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Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system
that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions
and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf
bifurcation that occurs as the freestream velocity is increased and to analytically predict the
amplitude and frequency of the ensuing limit cycle oscillations (LCO). It is shown that linear
control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains
remain a function of the speed. On the other hand, nonlinear control can be effciently implemented
to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the
LCO amplitude.

1. Introduction

The response of an aeroelastic system is governed by a combination of linear and nonlinear
dynamics. When combined, the nonlinearities (geometric, inertia, free-play, damping, and/or
aerodynamics) lead to different behavior [1–3], including multiple equilibria, bifurcations,
limit cycles, chaos, and various types of resonances (internal and super/subharmonic) [4]. A
generic nonlinear system that has been used to characterize aeroelastic behavior and dynamic
instabilities is a two-dimensional rigid airfoil undergoing pitch and plunge motions [5, 6]. As
the parameters of this system (e.g., freestream velocity) are varied, changes may occur in
its behavior. Of particular interest is its response around a bifurcation point. Depending on
the relative magnitude and type of nonlinearity, the bifurcation can be of the subcritical or
supercritical type. Hence, one needs to consider the combined effects of all nonlinearities
to predict the system’s response. Furthermore, the nonlinearities provide an opportunity to
implement a combination of linear and nonlinear control strategies to delay the occurrence
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of the bifurcation (i.e., increase the allowable flight speed) and avoid catastrophic behavior
of the system (subcritical Hopf bifurcation) by suppressing or even alleviating the large-
amplitude LCO and eliminating LCO that may take place at speeds lower than the nominal
flutter speed.

Different methods have been proposed to control bifurcations and achieve desirable
nonlinear effects in complex systems. Abed and Fu [7, 8] proposed a nonlinear feedback
control to suppress discontinuous bifurcations of fixed points, such as subcritical Hopf
bifurcations, which can result in loss of synchronism or voltage collapse in power systems.
For the pitch-plunge airfoil, Strganac et al. [9] used a trailing edge flap to control a two-
dimensional nonlinear aeroelastic system. They showed that linear control strategies may
not be appropriate to suppress large-amplitude LCO and proposed a nonlinear controller
based on partial feedback linearization to stabilize the LCO above the nominal flutter velocity.
Librescu et al. [10] implemented an active flap control for 2D wing-flap systems operating in
an incompressible flow field and exposed to a blast pulse and demonstrated its performances
in suppressing flutter and reducing the vibration level in the subcritical flight speed range.
Kang [11] developed a mathematical framework for the analysis and control of bifurcations
and used an approach based on the normal form to develop a feedback design for delaying
and stabilizing bifurcations. His approach involves a preliminary state transformation and
center manifold reduction.

In this work, we present a methodology to convert subcritical bifurcations of
aeroelastic systems into supercritical bifurcations. This methodology involves the following
steps: (i) reduction of the dynamics of the system into a one-dimensional dynamical system
using the method of multiple scales and then (ii) designing a nonlinear feedback controller
to convert subcritical to supercritical bifurcations and reduce the amplitude of any ensuing
LCO.

2. Representation of the Aeroelastic System

The aeroelastic system, considered in this work, is modeled as a rigid wing undergoing two-
degree-of-freedom motions, as presented in Figure 1. The wing is free to rotate about the
elastic axis (pitch motion) and translate vertically (plunge motion). Denoting by h and α
the plunge deflection and pitch angle, respectively, we write the governing equations of this
system as [4, 9]
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mWxαb Iα

)(
ḧ

α̈

)
+

(
ch 0
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)(
ḣ
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)
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α

)
=

(
−L
M

)
, (2.1)

where mT is the total mass of the wing and its support structure, mW is the wing mass
alone, Iα is the mass moment of inertia about the elastic axis, b is the half chord length,
xα = rcg/b is the nondimensionalized distance between the center of mass and the elastic
axis, ch and cα are the plunge and pitch structural damping coefficients, respectively, L and
M are the aerodynamic lift and moment about the elastic axis, and kh and kα are the structural
stiffnesses for the plunge and pitch motions, respectively. These stiffnesses are approximated
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Figure 1: Sketch of a two-dimensional airfoil.

in polynomial form by

kα(α) = kα0 + kα1α + kα2α
2 + · · · ,

kh(h) = kh0 + kh1h + kh2h
2 + · · · .

(2.2)

The aerodynamic loads are evaluated using a quasi-steady approximation with a stall model
[9] and written as

L = ρU2bclα

(
αeff − csα3

eff

)
,

M = ρU2b2cmα

(
αeff − csα3

eff

)
,

(2.3)

where U is the freestream velocity, clα and cmα are the aerodynamic lift and moment
coefficients, and cs is a nonlinear parameter associated with stall. The effective angle of attack
due to the instantaneous motion of the airfoil is given by [9]

αeff = α +
ḣ

U
+
(

1
2
− a
)
b
α̇

U
, (2.4)

where a is the nondimensionalized distance from the midchord to the elastic axis.
For the sake of simplicity, we define the state variables

Y =

⎛
⎜⎜⎜⎜⎜⎝
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⎞
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⎞
⎟⎟⎟⎟⎟⎠, (2.5)

and write the equations of motion in the form

Ẏ = F(Y, U), (2.6)
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Table 1: System variables.

d = mTIα −m2
Wx

2
αb

2
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3cmα)/d
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where
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⎛
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The set of new variables that are used in (2.7) in terms of physical parameters is provided in
Table 1. The original system, (2.6), is then rewritten as

Ẏ = A(U)Y +Q(Y,Y) + C(Y,Y,Y), (2.8)

whereQ(Y,Y) andC(Y,Y,Y) are, respectively, the quadratic and cubic vector functions of the
state variables collected in the vector Y.

To determine the system’s stability, we consider the linearized governing equations,
which are written in a first-order differential form as

Ẏ = A(U)Y, (2.9)

where

A(U) =

⎛
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Figure 2: Variations of (a) damping (Real(λj)) and (b) frequencies (Imag(λj)) with the freestream velocity
U.

The 4 × 4 matrix A(U) has a set of four eigenvalues, {λj , j = 1, 2, . . . , 4}. These eigenvalues
determine the stability of the trivial solution of (2.6). If the real parts of all of the λj are
negative, the trivial solution is asymptotically stable. On the other hand, if the real part of one
or more eigenvalues is positive, the trivial solution is unstable. The flutter speedUf , for which
one or more eigenvalues have zero real parts, corresponds to the onset of linear instability.
For the specific values given in [9], Figures 2(a) and 2(b) show, respectively, variations of the
real and imaginary parts of the λj with U, which, respectively, correspond to the damping
and frequencies of the plunge and pitch motions. We note that the damping of two modes
becomes positive at Uf = 9.1242 m/s, which corresponds to the flutter speed at which the
aeroelastic system undergoes a Hopf bifurcation.

3. Static Feedback Control

To manage the Hopf bifurcation and achieve desirable nonlinear dynamics, we follow Nayfeh
and Balachandran [12] and use a static feedback control. To the system given by (2.6), we add
a static feedback u(Y), which includes linear, LuY, quadratic Qu(Y,Y), and cubic Cu(Y,Y,Y)
components; that is,

u(Y) = LuY +Qu(Y,Y) + Cu(Y,Y,Y). (3.1)

Hence, the controlled system takes the form

Ẏ = F(Y, U) + u(Y). (3.2)

3.1. Normal Form of Hopf Bifurcation

To compute the normal form of the Hopf bifurcation of (3.2) near U = Uf , we follow Nayfeh
and Balachandran [12] and introduce a small nondimensional parameter ε as a book keeping
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parameter. Defining the velocity perturbation as a ratio of the flutter speed σUUf , we write
U = Uf + ε2σUUf and seek a third-order approximate solution of (3.2) in the form

Y(t, σU, σα, σh) = εY1(T0, T2) + ε2Y2(T0, T2) + ε3Y3(T0, T2) + · · · , (3.3)

where the time scales Tm = εmt. In terms of these scales, the time derivative d/dt is written as

d

dt
=

∂

∂T0
+ ε2 ∂

∂T2
+ · · · = D0 + ε2D2 + · · · . (3.4)

Scaling Lu as ε2Lu, substituting (3.3) and (3.4) into (3.2), and equating coefficients of like
powers of ε, we obtain

Order (ε),

D0Y1 −A
(
Uf

)
Y1 = 0, (3.5)

Order (ε2),

D0Y2 −A
(
Uf

)
Y2 = Q(Y1,Y1) +Qu(Y1,Y1), (3.6)

Order (ε3),

D0Y3 −A
(
Uf

)
Y3 = −D2Y1 + σUBY1 + LuY1 + 2[Q(Y1,Y2) +Qu(Y1,Y2)]

+ C(Y1,Y1,Y1) + Cu(Y1,Y1,Y1),
(3.7)

where

B = −2k1U
2
f I1 − 2k2U

2
f I2, I1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, I2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (3.8)

The general solution of (3.5) is the superposition of four linearly independent solutions
corresponding to the four eigenvalues: two of these eigenvalues have negative real parts and
the other two are purely imaginary (±iω). Because the two solutions corresponding to the
two eigenvalues with negative real parts decay as T0 → ∞, we retain only the nondecaying
solutions and express the general solution of the first-order problem as

Y1(T0, T2) = η(T2)peiωT0 + η(T2)pe−iωT0 , (3.9)

where η(T2) is determined by imposing the solvability condition at the third-order level and
p is the eigenvector of A(Uf) corresponding to the eigenvalue iω; that is,

A
(
Uf

)
p = iωp. (3.10)
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Substituting (3.9) into (3.6) yields

D0Y2 −A
(
Uf

)
Y2 = [Q(p,p) +Qu(p,p)]η2e2iωT0 + 2[Q(p,p) +Qu(p,p)]ηη

+ [Q(p,p) +Qu(p,p)]η
2e−2iωT0 .

(3.11)

The solution of (3.11) can be written as

Y2 = (ζ2 + ζ2u)η2e2iωT0 + 2(ζ0 + ζ0u)ηη +
(
ζ2 + ζ2u

)
η2e−2iωT0 , (3.12)

where

[
2iωI −A

(
Uf

)]
ζ2 = Q(p,p),

[
2iωI −A

(
Uf

)]
ζ2u = Qu(p,p),

A
(
Uf

)
ζ0 = −Qu(p,p), A

(
Uf

)
ζ0u = −Qu(p,p).

(3.13)

Substituting (3.9) and (3.12) into (3.7), we obtain

D0Y3 −A
(
Uf

)
Y3 = −

[
D2ηp − (σUB + Lu)ηp

− (4Q(p, ζ0) + 2Q(p, ζ2)

+ 3C(p,p,p) + 4Qu(p, ζ0) + 2Qu(p, ζ2)

+3Cu(p,p,p) + 4Q(p, ζ0u) + 2Q(p, ζ2u))η2η
]
eiωT0 + cc + NST,

(3.14)

where cc stands for the complex conjugate of the preceding terms and NST stands for terms
that do not produce secular terms. We let q be the left eigenvector of A(Uf) corresponding to
the eigenvalue iω; that is,

A
(
Uf

)Tq = iωq. (3.15)

We normalize it so that qTp = 1. Then, the solvability condition requires that terms
proportional to eiωT0 in (3.14) be orthogonal to q. Imposing this condition, we obtain the
following normal of the Hopf bifurcation:

D2η = β̂η + Λ̂η2η, (3.16)

where

β̂ = β + βu, (3.17)
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with

β = qTσUBp, βu = qTLup,

Λ̂ = Λ + Λu,
(3.18)

with

Λ = 4qTQ(p, ζ0) + 2qTQ(p, ζ2) + 3qTC(p,p,p),

Λu = 4qTQu(p, ζ0) + 2qTQu(p, ζ2) + 3qTCu(p,p,p)

+ 4qTQ(p, ζ0u) + 2qTQ(p, ζ2u).

(3.19)

Letting η = (1/2)a exp(iθ) and separating the real and imaginary parts in (3.16), we obtain
the following alternate normal form of the Hopf bifurcation:

ȧ = β̂ra +
1
4
Λ̂ra

3, (3.20)

θ̇ = β̂i +
1
4
Λ̂ia

2, (3.21)

where (·)r and (·)i stand for the real and imaginary parts, respectively, a is the amplitude and
θ̇ is the frequency of the oscillatory motion associated with the Hopf bifurcation.

We note that, because the a component is independent of θ, the system’s stability is
reduced to a one-dimensional dynamical system given by (3.20). Assuming that Λ̂r /= 0, a
admits three steady-state solutions, namely,

a = 0, a = ±

√√√√−4β̂r
Λ̂r

. (3.22)

The trivial fixed point of (3.20) corresponds to the fixed point (0, 0) of (3.2), and a nontrivial
fixed point (i.e., a/= 0) of (3.20) corresponds to a periodic solution of (3.2). The origin is
asymptotically stable when β̂r < 0, unstable when β̂r > 0, unstable when β̂r = 0 and Λ̂r > 0,
and asymptotically stable when β̂r = 0 and Λ̂r < 0. On the other hand, the nontrivial fixed
points exist when −β̂rΛ̂r > 0. They are stable when β̂r > 0 and Λ̂r < 0 (supercritical Hopf
bifurcation) and unstable when β̂r < 0 and Λ̂r > 0 (subcritical Hopf bifurcation). We note
that a stable nontrivial fixed point of (3.20) corresponds to a stable periodic solution of (3.2).
Likewise, an unstable nontrivial fixed point of (3.20) corresponds to an unstable periodic
solution of (3.2).

Therefore, to delay the occurrence of Hopf bifurcation (i.e., stabilize the aeroelastic
system at speeds higher than the flutter speed), one needs to set the real part of β̂ to a
negative value by appropriately managing the linear control represented by Lu in (3.2). To
eliminate subcritical instabilities and limit LCO amplitudes to small values at speeds higher
than the flutter speed (supercritical Hopf bifurcation which is a favorable instability for such
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systems), the nonlinear feedback control given by Qu(Y,Y) +Cu(Y,Y,Y) should be chosen so
that Real(Λ + Λu) < 0.

3.2. Case Study

To demonstrate the linear and nonlinear control strategies, we consider an uncontrolled case
(i.e., u(Y) = 0) in which only the pitch structural nonlinearity is taken into account; that
is, kh1 = kh2 = cs = 0, kα1 = 9.9967, and kα2 = 167.685. The hysteretic response as a
function of the freestream velocity, obtained through the numerical integration of (2.6) for
these parameters, is presented in Figure 3. The onset of flutter takes place at Uf = 9.1242 m/s
and is characterized by a jump to a large-amplitude LCO when transitioning through the
Hopf bifurcation. As the speed is increased beyond the flutter speed, the LCO amplitudes of
both of the pitch and plunge motions increase. Furthermore, LCO take place at speeds lower
than Uf if the disturbances to the system are sufficiently large. Clearly, this configuration
exhibits a subcritical instability (Real(Λ) > 0).

For linear control, we consider the matrix Lu defined in (3.2) in the form of

Lu =

⎛
⎜⎜⎜⎜⎜⎝

−kl 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (3.23)

where kl is the linear feedback control gain. Then, for the specific values of the system
parameters given in [9], we obtain

β̂ =
(
0.433891σUUf − 0.110363kl

)
+ ı
(
0.323942σUUf − 0.303804kl

)
. (3.24)

To guarantee damped oscillations of the airfoil at speeds higher than the flutter speed, one
needs to set kl to a value such that Real(β̂) < 0. Using a gain of 10, we plot in Figure 4 the
plunge and pitch displacements for a freestream velocity of U = 10 m/s with and without
linear control. Clearly, linear control damps the LCO of the uncontrolled system. We note
that, by increasing the linear feedback control gain kl, the amplitudes of pitch and plunge
decay more rapidly.

Although linear control is capable of delaying the onset of flutter in terms of speed
and reducing the LCO amplitude, the system would require higher gains at higher speeds.
Furthermore, it maintains its subcritical response. To overcome these difficulties and convert
the subcritical instability to a supercritical one, we introduce the following nonlinear feedback
control law:

uT = −
(
knl1 knl2 knl3 knl4

)
α̇3, (3.25)

where the knli are the nonlinear feedback control gains. For the specific airfoil’s geometry
given in [9], we obtain

Λ̂r = 0.866899 − (132.844knl1 + 13.3643knl2 + 2.9858knl3 + 1.32415knl4). (3.26)
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Figure 3: Hysteretic response of the aeroelastic system (subcritical instability). The steady-state amplitudes
are plotted as a function of U.

This equation shows that applying gain to the plunge displacement is more effective than
applying it to the pitch displacement or plunge velocity or pitch velocity.

The subcritical instability takes place for positive values of Λ̂r . As such it can be
eliminated by forcing Λ̂r to be negative. This can be achieved by using nonlinear control
gains knl1 = 0.02 (knl2 = knl3 = knl4 = 0). The results are presented in Figure 5. The subcritical
Hopf bifurcation at Uf observed in Figure 3 has been transformed into the supercritical
Hopf bifurcation of Figure 5. A comparison of the two figures shows that the unstable limit
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Figure 5: LCO amplitudes of plunge and pitch motions (controlled configuration): −, analytical prediction,
∗, numerical integration.

cycles observed over the freestream speed between U = 6.5 m/s and U = 9.12 m/s have
been eliminated. Furthermore, the exponentially growing oscillations predicted by the linear
model are limited to a periodic solution whose amplitude increases slowly with increasing
freestream velocity. Moreover, increasing the value of knl1 reduces the amplitude of the limit
cycles created due to Hopf bifurcation.

In order to check the accuracy of the analytical formulation given by the normal form
in predicting the amplitude of LCO near the Hopf bifurcation, we consider the first-order
solution given by (3.9). The amplitude of plunge and pitch LCO, Ah and Aα, respectively, are
given by

Ah = a
√
p12

r + p12
i ,

Aα = a
√
p22

r + p22
i ,

(3.27)
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where pjr and pji denote the real and imaginary parts of the jth component of the vector p,
respectively. In Figures 5(a) and 5(b), we plot the LCO amplitudes for both pitch and plunge
motions obtained by integrating the original system and those predicted by the normal form.
The results show good agreement in the LCO amplitudes only near the bifurcation.

4. Conclusions

Linear and nonlinear controls are implemented on a rigid airfoil undergoing pitch and plunge
motions. The method of multiple scales is applied to the governing system of equations
to derive the normal form of the Hopf bifurcation near the flutter onset. The linear and
nonlinear parameters of the normal form are used to determine the stability characteristics
of the bifurcation and efficiency of the linear and nonlinear control components. The results
show that linear control can be used to delay the flutter onset and dampen LCO. Yet, its
required gains remain a function of the speed. On the other hand, nonlinear control can
be efficiently implemented to convert subcritical to supercritical Hopf bifurcations and to
significantly reduce LCO amplitudes.
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