, based on the Lax pairs of the coupled 1 + 1-
dimensional soliton equations, variable separation technique
is used to translate the solution of the coupled 1 + 1-
dimensional soliton equations to solve ordinary differential
equations. In Section 5, a hyperelliptic Riemann surface
of genus 𝑁 and Abel-Jacobi coordinates are defined to
straighten the associated flows. Jacobi’s inverse problem is
discussed, from which the algebrogeometric solutions of the
coupled 1 + 1-dimensional soliton equations are constructed
in terms of the Riemann theta functions.

2. The Hierarchy and Lax Pairs of the Coupled
1 + 1-Dimensional Soliton Equations

In this section, we introduce the Lenard gradient sequence
{𝑆
𝑗
}
𝑗=0,1,2...

to derive the hierarchy and its stationary hierarchy
associated with (1) by the recursion relation:

𝐾𝑆
𝑗−1

= 𝐽𝑆
𝑗
, 𝑗 = 1, 2, 3, . . . . 𝑆

𝑗

󵄨󵄨󵄨󵄨󵄨(𝑢,V)=0
= 0,

𝑆
0
= (𝑞 − 𝑟, 𝑞 + 𝑟, 1)

𝑇

,

(2)
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where 𝑆
𝑗
= (𝑆
(1)

𝑗
, 𝑆
(2)

𝑗
, 𝑆
(3)

𝑗
) and operators (𝜕 = 𝜕/𝜕𝑥)

𝐾 = (

𝜕 0 0

0 𝜕 0

− (𝑞 + 𝑟) 𝑞 − 𝑟 𝜕

) ,

𝐽 = (

−2 0 2 (𝑞 − 𝑟)

0 2 −2 (𝑞 + 𝑟)

− (𝑞 + 𝑟) 𝑞 − 𝑟 𝜕

) .

(3)

A direct calculation gives from the recursion relation (2) that

𝑆
1
= (

(

−
1

2
(𝑞 + 𝑟) (𝑞 − 𝑟)

2

−
1

2
(𝑞
𝑥
− 𝑟
𝑥
)

−
1

2
(𝑞 + 𝑟)

2

(𝑞 − 𝑟) +
1

2
(𝑞
𝑥
+ 𝑟
𝑥
)

−
1

2
(𝑞 + 𝑟) (𝑞 − 𝑟)

)

)

,

𝑆
2
=

(
(
(
(
(
(
(
(
(
(
(

(

3

8
(𝑞 + 𝑟)

2

(𝑞 − 𝑟)
3

+
1

2
𝑟 (𝑞 − 𝑟) (𝑞

𝑥
− 𝑟
𝑥
) +

1

2
(𝑞 + 𝑟) (𝑞 − 𝑟) (𝑞

𝑥
− 𝑟
𝑥
)

+
1

4
(𝑞
𝑥𝑥

− 𝑟
𝑥𝑥
) +

1

4
(𝑞
𝑥
+ 𝑟
𝑥
) (𝑞 − 𝑟)

2

−
1

2
(𝑞 − 𝑟) 𝜕−1 (𝑞

𝑥
− 𝑟
𝑥
) 𝑟
𝑥

3

8
(𝑞 + 𝑟)

3

(𝑞 − 𝑟)
2

+
1

2
𝑟 (𝑞 + 𝑟) (𝑞

𝑥
− 𝑟
𝑥
) −

1

2
(𝑞 + 𝑟) (𝑞 − 𝑟) (𝑞

𝑥
+ 𝑟
𝑥
)

−
1

4
(𝑞
𝑥𝑥

− 𝑟
𝑥𝑥
) −

1

4
(𝑞
𝑥
− 𝑟
𝑥
) (𝑞 + 𝑟)

2

−
1

2
(𝑞 + 𝑟) 𝜕−1 (𝑞

𝑥
− 𝑟
𝑥
) 𝑟
𝑥

3

8
(𝑞 + 𝑟)

2

(𝑞 − 𝑟)
2

+
1

2
𝑟 (𝑞
𝑥
− 𝑟
𝑥
) −

1

2
𝜕−1 (𝑞

𝑥
− 𝑟
𝑥
) 𝑟
𝑥

)
)
)
)
)
)
)
)
)
)
)

)

.

(4)

Consider the spectral problem

𝜓
𝑥
= 𝑈𝜓, 𝑈 = (

𝜆 𝑞 + 𝑟

𝜆 (𝑞 − 𝑟) −𝜆
) , (5)

and the auxiliary problem

𝜓
𝑡
𝑚

= 𝑉
(𝑚)

𝜓, 𝑉
(𝑚)

= (

𝑉
(𝑚)

11
𝑉
(𝑚)

12

𝑉
(𝑚)

21
−𝑉
(𝑚)

11

), (6)

where

𝑉
(𝑚)

11
=

𝑚

∑
𝑗=0

𝑆
(3)

𝑗
𝜆
𝑚+1−𝑗

,

𝑉
(𝑚)

12
=

𝑚

∑
𝑗=0

𝑆
(2)

𝑗
𝜆
𝑚−𝑗

,

𝑉
(𝑚)

21
=

𝑚

∑
𝑗=0

𝑆
(1)

𝑗
𝜆
𝑚+1−𝑗

.

(7)

Then the compatibility condition of (5) and (6) is 𝑈
𝑡
𝑚

−

𝑉(𝑚)
𝑥

+ [𝑈,𝑉(𝑚)] = 0, which is equivalent to the hierarchy of
nonlinear evolution equations

𝑞
𝑡
𝑚

=
1

2
(𝑆
(2)

𝑚𝑥
+ 𝑆
(1)

𝑚𝑥
) ,

𝑟
𝑡
𝑚

=
1

2
(𝑆
(2)

𝑚𝑥
− 𝑆
(1)

𝑚𝑥
) .

(8)

In brief,

(𝑞
𝑡
𝑚

, 𝑟
𝑡
𝑚

)
𝑇

= 𝑋
𝑚
, 𝑚 ≥ 0, (9)

𝑋
𝑚

= (
𝜕 𝜕

𝜕 −𝜕
)(

𝑆
(2)

𝑚

𝑆(1)
𝑚

). (10)

The first two nontrivial equations are

𝑞
𝑡
0

= 𝑞
𝑥
, 𝑟

𝑡
0

= 𝑟
𝑥
,

𝑞
𝑡
1

= 𝑟
𝑥𝑥

− 3𝑞
2
𝑟
𝑥
+ 𝑞
𝑥
𝑟
2
+ 2𝑞𝑟𝑟

𝑥
,

𝑟
𝑡
1

= 𝑞
𝑥𝑥

+ 3𝑟
2
𝑟
𝑥
− 𝑟
𝑥
𝑞
2
− 2𝑞𝑟𝑞

𝑥
.

(11)

The second system is our coupled 1 + 1-dimensional
soliton equations (1).

Let𝜓 = (𝜓
1
, 𝜓
2
)
𝑇 and 𝜙 = (𝜙

1
, 𝜙
2
)
𝑇 be two basic solutions

of the spectral equations (5) and (6).We define amatrix𝑊 by

𝑊 =
1

2
(𝜙𝜓
𝑇
+ 𝜓𝜙
𝑇
) 𝜎 = (

𝑓 𝑔

ℎ −𝑓
) , 𝜎 = (

0 −1

1 0
) ,

(12)

in which 𝑓, 𝑔, and ℎ are three functions. It is easy to calculate
by (5) and (6) that

𝑊
𝑥
= [𝑈,𝑊] , 𝑊

𝑡
𝑚

= [𝑉
(𝑚)

,𝑊] , (13)
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which implies that 𝜕
𝑥
det𝑊 = 0, 𝜕

𝑡
𝑚

det𝑊 = 0. Equation (13)
can be written as

𝑓
𝑥
= −𝜆 (𝑞 − 𝑟) 𝑔 + (𝑞 + 𝑟) ℎ,

𝑔
𝑥
= −2 (𝑞 + 𝑟) 𝑓 + 2𝜆𝑔,

ℎ
𝑥
= 2𝜆 (𝑞 − 𝑟) 𝑓 − 2𝜆ℎ,

(14)

𝑓
𝑡
𝑚

= ℎ𝑉
(𝑚)

12
− 𝑔𝑉
(𝑚)

21
,

𝑔
𝑡
𝑚

= 2𝑔𝑉
(𝑚)

11
− 2𝑓𝑉

(𝑚)

12
,

ℎ
𝑡
𝑚

= 2𝑓𝑉
(𝑚)

21
− 2ℎ𝑉

(𝑚)

11
.

(15)

We suppose that the functions 𝑓, 𝑔, and ℎ are finite-order
polynomials in 𝜆:

𝑓 =

𝑁

∑
𝑗=0

𝑓
𝑗
𝜆
𝑁−𝑗+1

, 𝑔 =

𝑁

∑
𝑗=0

𝑔
𝑗
𝜆
𝑁−𝑗

, ℎ =

𝑁

∑
𝑗=0

ℎ
𝑗
𝜆
𝑁−𝑗

.

(16)

Substituting (16) into (14) yields

𝐾𝐺
𝑗−1

= 𝐽𝐺
𝑗
(𝑗 = 1, 2, . . . , 𝑁) , 𝐽𝐺

0
= 0,

𝐾𝐺
𝑁

= 0, 𝐺
𝑗
= (ℎ
𝑗
, 𝑔
𝑗
, 𝑓
𝑗
)
𝑇

.

(17)

It is easy to see that (17) implies

− (𝑞 + 𝑟) ℎ
𝑗
+ (𝑞 − 𝑟) 𝑔

𝑗
+ 𝑓
𝑗𝑥

= 0 (18)

and the equation 𝐽𝐺
0
= 0 has the general solution

𝐺
0
= 𝛼
0
𝑆
0
, (19)

where 𝛼
0
is constant of integration. Therefore, if we take (19)

as a starting point, then 𝐺
𝑗
can be determined recursively by

relation (17). In fact, noticing ker 𝐽 = {𝑐𝑆
0
|∀𝑐 ∈ R} and acting

with the operator (𝐽−1𝐾)
𝑘 upon (19), we obtain from (2) and

(17) that

𝐺
𝑘
=

𝑘

∑
𝑗=0

𝛼
𝑗
𝑆
𝑘−𝑗

, 𝑘 = 0, 1, . . . , 𝑁, (20)

where 𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑘
are integral constants. Substituting (20)

into (17) yields a certain stationary evolution equation:

𝛼
0
𝑋
𝑁
+ 𝛼
1
𝑋
𝑁−1

+ ⋅ ⋅ ⋅ + 𝛼
𝑁
𝑋
0
= 0, (21)

where

𝑋
𝑗
= (

𝜕 0

0 𝜕
)(

𝑆
(1)

𝑗

𝑆
(2)

𝑗

). (22)

This means that expression (16) is existent.

3. Hamiltonian Structure

Let

𝑉 = 𝑉 = (
𝑉
11

𝑉
12

𝑉
21

−𝑉
11

) , (23)

where

𝑉
11

= ∑
𝑗≥0

𝑆
(3)

𝑗
𝜆
−𝑗+1

, 𝑉
12

= ∑
𝑗≥0

𝑆
(2)

𝑗
𝜆
−𝑗
,

𝑉
21

= ∑
𝑗≥0

𝑆
(1)

𝑗
𝜆
−𝑗+1

.

(24)

It is easy to calculate

tr(𝑉𝜕𝑈

𝜕𝜆
) = 2𝑉

11
+ (𝑞 − 𝑟)𝑉

12

= ∑
𝑗≥1

(2𝑆
(3)

𝑗
+ (𝑞 − 𝑟) 𝑆

(2)

𝑗−1
) 𝜆
−𝑗+1

+ 2𝑆
(3)

0
𝜆,

tr(𝑉𝜕𝑈

𝜕𝑞
) = 𝜆𝑉

12
+ 𝑉
21

= ∑
𝑗≥0

(𝑆
(2)

𝑗
+ 𝑆
(1)

𝑗
) 𝜆
−𝑗+1

,

tr(𝑉𝜕𝑈

𝜕𝑟
) = −𝜆𝑉

12
+ 𝑉
21

= ∑
𝑗≥0

(−𝑆
(2)

𝑗
+ 𝑆
(1)

𝑗
) 𝜆
−𝑗+1

.

(25)

According to the trace identity [11, 12], we have

(

𝛿

𝛿𝑞

𝛿

𝛿𝑟

)(2𝑉
11

+ (𝑞 − 𝑟)𝑉
12
) = (𝜆

−𝑠 𝜕

𝜕𝜆
𝜆
𝑠
)(

𝜆𝑉
12

+ 𝑉
21

−𝜆𝑉
12

+ 𝑉
21

) .

(26)

Comparing the coefficients of 𝜆−𝑗+1, we obtain

(

𝛿

𝛿𝑞

𝛿

𝛿𝑟

)(2𝑆
(3)

𝑗
+ (𝑞 − 𝑟) 𝑆

(2)

𝑗−1
)=(−𝑗+ 2 +𝑠)(

𝑆
(2)

𝑗−1
+ 𝑆
(1)

𝑗−1

−𝑆
(2)

𝑗−1
+ 𝑆
(1)

𝑗−1

),

(27)

we set 𝑗 = 1 and then get 𝑠 = −1 and

(

𝛿

𝛿𝑞

𝛿

𝛿𝑟

)H
𝑗
= (

𝑆
(2)

𝑗−1
+ 𝑆
(1)

𝑗−1

−𝑆
(2)

𝑗−1
+ 𝑆
(1)

𝑗−1

) = (
1 1

−1 1
)(

𝑆
(2)

𝑗−1

𝑆
(1)

𝑗−1

),

(28)

whereH
𝑗
= (2𝑆
(3)

𝑗
+ (𝑞 − 𝑟)𝑆

(2)

𝑗−1
)/(−𝑗 + 1).

Thus the soliton equation (9) has aHamiltonian structure:

(
𝑞

𝑟
)
𝑡
𝑚

=
1

2
(
𝜕 𝜕

𝜕 −𝜕
)(

𝑆
(2)

𝑚

𝑆(1)
𝑚

) = 𝐽(

𝛿

𝛿𝑞

𝛿

𝛿𝑟

)H
𝑚+1

, 𝑚 ≥ 0,

(29)
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where

𝐽 =
1

2
(
𝜕 0

0 −𝜕
) . (30)

In speciality, the Hamiltonian structure of (1) is (𝑚 = 1):

H
2
=

1

8
(𝑞 + 𝑟)

2

(𝑞 − 𝑟)
2

−
𝑞𝑞
𝑥
− 2𝑟𝑟
𝑥
+ 𝑞𝑟
𝑥

2

+
𝜕−1 (𝑞

𝑥
− 𝑟
𝑥
) 𝑟
𝑥

2
.

(31)

4. Ordinary Differential Equations

In this section, (1) will be decomposed into two systems
of solvable ordinary differential equations. Without loss of
generality, let 𝛼

0
= 1. From (2), (17), and (20), we have

𝑓
0
= 1, 𝑔

0
= 𝑞 + 𝑟, ℎ

0
= 𝑞 − 𝑟,

𝑓
1
= −

1

2
(𝑞 + 𝑟) (𝑞 − 𝑟) + 𝛼

1
,

𝑔
1
= −

1

2
(𝑞 + 𝑟)

2

(𝑞 − 𝑟) +
1

2
(𝑞
𝑥
+ 𝑟
𝑥
) + 𝛼
1
(𝑞 + 𝑟) ,

ℎ
1
= −

1

2
(𝑞 + 𝑟) (𝑞 − 𝑟)

2

−
1

2
(𝑞
𝑥
− 𝑟
𝑥
) + 𝛼
1
(𝑞 − 𝑟) .

(32)

By using (16), we can write 𝑔 and ℎ as the following finite
products:

𝑔 = − (𝑞 + 𝑟)

𝑁

∏
𝑗=1

(𝜆 − 𝑢
𝑗
) ,

ℎ = (𝑞 − 𝑟)

𝑁

∏
𝑗=1

(𝜆 − V
𝑗
) .

(33)

Equation (33) implies by comparing the coefficients of
𝜆𝑁−1 that

𝑔
1
= − (𝑞 + 𝑟)

𝑁

∑
𝑗=1

𝑢
𝑗
, ℎ

1
= − (𝑞 + 𝑟)

𝑁

∑
𝑗=1

V
𝑗
. (34)

Thus from (32) and (34), we obtain

−
1

2
(𝑞 + 𝑟)

2

(𝑞 − 𝑟) +
1

2
(𝑞
𝑥
+ 𝑟
𝑥
) + 𝛼
1
(𝑞 + 𝑟)

= − (𝑞 + 𝑟)

𝑁

∑
𝑗=1

𝑢
𝑗
,

−
1

2
(𝑞 + 𝑟) (𝑞 − 𝑟)

2

−
1

2
(𝑞
𝑥
− 𝑟
𝑥
) + 𝛼
1
(𝑞 − 𝑟)

= − (𝑞 − 𝑟)

𝑁

∑
𝑗=1

V
𝑗
.

(35)

Let us consider the function det𝑊which is a (2𝑁+2)th-
order polynomial in 𝜆with constant coefficients of the 𝑥-flow
and 𝑡
𝑚
-flow:

− det𝑊 = 𝑓
2
+ 𝑔ℎ =

2𝑁+2

∏
𝑗=1

(𝜆 − 𝜆
𝑗
) = 𝑅 (𝜆) . (36)

Substituting (16) into (36) and comparing the coefficients of
𝜆2𝑁+1 yield

2𝑓
0
𝑓
1
+ 𝑔
0
ℎ
0
= −

2𝑁+2

∑
𝑗=1

𝜆
𝑗
, (37)

which together with (32) gives

𝛼
1
= −

1

2

2𝑁+2

∑
𝑗=1

𝜆
𝑗
. (38)

From (36) we see that

𝑓|
𝜆=𝑢
𝑘

= √𝑅 (𝑢
𝑘
), 𝑓|

𝜆=V
𝑘

= √𝑅 (V
𝑘
). (39)

Again by using (14) and (33), we obtain

𝑔
𝑥

󵄨󵄨󵄨󵄨𝜆=𝑢
𝑘

= − (𝑞 + 𝑟) 𝑢
𝑘𝑥

𝑁

∏
𝑗=1,𝑗 ̸= 𝑘

(𝑢
𝑘
− 𝑢
𝑗
) = −2(𝑞 + 𝑟)𝑓

󵄨󵄨󵄨󵄨𝜆=𝑢
𝑘

,

ℎ
𝑥

󵄨󵄨󵄨󵄨𝜆=V
𝑘

= − (𝑞 − 𝑟) V
𝑘𝑥

𝑁

∏
𝑗=1,𝑗 ̸= 𝑘

(V
𝑘
− V
𝑗
) = 2V

𝑘
(𝑞 − 𝑟)𝑓

󵄨󵄨󵄨󵄨𝜆=V
𝑘

,

(40)

which together with (39) gives

𝑢
𝑘𝑥

=
2√𝑅 (𝑢

𝑘
)

∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(𝑢
𝑘
− 𝑢
𝑗
)
, 1 ≤ 𝑘 ≤ 𝑁,

V
𝑘,𝑥

=
−2√𝑅 (V

𝑘
)

∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(V
𝑘
− V
𝑗
)
, 1 ≤ 𝑘 ≤ 𝑁.

(41)
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In away similar to the above expression, by using (6) (𝑚 =

1, 𝑡
1
= 𝑡), (15), and (39), we arrive at the evolution of {𝑢

𝑘
} and

{V
𝑘
} along the 𝑡

𝑚
-flow:

𝑢
𝑘,𝑡

=
2𝑓|
𝜆=𝑢
𝑘

𝑉
(1)

12
|
𝜆=𝑢
𝑘

(𝑞 + 𝑟)∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(𝑢
𝑘
− 𝑢
𝑗
)

=
2√𝑅 (𝑢

𝑘
) [𝑢
𝑘
−(1/2) (𝑞 + 𝑟) (𝑞 − 𝑟) +(1/2) 𝜕 ln (𝑞 −𝑟)]

∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(𝑢
𝑘
− 𝑢
𝑗
)

,

(42)

V
𝑘,𝑡

= −
2𝑓|
𝜆=V
𝑘

𝑉
(1)

21
|
𝜆=V
𝑘

(𝑞 − 𝑟)∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(V
𝑘
− V
𝑗
)

= (−2√𝑅 (V
𝑘
) [V
2

𝑘
−

1

2
(𝑞 + 𝑟) (𝑞 − 𝑟) V

𝑘

+
1

2
𝜕 ln (𝑞 − 𝑟) V

𝑘
])(

𝑁

∏
𝑗=1,𝑗 ̸= 𝑘

(V
𝑘
− V
𝑗
))

−1

.

(43)

Therefore, if the (2𝑁 + 2) distinct parameters
𝜆
1
, 𝜆
2
, . . . , 𝜆

2𝑁+2
are given and let 𝑢

𝑘
(𝑥, 𝑡) and V

𝑘
(𝑥, 𝑡)

be distinct solutions of ordinary differential equations (41),
(42), and (43), then (𝑞, 𝑟) determined by (35) is a solution of
the coupled 1 + 1-dimensional equations (1).

5. Algebrogeometric Solutions

In this section, we will give the algebrogeometric solutions
of the coupled 1 + 1-dimensional equation (1). To this end,
we first introduce the Riemann surface Γ of the hyperelliptic
curve

Γ : 𝜁
2
= 𝑅 (𝜆) , 𝑅 (𝜆) =

2𝑁+2

∏
𝑗=1

(𝜆 − 𝜆
𝑗
) , (44)

with genus 𝑁 on Γ. On Γ there are two infinite points ∞
1

and ∞
2
, which are not branch points of Γ. We equip Γ with

a canonical basis of cycles: 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁
; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑁
which

are independent and have intersection numbers as follows:

𝑎
𝑖
∘ 𝑎
𝑗
= 0, 𝑏

𝑖
∘ 𝑏
𝑗
= 0,

𝑎
𝑖
∘ 𝑏
𝑗
= 𝛿
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(45)

We will choose the following set as our basis:

𝜔̃
𝑙
=

𝜆𝑙−1𝑑𝜆

√𝑅 (𝜆)
, 𝑙 = 1, 2, . . . , 𝑁, (46)

which are linearly independent of each other on Γ, and let

𝐴
𝑖𝑗
= ∫
𝑎
𝑗

𝜔̃
𝑖
, 𝐵

𝑖𝑗
= ∫
𝑏
𝑗

𝜔̃
𝑖
. (47)

It is possible to show that the matrices 𝐴 = (𝐴
𝑖𝑗
) and 𝐵 =

(𝐵
𝑖𝑗
) are 𝑁 × 𝑁 invertible matrices [13, 14]. Now we define

the matrices 𝐶 and 𝜏 by 𝐶 = (𝐶
𝑖𝑗
) = 𝐴−1, 𝜏 = (𝜏

𝑖𝑗
) = 𝐴−1𝐵.

Then the matrix 𝜏 can be shown to be symmetric (𝜏
𝑖𝑗
= 𝜏
𝑗𝑖
)

and it has a positive-definite imaginary part (Im 𝜏 > 0). If we
normalize 𝜔̃

𝑗
into the new basis 𝜔

𝑗

𝜔
𝑗
=

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
𝜔̃
𝑙
, 𝑙 = 1, 2, . . . , 𝑁, (48)

then we have

∫
𝑎
𝑗

𝜔
𝑗
=

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
∫
𝑎
𝑗

𝜔̃
𝑙
=

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
𝐴
𝑙𝑖
= 𝛿
𝑗𝑖
,

∫
𝑏
𝑗

𝜔
𝑖
=

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
∫
𝑏
𝑗

𝜔
𝑙
=

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
𝐵
𝑙𝑖
= 𝜏
𝑗𝑖
.

(49)

Nowwe introduce the Abel-Jacobi coordinates as follows:

𝜌
(1)

𝑗
(𝑥, 𝑡) =

𝑁

∑
𝑘=1

∫
𝑝(𝑢
𝑘
(𝑥,𝑡))

𝑝
0

𝜔
𝑗
=

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

∫
𝑢
𝑘

𝜆(𝑝
0
)

𝐶
𝑗𝑙

𝜆𝑙−1𝑑𝜆

√𝑅 (𝜆)
,

(50)

𝜌
(2)

𝑗
(𝑥, 𝑡) =

𝑁

∑
𝑘=1

∫
𝑝(V
𝑘
(𝑥,𝑡))

𝑝
0

𝜔
𝑗
=

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

∫
V
𝑘
(𝑥,𝑡)

𝜆(𝑝
0
)

𝐶
𝑗𝑙

𝜆𝑙−1𝑑𝜆

√𝑅 (𝜆)
,

(51)

where 𝑝(𝑢
𝑘
(𝑥, 𝑡)) = (𝑢

𝑘
, √𝑅(𝑢

𝑘
)), 𝑝(V

𝑘
(𝑥, 𝑡)) = (V

𝑘
, √𝑅(V

𝑘
)),

and 𝜆(𝑝
0
) is the local coordinate of 𝑝

0
. From (42) and (50),

we get

𝜕
𝑥
𝜌
(1)

𝑗
=

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

𝐶
𝑗𝑙

𝑢𝑙−1
𝑘

𝑢
𝑘𝑥

√𝑅 (𝑢
𝑘
)

=

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
𝑢𝑙−1
𝑘

∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(𝑢
𝑘
− 𝑢
𝑗
)
,

(52)

which implies

𝜕
𝑥
𝜌
(1)

𝑗
= 2𝐶
𝑗𝑁

= Ω
(1)

𝑗
, 𝑗 = 1, 2, . . . , 𝑁. (53)

With the help of the following equality

𝑁

∑
𝑘=1

𝑢𝑙−1
𝑘

∏
𝑁

𝑗=1,𝑗 ̸= 𝑘
(𝑢
𝑘
− 𝑢
𝑗
)
= 𝛿
𝑙𝑁
, 𝑙 = 1, 2, . . . , 𝑁, (54)

in a similar way, we obtain from (50), (51), (41), (42), and (43)
that

𝜕
𝑡
𝜌
(1)

𝑗
= 2

𝑁

∑
𝑙=1

𝐶
𝑗𝑙
(

𝑁

∑
𝑖=1

𝑢
𝑖
) − 𝐶

𝑗𝑁
(𝑞 + 𝑟) (𝑞 − 𝑟)

+ 𝐶
𝑗𝑁

𝜕 ln (𝑞 − 𝑟) = Ω
(2)

𝑗
,

𝜕
𝑥
𝜌
(2)

𝑗
= −Ω
(1)

𝑗
, 𝑗 = 1, 2, . . . , 𝑁,

𝜕
𝑡
𝜌
(2)

𝑗
= −Ω
(2)

𝑗
, 𝑗 = 1, 2, . . . , 𝑁.

(55)
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On the basis of these results, we obtain the following:

𝜌
(1)

𝑗
(𝑥, 𝑡) = Ω

(1)

𝑗
𝑥 + Ω

(2)

𝑗
𝑡 + 𝛾
(1)

𝑗
,

𝜌
(2)

𝑗
(𝑥, 𝑡) = −Ω

(1)

𝑗
𝑥 − Ω

(2)

𝑗
𝑡 + 𝛾
(2)

𝑗
,

(56)

where 𝛾(𝑖)
𝑗
(𝑖 = 1, 2) are constants and

𝛾
(1)

𝑗
=

𝑁

∑
𝑘=1

∫
𝑝(𝑢̃
𝑘
(0,0))

𝑝
0

𝜔
𝑗
, 𝛾

(2)

𝑗
=

𝑁

∑
𝑘=1

∫
𝑝(Ṽ
𝑘
(0,0))

𝑝
0

𝜔
𝑗
,

𝜌
(1)

= (𝜌
(1)

1
, 𝜌
(1)

2
, . . . , 𝜌

(1)

𝑁
)
𝑇

,

𝜌
(2)

= (𝜌
(2)

1
, 𝜌
(2)

2
, . . . , 𝜌

(2)

𝑁
)
𝑇

,

Ω
(𝑚)

= (Ω
(𝑚)

1
, Ω
(𝑚)

2
, . . . , Ω

(𝑚)

𝑁
)
𝑇

,

𝛾
(𝑚)

= (𝛾
(𝑚)

1
, 𝛾
(𝑚)

2
, . . . , 𝛾

(𝑚)

𝑁
)
𝑇

, 𝑚 = 1, 2.

(57)

Now we introduce the Abel mapA(𝑝):

A (𝑝) = ∫
𝑝

𝑝
0

𝜔, 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
)
𝑇

,

A(∑
𝑘

𝑝
𝑘
) = ∑𝑛

𝑘
A (𝑝
𝑘
)

(58)

and Abel-Jacobi coordinates:

𝜌
(1)

= A(

𝑁

∑
𝑘=1

𝑝 (𝑢
𝑘
)) =

𝑁

∑
𝑘=1

∫
𝑝(𝑢
𝑘
)

𝑝
0

𝜔,

𝜌
(2)

= A(

𝑁

∑
𝑘=1

𝑝 (V
𝑘
)) =

𝑁

∑
𝑘=1

∫
𝑝(V
𝑘
)

𝑝
0

𝜔.

(59)

According to the Riemann theorem [13, 14], there exists a
Riemann constant vector𝑀 ∈ C𝑁 such that the function

𝐹
(𝑚)

(𝜆) = 𝜃 (A (𝑝 (𝜆)) − 𝜌
(𝑚)

− 𝑀
(𝑚)

) , 𝑚 = 1, 2, (60)

has exactly𝑁 zeros at𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑁
for𝑚 = 1or V

1
, V
2
, . . . , V

𝑁

for𝑚 = 2. Tomake the function single valued, the surface Γ is
cut along all 𝑎

𝑘
, 𝑏
𝑘
to form a simple connected region, whose

boundary is denoted by 𝛾. By [13, 14], the integrals

𝐼 (Γ) =
1

2𝜋𝑖
∫
𝛾

𝜆𝑑 ln𝐹
(𝑚)

, 𝑚 = 1, 2, (61)

are constants independent of 𝜌(1) and 𝜌(2) with

𝐼 = 𝐼 (Γ) =

𝑁

∑
𝑗=1

∫
𝑎
𝑗

𝜆𝜔
𝑗
. (62)

By the residue theorem, we have
𝑁

∑
𝑗=1

𝑢
𝑗
= 𝐼 −

2

∑
𝑠=1

Res
𝜆=∞
𝑠

𝜆𝑑 ln𝐹
(1)

(𝜆) ,

𝑁

∑
𝑗=1

V
𝑗
= 𝐼 −

2

∑
𝑠=1

Res
𝜆=∞
𝑠

𝜆𝑑 ln𝐹
(2)

(𝜆) .

(63)

Here we need only to compute the residues in (63). In a
way similar to calculations in [10], we arrive at

Res
𝜆=∞
𝑠

𝜆𝑑 ln𝐹
(𝑚)

(𝜆) = (−1)
𝑠+𝑚

𝜕 ln 𝜃
(𝑚)

𝑠
,

𝑚 = 1, 2; 𝑠 = 1, 2,

(64)

where

𝜃
(1)

𝑠
= 𝜃 (Ω

(1)
𝑥 + Ω

(2)
𝑡 + 𝜉
𝑠
) ,

𝜃
(2)

𝑠
= 𝜃 (−Ω

(1)
𝑥 − Ω

(2)
𝑡 + 𝜂
𝑠
) ,

(65)

and 𝜉
𝑠
and 𝜂
𝑠
are constants.Thus from (63) and (64), we arrive

at

𝑁

∑
𝑗=1

𝑢
𝑗
= 𝐼 − 𝜕 ln

𝜃
(1)

1

𝜃
(1)

2

,

𝑁

∑
𝑗=1

V
𝑗
= 𝐼 − 𝜕 ln

𝜃
(2)

2

𝜃
(2)

1

. (66)

Substituting (66) into (35), we get an algebrogeometric
solution for the coupled 1 + 1-dimensional soliton equations
(1):

𝑞 =
𝐴 (𝑡)

2
exp(−𝜕

−1

2𝑁+2

∑
𝑗=1

𝜆
𝑗
+ 2𝜕
−1
𝐼 − 2 ln

𝜃
(2)

2

𝜃
(2)

1

−𝜕
−1 exp(−2 ln

𝜃
(2)

2
𝜃
(1)

2

𝜃
(2)

1
𝜃
(1)

1

))

+
𝐴 (𝑡)

2
exp(𝜕

−1

2𝑁+2

∑
𝑗=1

𝜆
𝑗
+ 2𝜕
−1
𝐼 − 2 ln

𝜃
(2)

1

𝜃
(1)

2

+𝜕
−1 exp(−2 ln

𝜃
(2)

2
𝜃
(1)

2

𝜃
(2)

1
𝜃
(1)

1

)) ,

(67)

𝑟 =
𝐴 (𝑡)

2
exp(𝜕

−1

2𝑁+2

∑
𝑗=1

𝜆
𝑗
+ 2𝜕
−1
𝐼 − 2 ln

𝜃
(2)

1

𝜃
(1)

2

+𝜕
−1 exp(−2 ln

𝜃
(2)

2
𝜃
(1)

2

𝜃
(2)

1
𝜃
(1)

1

))

−
𝐴 (𝑡)

2
exp(−𝜕

−1

2𝑁+2

∑
𝑗=1

𝜆
𝑗
+ 2𝜕
−1
𝐼 − 2 ln

𝜃
(2)

2

𝜃
(2)

1

−𝜕
−1 exp(−2 ln

𝜃
(2)

2
𝜃
(1)

2

𝜃
(2)

1
𝜃
(1)

1

)) ,

(68)

where 𝐴(𝑡) is arbitrary complex functions about variable 𝑡.
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