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The problem of robust 𝐻
∞

filter design is investigated for stochastic pantograph systems governed by linear Itô differential
equation. First, a sufficient condition for asymptotic mean-square stability of stochastic pantograph systems is presented by means
of Lyapunov approach. Then, based on matrix inequalities, the 𝐻

∞
filtering problem for this kind of systems is studied and a

sufficient condition for the existence of the𝐻
∞
filter is derived. Furthermore, the explicit expression of the desired filter parameters

is characterized. Finally, an example is given to illustrate the results.

1. Introduction

Stochastic pantograph system which is treated as a special
class of time-delay systems has also attracted more and more
researchers [1–5]. Reference [1] gave the necessary analytical
theory for the existence and uniqueness of a strong solution
of the linear stochastic pantograph differential equation and
presented the strong approximations to the solution obtained
by a continuous extension of 𝜃-Euler scheme. Reference [2]
investigated the asymptotic growth and delay properties of
solution of linear stochastic pantograph equation and gave
the sufficient conditions on parameters when the solution
grows at a polynomial rate in 𝑝th mean and almost sure
sense. Reference [3] studied the 𝛼th moment stability for
stochastic pantograph equation by using Razumikhin tech-
nique. Reference [4] investigated the convergence of the Euler
method of stochastic pantograph equations and proved that
the Euler approximation solution converges to the analytic
solution in probability under weaker conditions. Reference
[5] studied the almost surely asymptotic stability of the
nonlinear stochastic pantograph differential equations with
Markovian switching under the weakened linear growth con-
dition. At present, most literatures on stochastic pantograph
equation focus on the existence, uniqueness, and convergence

of the numerical solution produced by kinds of approximate
methods.

On the other hand, due to great many applications of
robust 𝐻

∞
control and filtering in real world, the problems

on these two have been studied extensively [6–14]. Compared
with classical Kalman filter, one does not need to know the
exact statistic information about the external disturbance in
the 𝐻

∞
filtering design. 𝐻

∞
filtering requires one to design

a filter such that the 𝐿
2
gain from the external disturbance

to the estimation error is below a prescribed level 𝛾 >

0. Reference [10] studied the problem of 𝐻
∞

filtering for
general continuous-time linear stochastic systems and gave
a necessary and sufficient condition for the existence of 𝐻

∞

filter and furthermore designed𝐻
2
/𝐻
∞

filter. Reference [11]
gave a necessary and sufficient condition for reduced-order
𝐻
∞

filter of linear continuous and discrete-time stochastic
systems. Reference [12] investigated the robust 𝐻

∞
filtering

problem for nonlinear stochastic systems and gave a sufficient
condition for the existence of 𝐻

∞
filter. Reference [13]

studied the mixed 𝐻
2
/𝐻
∞

filtering for a class of nonlinear
stochastic systems. Reference [14] considered the finite-time
𝐻
∞

filter design for a class of nonlinear stochastic systems.
Nevertheless, to the best of our knowledge, the issue on the
𝐻
∞

filtering for stochastic linear pantograph systems with
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state-dependent noise has not been investigated in previous
literatures.

In this paper, we first consider the problem on the
asymptotic mean-square stability and give a test criterion for
stochastic pantograph systems by the Lyapunov approach.
On this basis, a sufficient condition of the asymptotic mean
square stability is obtained, which can be available for
studying the 𝐻

∞
filtering of stochastic pantograph systems.

Moreover, the𝐻
∞
filter design is investigated and a sufficient

condition for the existence of 𝐻
∞

filter is obtained in the
form of linear matrix inequality. Finally, an example is given
to illustrate our proposed methods.

This paper is organized as follows. Section 2 discusses the
asymptotic mean-square stability of stochastic pantograph
systems and presents a sufficient condition of stability by
means of the Lyapunov approach. The 𝐻

∞
filtering problem

of stochastic pantograph systems is investigated in Section 3.
Section 4 provides a numerical example to demonstrate
the effectiveness and applicability of the proposed methods.
Section 5 concludes this paper.

2. Asymptotic Mean-Square Stability

Consider the following linear stochastic pantograph system:

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑞𝑡)) 𝑑𝑡 + (𝐶𝑥 (𝑡) + 𝐶

1
𝑥 (𝑞𝑡)) 𝑑𝑤 (𝑡)

𝑥 (0) = 𝑥
0
,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is system state; 0 < 𝑞 < 1; 𝑤(𝑡) is a one-

dimension standard Wiener process defined on a complete
probability space (Ω, 𝐹, 𝐹

𝑡
, 𝑃) with 𝐹

𝑡
= 𝜎(𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡);

𝐴,𝐴
1
,𝐶,𝐶
1
are all constantmatrices of𝑅𝑛×𝑛. For initial value

𝑥
0
∈ 𝑅
𝑛 and 𝑇 > 0, there exists a unique solution 𝑥(𝑡) ∈

𝐿
2

𝐹
(𝑅
𝑇
, 𝑅
𝑛

) [1].

Definition 1. The stochastic pantograph system (1) is said to
be asymptotically mean square stable if for any initial value
𝑥
0
, the corresponding state satisfies

lim
𝑡→∞

E‖𝑥 (𝑡)‖
2

= 0. (2)

Next, a test criterion for asymptoticallymean-square stable of
stochastic pantograph systems is given.

Lemma 2. Stochastic pantograph system (1) is asymptotically
mean-square stable if there exist some positive constant scalars
𝑘
1
> 0, 𝑘

2
> 0, and 𝑘

3
> 0 and a Lyapunov function 𝑉(𝑡, 𝑥)

satisfying

𝑘
1
‖𝑥 (𝑡)‖

2

≤ 𝑉 (𝑡, 𝑥) ≤ 𝑘
2
‖𝑥‖
2

, (3)

𝐿𝑉 (𝑡, 𝑥) ≤ −𝑘
3
‖𝑥‖
2

, (4)

where

𝐿𝑉 (𝑡, 𝑥)

=
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
+
𝜕𝑉


(𝑡, 𝑥)

𝜕𝑥
(𝐴𝑥 (𝑡) + 𝐴

1
𝑥 (𝑞𝑡))

+
1

2
(𝐶𝑥 (𝑡) + 𝐶

1
𝑥 (𝑞𝑡))

 𝜕
2

𝑉 (𝑡, 𝑥)

𝜕𝑥2
(𝐶𝑥 (𝑡) + 𝐶

1
𝑥 (𝑞𝑡)) .

(5)

Proof. Expressing the difference 𝑉(𝑡, 𝑥(𝑡)) − 𝑉(0, 𝑥
0
) by

means of Itô formula [15], calculating expectations, we get

E𝑉 (𝑡, 𝑥 (𝑡)) − 𝑉 (0, 𝑥
0
) = ∫

𝑡

0

E𝐿𝑉 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (6)

Differentiating this equality with respect to 𝑡 and using (3),
(4), we see that

𝑑

𝑑𝑡
E𝑉 (𝑡, 𝑥 (𝑡)) ≤ −

𝑘
3

𝑘
2

E𝑉 (𝑡, 𝑥 (𝑡)) . (7)

This implies the estimate

E𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑉 (0, 𝑥
0
) exp{−

𝑘
3

𝑘
2

𝑡} . (8)

Together with (3), this estimate yields

E‖𝑥(𝑡)‖
2

≤
1

𝑘
1

𝑉 (0, 𝑥
0
) exp{−

𝑘
3

𝑘
2

𝑡} . (9)

Let 𝑡 → ∞; then (2) is obtained.This proof is complete.

On the basis of Lemma 2, the following theorem gives a
sufficient condition of the asymptoticmean-square stability is
obtained, which can be available for studying the𝐻

∞
filtering

of stochastic pantograph systems.

Theorem 3. If the following linear matrix inequality

𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 +
1

𝑞
(𝐴


1
𝑃𝐴
1
+ 2𝐶


1
𝑃𝐶
1
) < 0 (10)

has a solution 𝑃 > 0, then stochastic pantograph system (1) is
asymptotically mean-square stable.

Proof. Take a Lyapunov function 𝑉(𝑡, 𝑥) = 𝑥𝑃𝑥, where 𝑃 >

0 is the solution of (10). Applying Itô formula and by Cauchy
inequality𝑋𝑃𝑌 + 𝑌𝑃𝑋 ≤ 𝑋



𝑃𝑋 + 𝑌


𝑃𝑌, we obtain

𝑑𝑉 (𝑥)

= [𝑥


(𝑃𝐴 + 𝐴


𝑃 + 𝐶


𝑃𝐶) 𝑥

+ 𝑥


(𝑞𝑡) 𝐴


1
𝑃𝑥 + 𝑥



𝑃𝐴
1
𝑥 (𝑞𝑡) + 𝑥



(𝑞𝑡) 𝐶


1
𝑃𝐶𝑥

+𝑥


𝐶


𝑃𝐶
1
𝑥 (𝑞𝑡) + 𝑥



(𝑞𝑡) 𝐶


1
𝑃𝐶
1
𝑥 (𝑞𝑡)] 𝑑𝑡
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+ [(𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))



𝑃𝑥 + 𝑥


𝑃 (𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))] 𝑑𝑤 (𝑡)

≤ [𝑥


(𝑃𝐴 + 𝐴


𝑃 + 𝐶


𝑃𝐶) 𝑥

+ 𝑥


(𝑞𝑡) 𝐴


1
𝑃𝐴
1
𝑥 (𝑞𝑡) + 𝑥



𝑃𝑥 + 𝑥


(𝑞𝑡) 𝐶


1
𝑃𝐶
1
𝑥 (𝑞𝑡)

+𝑥


𝐶


𝑃𝐶𝑥 + 𝑥


(𝑞𝑡) 𝐶


1
𝑃𝐶
1
𝑥 (𝑞𝑡)] 𝑑𝑡

+ [(𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))



𝑃𝑥 + 𝑥


𝑃 (𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))] 𝑑𝑤 (𝑡)

≤ [𝑥


(𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶) 𝑥 + 𝑥


(𝑞𝑡) 𝑄𝑥 (𝑞𝑡)] 𝑑𝑡

+ [(𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))



𝑃𝑥 + 𝑥


𝑃 (𝐶𝑥 + 𝐶
1
𝑥 (𝑞𝑡))] 𝑑𝑤 (𝑡) ,

(11)

where 𝑄 = (𝐴


1
𝑃𝐴
1
+ 2𝐶


1
𝑃𝐶
1
) ≥ 0 due to 𝑃 > 0. So for any

0 ≤ 𝑠 ≤ 𝑡, taking integral from 𝑠 to 𝑡, we have

E𝑉 (𝑥 (𝑡)) − E𝑉 (𝑥 (𝑠))

≤ E∫
𝑡

𝑠

𝑥


(𝑢) (𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶) 𝑥 (𝑢) 𝑑𝑢

+ E∫
𝑡

𝑠

𝑥


(𝑞𝑢)𝑄𝑥 (𝑞𝑢) 𝑑𝑢,

(12)

where

E∫
𝑡

𝑠

𝑥


(𝑞𝑢)𝑄𝑥 (𝑞𝑢) 𝑑𝑢

=
1

𝑞
E∫
𝑞𝑡

𝑠

𝑥


(𝑢)𝑄𝑥 (𝑢) 𝑑𝑢 ≤
1

𝑞
E∫
𝑡

𝑠

𝑥


(𝑢)𝑄𝑥 (𝑢) 𝑑𝑢.

(13)

The above last inequality is valid because of 𝑄 ≥ 0 and 0 <
𝑞 < 1, so

E𝑉 (𝑥 (𝑡)) − E𝑉 (𝑥 (𝑠))

≤ E∫
𝑡

𝑠

𝑥


(𝑢) (𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 +
1

𝑞
𝑄)𝑥 (𝑢) 𝑑𝑢.

(14)

Multiplying 1/(𝑡− 𝑠) by both sides simultaneously and letting
𝑡 → 𝑠, we obtain

E𝑑𝑉 (𝑥 (𝑡))≤ 𝑥


(𝑡) (𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 +
1

𝑞
𝑄)𝑥 (𝑡) 𝑑𝑡.

(15)

Therefore, the infinitesimal generator of stochastic panto-
graph system (1) satisfies

𝐿𝑉 (𝑥 (𝑡)) ≤ 𝑥


(𝑡) (𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 +
1

𝑞
𝑄)𝑥 (𝑡)

≤ −𝑘
3
‖𝑥‖
2

,

(16)

where 𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 + (1/𝑞)𝑄 ≤ −𝑘
3
< 0 for some

𝑘
3
> 0. By Lemma 2, the asymptotic mean-square stability of

(1) is derived, which completes the proof.

Remark 4. Inequality (10) is a linear matrix inequality, which
provides more convenience to test the asymptotic mean-
square stability of stochastic pantograph system (1).

Remark 5. When 𝐴
1
= 𝐶
1
= 0, the pantograph system (1)

becomes normal stochastic linear system

𝑑𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝑑𝑡 + 𝐶𝑥 (𝑡) 𝑑𝑤 (𝑡) , (17)

and (10) is simplified by

𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 2𝐶


𝑃𝐶 < 0, (18)

which implies 𝑃𝐴 + 𝐴


𝑃 + 𝑃 + 𝐶


𝑃𝐶 < 0, so (18) can also
guarantee the asymptotic mean-square stability of (17) [15].

Remark 6. Let 𝜏(𝑡) = 𝑡 − 𝑞𝑡; system (1) becomes

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑡

+ [𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) .

(19)

System (19) is a time-vary delay system. Condition (10)
guarantees that system (19) is asymptotically mean-square
stable.

3. Robust 𝐻
∞

Filter Design

Based on the asymptotic mean-square stability of pantograph
system discussed in the above section, we are in a position to
deal with the𝐻

∞
filtering problem for stochastic pantograph

system.
Consider the following stochastic linear perturbed pan-

tograph system with measurement output:

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑞𝑡) + 𝐵V (𝑡)) 𝑑𝑡

+ (𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑞𝑡)) 𝑑𝑤 (𝑡)

𝑑𝑦 (𝑡) = (𝐴
2
𝑥 (𝑡) + 𝐵

1
V (𝑡)) 𝑑𝑡 + 𝐶

2
𝑥 (𝑡) 𝑑𝑤 (𝑡)

𝑧 (𝑡) = 𝑀𝑥 (𝑡) ,

(20)

where 𝑥(𝑡) ∈ 𝑅
𝑛

, 𝑦(𝑡) ∈ 𝑅
𝑛𝑦 , V(𝑡) ∈ 𝑅

𝑛V , and 𝑧(𝑡) ∈

𝑅
𝑛𝑧 are the system state, the exogenous disturbance signal,

the measurement output, and the state combination to be
estimated, respectively. 𝐴, 𝐴

1
, 𝐴
2
, 𝐵, 𝐵

1
, 𝐶, 𝐶

1
, 𝐶
2
, and𝑀

are constantmatrices of suitable dimension. Here we suppose
V(𝑡) ∈ 𝐿2

𝐹
(𝑅
+
, 𝑅
𝑛V), which guarantees that the system (20) has

a unique solution 𝑥(𝑡) ∈ 𝐿2
𝐹
(𝑅
𝑇
, 𝑅
𝑛

) for any 𝑇 > 0.
The so-called 𝐻

∞
filtering problem is to design an

estimator to estimate the unknown state combination 𝑧(𝑡)

via output measurement 𝑦(𝑡), which guarantees the 𝐿
2
gain

(from the external disturbance to estimation error) to be
less than a prescribe level 𝛾 > 0, and the extended system
is internally stable. Here we construct the following linear
pantograph filter via output measurement for the estimation
of 𝑧(𝑡):

𝑑�̂� (𝑡) = (𝐴
𝑓
�̂� (𝑡) + 𝐵

𝑓
�̂� (𝑞𝑡)) 𝑑𝑡 + 𝐶

𝑓
𝑑𝑦 (𝑡)

�̂� (0) = �̂�
0

�̂� (𝑡) = 𝑀
𝑓
�̂� (𝑡) ,

(21)
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where �̂�(𝑡) ∈ 𝑅
𝑛

, 𝐴
𝑓
∈ 𝑅
𝑛×𝑛

, 𝐵
𝑓
∈ 𝑅
𝑛×𝑛

, 𝐶
𝑓
∈ 𝑅
𝑛×𝑛𝑦 , and

𝑀
𝑓

∈ 𝑅
𝑛𝑧×𝑛 are constant matrices to be determined

subsequently. Let 𝜂(𝑡) = (𝑥(𝑡) �̂�


(𝑡))


, �̃�(𝑡) = 𝑧(𝑡)−�̂�(𝑡); then
the extended system is

𝑑𝜂 (𝑡) = (�̃�𝜂 (𝑡) + �̃�
1
𝜂 (𝑞𝑡) + �̃�V (𝑡)) 𝑑𝑡

+ (�̃�𝜂 (𝑡) + �̃�
1
𝜂 (𝑞𝑡)) 𝑑𝑤 (𝑡) ,

�̃� (𝑡) = �̃�𝜂 (𝑡) ,

(22)

where

�̃� = [
𝐴 0

𝐶
𝑓
𝐴
2
𝐴
𝑓

] , �̃�
1
= [

𝐴
1

0

0 𝐵
𝑓

] ,

�̃� = [
𝐵

𝐶
𝑓
𝐵
1

] , �̃� = [
𝐶 0

𝐶
𝑓
𝐶
2
0
] ,

�̃�
1
= [

𝐶
1
0

0 0
] , �̃� = [0 −𝑀

𝑓
] .

(23)

For a given disturbance attenuation level 𝛾 > 0 and V(𝑡) ∈

𝐿
2

𝐹
(𝑅
+
, 𝑅
𝑛V), define the associated 𝐻

∞
filtering performance

of (22) as

𝐽
∞
= E∫

∞

0

‖�̃�(𝑡)‖
2

𝑑𝑡 − 𝛾
2

E∫
∞

0

‖V (𝑡)‖
2

𝑑𝑡. (24)

As in [10], the𝐻
∞
filtering problem is formulated as follows.

Stochastic 𝐻
∞

Filtering Problem. Given 𝛾 > 0, find an
estimator �̂� of the form (21) leading (22) to being internally
stable. Moreover, for any V(𝑡) ̸= 0, V(𝑡) ∈ 𝐿

2

𝐹
(𝑅
+
, 𝑅
𝑛V) with

𝜂(0) = 0, there always is 𝐽
∞
< 0.

In what follows, we will give the main result of 𝐻
∞

filtering problem and provide a technique to determine
matrices 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, 𝑀
𝑓
of filter (22).

Theorem 7. If the following matrix inequality

𝑃�̃� + �̃�


𝑃 + 𝑃 + 2�̃�


𝑃�̃� +
1

𝑞
(�̃�


1
𝑃�̃�
1
+ 2�̃�


𝑃�̃�)

+ �̃�


�̃� + 𝛾
−2

𝑃�̃��̃�


𝑃 < 0

(25)

has a solution 𝑃 > 0, then system (22) with V(𝑡) = 0 is
asymptotically mean-square stable, and 𝐽

∞
< 0 holds for any

V(𝑡) ̸= 0, V(𝑡) ∈ 𝐿2
𝐹
(𝑅
+
, 𝑅
𝑛V) when 𝜂(0) = 0.

Proof. When V(𝑡) = 0, from (25) we obtain

𝑃�̃� + �̃�


𝑃 + 𝑃 + 2�̃�


𝑃�̃� +
1

𝑞
(�̃�


1
𝑃�̃�
1
+ 2�̃�


𝑃�̃�)

< −�̃�


�̃� − 𝛾
−2

𝑃�̃��̃�


𝑃 < 0,

(26)

so system (22) is asymptotical mean-square stable according
toTheorem 3.

Next, we prove 𝐽
∞
< 0 for any nonzero V(𝑡) ∈ 𝐿2

𝐹
(𝑅
+
, 𝑅
𝑛V)

with 𝜂(0) = 0, taking the Lyapunov function 𝑉(𝜂) = 𝜂


𝑃𝜂,

where 𝑃 > 0 is a solution of (25), and following the outline
of the proof in Theorem 3, we obtain that the infinitesimal
generator of (22) satisfies

𝐿𝑉 (𝜂) ≤ 𝜂


(𝑃�̃� + �̃�


𝑃 + 𝑃 + 2�̃�


𝑃�̃�)

+
1

𝑞
(�̃�


1
𝑃�̃�
1
+ 2�̃�


𝑃�̃�) 𝜂

+ V


�̃�


𝑃𝜂 + 𝜂


𝑃�̃�V.

(27)

Note that for 𝑇 > 0,

𝐽
𝑇
(𝜂, V)

= E∫
𝑇

0

‖�̃�(𝑡)‖
2

𝑑𝑡 − 𝛾
2

E∫
𝑇

0

‖V(𝑡)‖
2

𝑑𝑡

= E∫
𝑇

0

‖�̃� (𝑡)‖
2

𝑑𝑡

− 𝛾
2

E∫
𝑇

0

‖V (𝑡)‖
2

𝑑𝑡 + 𝑑 (𝜂


𝑃𝜂) − 𝑑 (𝜂


𝑃𝜂)

= −E𝜂


(𝑇) 𝑃𝜂 (𝑇) + E∫
𝑇

0

(𝜂


�̃�


�̃� − 𝛾
2

V


V + 𝐿𝑉 (𝜂)) 𝑑𝑡

≤ E∫
𝑇

0

(𝜂�̃�


�̃� − 𝛾
2

V


V + 𝐿𝑉 (𝜂)) 𝑑𝑡

≤ E∫
𝑇

0

[
𝜂

V
]



𝑁[
𝜂

V
] 𝑑𝑡,

(28)

where

𝑁 =

[
[
[
[

[

𝑃�̃� + �̃�


𝑃 + 𝑃 + 2�̃�


𝑃�̃�

+
1

𝑞
(�̃�


1
𝑃�̃�
1
+ 2�̃�


𝑃�̃�) + �̃�


�̃�

𝑃�̃�

�̃�


𝑃 −𝛾
−2

𝐼

]
]
]
]

]

. (29)

If𝑁 < 0, then there exists 𝜖 > 0, such that

𝐽
𝑇
(𝜂, V) ≤ −𝜖E∫

𝑇

0

(
𝜂


2

+ ‖V‖
2

) 𝑑𝑡 ≤ −𝜖E∫
𝑇

0

‖V‖
2

𝑑𝑡. (30)

Let 𝑇 → ∞; then 𝐽
∞
(𝜂, V) ≤ −𝜖E∫

∞

0

‖V‖2𝑑𝑡 < 0. By
Schur Complement,𝑁 < 0 is equivalent to (25), which ends
the proof.

It is difficult to solve the inequality (25) because of its
nonlinearity, so Theorem 7 cannot be directly available for
designing the filter. Next we will give a sufficient condition
easy to be solved.
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Theorem 8. If the following LMI

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
11
𝐴 + 𝐴



𝑃
11
+ 𝑃
11
+
2

𝑞
𝐶


1
𝑃
11
𝐶
1

𝐴


2
𝑍


1
2𝐶


𝑃
11

2𝐶


1
𝑍


1
𝑀


𝑃
11
𝐵 𝐴


1
𝑃
11

0

∗ 𝑍
3
+ 𝑍


3
+ 𝑃
22

0 0 −𝑀


𝑓
𝑍
1
𝐵
1

0 𝑍


2

∗ ∗ −2𝑃
11

0 0 0 0 0

∗ ∗ ∗ −2𝑃
22

0 0 0 0

∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑞𝑃
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑞𝑃
22

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0 (31)

has solutions 𝑃
11
> 0, 𝑃

22
> 0, 𝑍

1
∈ 𝑅
𝑛×𝑛𝑦 , 𝑍

2
∈ 𝑅
𝑛×𝑛, 𝑍

3
∈

𝑅
𝑛×𝑛,𝑀

𝑓
, then system (22) is internally asymptotically mean-

square stable, and filtering performance 𝐽
∞
< 0 holds for any

V(𝑡) ̸= 0, V(𝑡) ∈ 𝐿2
𝐹
(𝑅
+
, 𝑅
𝑛V) with 𝜂(0) = 0. The corresponding

𝐻
∞

filter (21) can be formulated by

𝑑�̂� (𝑡) = (𝑃
−1

22
𝑍
3
�̂� (𝑡) + 𝑃

−1

22
𝑍
2
�̂� (𝑞𝑡)) 𝑑𝑡 + 𝑃

−1

22
𝑍
1
𝑑𝑦 (𝑡) ,

�̂� (0) = �̂�
0
,

�̂� (𝑡) = 𝑀
𝑓
�̂� (𝑡) .

(32)

Proof. By Schur Complement, (25) is equivalent to

[
[
[
[
[
[
[

[

𝑃�̃� + �̃�


𝑃 + 𝑃 +
2

𝑞
�̃�


1
𝑃�̃�
1
2�̃�


𝑃 �̃�


𝑃�̃� �̃�


1
𝑃

∗ −2𝑃 0 0 0

∗ ∗ −𝐼 0 0

∗ ∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ ∗ −𝑞𝑃

]
]
]
]
]
]
]

]

< 0.

(33)

Taking 𝑃 = [
𝑃11 0

0 𝑃22
] and substituting (23) into (31), after a

series computations, we have

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
11
𝐴 + 𝐴



𝑃
11
+ 𝑃
11
+
2

𝑞
𝐶


1
𝑃
11
𝐶
1

𝐴


2
𝐶


𝑓
𝑃
22

2𝐶


𝑃
11

2𝐶


1
𝐶


𝑓
𝑃
22

𝑀


𝑃
11
𝐵 𝐴



1
𝑃
11

0

∗ 𝑃
22
𝐴
𝑓
+ 𝐴


𝑓
𝑃
22
+ 𝑃
22

0 0 −𝑀


𝑓
𝑃
22
𝐶
𝑓
𝐵
1

0 𝐵


𝑓
𝑃
22

∗ ∗ −2𝑃
11

0 0 0 0 0

∗ ∗ ∗ −2𝑃
22

0 0 0 0

∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑞𝑃
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑞𝑃
22

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (34)

Setting 𝑃
22
𝐶
𝑓

= 𝑍
1
, 𝑃
22
𝐵
𝑓

= 𝑍
2
, 𝑃
22
𝐴
𝑓

= 𝑍
3
, then

(34) turns out to be (31). Therefore, 𝐴
𝑓
= 𝑃
−1

22
𝑍
3
, 𝐵
𝑓
=

𝑃
−1

22
𝑍
2
, 𝐶
𝑓
= 𝑃
−1

22
𝑍
1
; then the proof is complete.

Remark 9. In the proof of Theorem 8, the matrix 𝑃 is
chosen as diag{𝑃

11
, 𝑃
22
} for simplicity. In order to reduce

the conservatism of the conditions, the matrix 𝑃 can also
be chosen as [ 𝑃11

𝑃


12

𝑃12

𝑃22
]. However, this case will increase the

complexity of computation.

Remark 10. In many engineering applications, the perfor-
mance constraint is often specified a priori. In Theorem 8,
the filter is designed after 𝐻

∞
performance is prescribed. In

fact, we can obtain an improved performance by optimization
method. In addition, inequality (31) may be no feasible

solution for very small 𝑞, that is, very large time delay.
However, the smallest 𝑞 can be found by numerical algorithm.
The results in Theorem 8 suggest the following optimization
problems.

(OP1): The optimal 𝐻
∞

filtering problem for stochastic
pantograph systems is defined by

min
𝑃11>0,𝑃22>0,𝑍1 ,𝑍2 ,𝑍3 ,𝑀𝑓

𝜒

subject to (31) with 𝜒 = 𝛾2.
(35)

Then the minimum value of optimal 𝐻
∞

perfor-
mance 𝛾∗ is given by 𝛾∗ = (min𝜒)1/2.

(OP2): The minimum value of 𝛾 corresponding to the differ-
ent values of 𝑞 in the interval (0, 1) can be found.
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Figure 1: The trajectories of 𝑥
1
(𝑡) and �̂�

1
(𝑡).
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𝑥
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𝑥
2
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)

𝑡
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Figure 2: The trajectories of 𝑥
2
(𝑡) and �̂�

2
(𝑡).
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𝑧(𝑡)

�̂�(𝑡)

𝑧
(𝑡
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𝑧
(𝑡
)

𝑡

0.6

0.4

0.2
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−0.4

−0.6

−0.8

Figure 3: The trajectories of 𝑧(𝑡) and �̂�(𝑡).

Algorithm I. Consider the following steps.

Step 1. By simple search algorithms, if we find a series of
𝑞
𝑖
(𝑖 = 1, . . . , 𝑛) to make (31) have feasible solutions, then go

to Step 2. Otherwise, go to Step 6.

Step 2. Set 𝑖 = 1, take a 𝑞
𝑖
.

Step 3. Solving the following optimization problem OP1.

Step 4. Set 𝑖 = 𝑖 + 1, if 𝑖 + 1 > 𝑛, then go to Step 5; otherwise
𝑞
𝑖
= 𝑞
𝑖+1

, go to Step 3.

Step 5. (31) has feasible solutions. Stop.

Step 6. (31) has no feasible solutions. Stop.

Remark 11. The smallest 𝑞may be obtained by Algorithm I.

4. Numerical Example

In this section, a numerical example is provided to demon-
strate the effectiveness and applicability of the proposed
methods. Consider the following Itô stochastic pantograph
system:

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑞𝑡) + 𝐵V (𝑡)) 𝑑𝑡

+ (𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑞𝑡)) 𝑑𝑤 (𝑡)
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Figure 4: The trajectories of �̃�(𝑡).
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Figure 5: The minimum value of 𝛾 versus 𝑞 in (0, 1).

𝑑𝑦 (𝑡) = (𝐴
2
𝑥 (𝑡) + 𝐵

1
V (𝑡)) 𝑑𝑡 + 𝐶

2
𝑥 (𝑡) 𝑑𝑤 (𝑡)

𝑧 (𝑡) = 𝑀𝑥 (𝑡) ,

(36)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0.6 0.7 0.8 0.9 1

𝛾

𝑞

Figure 6: The minimum value of 𝛾 versus 𝑞 in (0.55, 1).

where

𝐴 = [
−50 0.8

0.4 −10
] , 𝐴

1
= [

2 1.5

0.2 −2
] ,

𝐵 = [
0.3

−0.5
] , 𝐶 = [

4 0.5

3 1
] ,

𝐶
1
= [

−0.8 1.2

0.8 1
] , 𝐴

2
= [

15.6 1.1

0.6 8
] ,

𝐵
1
= [

0.6

0.2
] , 𝐶

2
= [

1.6 2

0 1
] ,

𝑀 = [−1 1] , 𝑞 = 0.9.

(37)

Consider the following filter for estimation of 𝑧(𝑡):

𝑑�̂� (𝑡) = (𝐴
𝑓
�̂� (𝑡) + 𝐵

𝑓
�̂� (𝑞𝑡)) 𝑑𝑡 + 𝐶

𝑓
𝑑𝑦 (𝑡) ,

�̂� (0) = �̂�
0
,

�̂� (𝑡) = 𝑀
𝑓
�̂� (𝑡) .

(38)

According to OP1, the minimum value of 𝛾 is 0.13 and the
corresponding estimation gains of𝐻

∞
filter are derived from

theorem

𝐴
𝑓
= [

−1.4414 0.0518

0.0512 −1.5298
] , 𝐵

𝑓
= [

0.5184 −0.0095

−0.0093 0.5418
] ,

𝐶
𝑓
= [

0.0610 −0.0221

−0.0219 −0.0915
] , 𝑀

𝑓
= [−0.3870 0.7240] .

(39)
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The initial condition in the simulation is assumed to
be 𝜂(0) = [0.5 − 0.2 − 0.5 0.2]. Figures 1 and 2 show
the trajectories of 𝑥

1
(𝑡), �̂�
1
(𝑡), 𝑥
2
(𝑡), and �̂�

2
(𝑡) by using the

proposed𝐻
∞

filter. Figure 3 shows the response of real state
𝑧(𝑡) and its estimation �̂�(𝑡). Figure 4 is the simulation result
of the estimation error response of �̃�(𝑡) = 𝑧(𝑡) − �̂�(𝑡), which
demonstrates that the estimation error is asymptotically
mean-square stable.

By the OP2, the minimum value of 𝑞 can be given by 𝑞 =
0.534. Figure 5 shows the minimum value of 𝛾 corresponding
to different 𝑞 in the interval (0, 1). From Figure 5, we see that
(31) has no feasible solution when 𝑞 is in (0, 0.534). In order
to see the relationship between 𝛾 and 𝑞more clearly, Figure 6
gives the minimum value of 𝛾 corresponding to different 𝑞 in
the interval (0.55, 1).

5. Conclusion

This paper has discussed infinite horizon 𝐻
∞

filtering for
stochastic linear pantograph systems with state-dependent
noise, which has not been studied for pantograph system in
the previous literatures. A sufficient condition for asymptotic
mean-square stability of stochastic linear pantograph systems
is presented and a sufficient condition for the existence of the
𝐻
∞
filter is given in the form of linear matrix inequality. The

results obtained in this paper may be significant in studying
the other control/filtering problem such as 𝐻

2
, 𝐻
2
/𝐻
∞

control/filtering for linear/nonlinear stochastic pantograph
systems.

Notations

𝐴
: The transpose of 𝐴

𝐴 > 0 (𝐴 ≥ 0): 𝐴 is positive (nonnegative)
𝑅
𝑛: The 𝑛-dimensional Euclidean space

with ‖ ⋅ ‖
2

𝑅
𝑚×𝑛: The set of all𝑚 × 𝑛matrices

𝑅
+

= [0,∞)

𝑅
𝑇

= [0, 𝑇] for 𝑇 > 0

𝐼: Identify matrix
E(⋅): The mathematical expectation operator
𝐿
2

𝐹
(𝑅
𝑟
, 𝑅
𝑘

): The space of nonanticipative square
integrable stochastic processes
𝑦(𝑡) ∈ 𝐿

2

(Ω, 𝑅
𝑘

) with respect to an
increasing 𝜎-algebra satisfying
𝐹
𝑡
-measurable and E∫

𝑇

0

‖ ⋅ ‖
2

𝑑𝑡 < ∞

𝐶
1,2

(𝑅
+
× 𝑅
𝑘

; 𝑅
+
): The family of all nonnegative functions
𝑉(𝑡, 𝑥) on which are continuously once
differentiable in 𝑡 and twice
differentiable in 𝑥.
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