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ABSTRACT. A new class of composition operators P: H2(T) H2(T), with : T/ is

introduced. Sufficient conditions on for P to be bounded and Hilbert-Schmidt are

obtained. Properties of P with (eit) aeit + be
-it

for different values of the

parameters a and b have been investigated. This paper concludes with a discussion

on the compactness of P
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i. PRELIMINARIES.

For a complex valued function f analytic in D {z: zl < I} and for I p <

set

and

MpCr,f) (I2 ifCreie)ip ,de p-c) l<p <
0

M (r,f) Sup If
0<2

The function f is said to be in HP(D) if lim M (r,f) < Similarly, let
r/l-- P

HP(T), T {z: Izl I}, be the class of functions in LP(T) such that

in812f (e18) e d8 0 n 1,2,3
0

It is known [1,2] that for f in HP(D) lira f(rei8) f,(ei8) exists for almost all

8 and f, belongs to HP(T). Conversely, the Poisson integral of a function in HP(T)

is in HP(D). Also, if f in HP(D) has the sequence {a
n

as its Taylor coefficients

then, f, has the same sequence as its Fourier coefficients and vice versa. This corre-

spondence establishes an isometrical isomorphism between HP(D) and HP(T). Thus, these
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two spaces are interchangeably used and are usually referred to as the Hardy Space

HP[I,2].
In the sequel we came across another space familiarly known as the weighted Hardy

space [3] Let 0(n) be a sequence of positive numbers. An analytic function f:D+C,

n Elan 12 p(n)<.given by f(z) Z anZ is said to be in the class Ha(0) if lfl Ip
Also we need the following definition. Let H be a Hilbert space and T be a bounded

linear operator on H. Then, T is said to be Hilbert Schmidt if there exists an ortho-

normal basis {e in H such that Z l[Te II 2 <
n n

Throughout in the present paper we denote by e
n

n 0,1,2,..., the function

int
e (eit) e We note that {e forms an orthonormal basis for H2.
n n

2. A NEW CLASS OF CONPOSlTION OPERATORS.

H
P HpLet : D D be analytic and let C: (D) (D) be defined by (Cf)(z)

f((z)), z in D. The operator C is known as a composition operator on HP(D) and

is extensively studied in the literature [4]. In the present paper we introduce and

study a new class of composition operators P on H2(T) where : T many be ’non-

analytic’ also. That is nonvanishing negative Fourier coefficients.

DEFINITION. Let : T D satisfy the following properties:

(a) for every set E T, of linear measure zero, -I(E) {z T: (z) w, w E T} is

also a set of linear measure zero and

(b) for every f in H2(T), fo is in L2(T).

Then, define P: H2(T) H2(T) by Pf P(fo) where P is the projection of L2(T)

into H2(T).
Here some explanations are in order. We observe that a function f in H2(T) can

be extended analytically into D as described in Section I. So with the condition (a),

fo is defined almost everywhere on T Futher, let f be represented by the Fourier

in@ (ei)series n0 ane Then by the Weierstrass theorem, n0 an( )n converges point-

wise to f((eiS)) for all 8 such that (ei8) D and by a result of Carleson [5]

n0 an( (ei0))n converges pointwise to f((ei@)) for almost all such that

(eie) T. Hence n0 an((eie))n converges pointwise almost everywhere on T to

f((eie)). Thus throughout in this paper we write n0 an((ei@))n in place of f (#(elSe.
We note theat if # satisfies the conditions of the definition, then by the Closed

Graph Theorem, P# is a bounded operator. So a natural question is: under what condi-

tions on , fo$ is in L2(T) for all f in H2(T). The present paper primarily deals

with this question.

In the following sections we first obtain bounds for the norm of P under suitable

it it t
conditions on . Then we consider defined by (e ae + be

-i
and study
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conditions on a and b such that foe e L2(T) for all f in H2(T). In the last

section we have discussed the compactness of PC with the help of some examples.

3. NORM OF P.
We have the following results.

THEOREM I. Let : T D be such that

f2 dt M() < (3.1)
it)o -I(

Then, P is Hilbert Schmidt and I1%11 --< (M()12) I/2

n
PROOF. Let f in H2(T) be given by f(z) Y.a z z in T. Then,

n

le) nJf((elO) 2 Ea ((e 12 < (Elan 12) (El(el8) 2n)
n

ie)
so,

iiPfll 2 < ilfoll 2 < ilfll M()
2 2 2

and we get IIP, II (M(*)/2) I/2"

Next, with the orthonormal basis e n 0,1,2 of H2(T), we have
n

$2l(elt) 12n dt (M()/2)< .rO lP, CCr) 12 s n0 leno*l 12 nO 0

Thus, P is Hilbert Schmidt.

COROLLARY 2. If : T+D is continuous then PC is Hilbert Schmidt.

PROOF. The condition (3.1) is trivially satisfied if # is continuous.

By an example in the next section we will show that (3.1) is only a sufficient con-

dition for P to be Hilbert Schmidt. We need the following lemma due to Gabriel [6]

for the proof of our next theorem.

LEMMA. Let F be a rectifiable convex curve in the closed unit disc. Then, for

every f in H2

THEOREM 2. Let : T+D be such that

(i) describes a closed rectifiable convex curve in D and

(il) m inf[’ (eli) > 0, 0 t 2

Then, llPll (2/m) I/2

PROOF. By lemma and the condition (ll) we have

2 2 (eit 12 (eitlifll If( ))1 i (=)1 dt > m
0

I(fo) )ldt

so that
,2r it 2lP,fl < o Cfo,) ( ,I 2 dt < lfl
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The conditions (i) and (ii) in the above theorem are not necessary for P to be

bounded. As an example consider

(eit e 0 < t <
(t)

0 _< t_< 2

so that does not satisfy any of the conditions (i) or (ii) of the theorem.

Now,

2I 02 If( )(eit))12 dt =i f0 If(eit) 12 at + If() Imdt -< lfl 122
This shows that P is bounded with II PII </2.

4. A FAMILY OF COMPOSITION OPERATORS.

In this section we study the properties of P for the particular family of func-

tions T D given by

(z) az + bz z e T (4.1)

where lal + Ibl ! I. We note that if lal # Ibl then the curve traced by is an

ellipse containing the orgin in its interior. Also m inflae-it bl >

Hence by Theorem 2, P is bounded. It turns out that P has many interesting pro-

perties for different values of the parameters a and b We need the following tech-

nical lemma.

LEMMA I. For all n k in Z+
n + 2k> 2n+2k< (4.2)

k
PROOF. We shall prove (4.2) by method of induction on n Let n 0 so that we have

to show

2k 22k(k) < for k 1,2,3 (4.3)

2 2
We establish (4.3), also by the process of induction on k For k I, (i) 2 < 2

is trivially true. Next, assume that

(2k 22k,
k

< i.e.

To complete induction on k we consider

(2k) < 22k(k!) (k!)

2(k+l) (2k+2)! 22k (2k+l) < 22(k+I)
k+l (k+l) (k+l)

< 2 (k+l)

Thus, (4.3) is true for all k 1,2,3 Next, let n Then,

2k+l 2k (2k+l) < 2
k 2k+l

k k (k+l) 2

.n+2k. 2n+2kNow, assume that
k

< To complete the induction we consider

n+l+2k. (n+2k) (n+l+2k) < 2n+2k 2n+l+2k
k (k!) (n+k) (n+l+k)

2<

Thus (4.3) is true for all k-- 1,2 and n 0,I,2
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THEOREM 3. Let : T D be given by (z) az + bz z in T.

(1) If [a + [b] I, [a] [b], b 0 and la[ < then e is Hilbert Schmldt.

(ll) If lal + Ibl then fo need not be in L2 for all f in H2 so that P
is not defined on the whole of H2

(ill) The inequality la[ < in (1) is best possible.

PROOF. Consider the orthonormal basis e n 0,1,2, for H2 With respect
n

to this basis P has a matrix representation

0 if n < m

_’n+2k" a
n (ab)ktmn [k if n m -2k

0 if n m 2k +
where m n and k Z+ Now

.n+2k. 2 2n 2k

.n+2k. 2 2n 2k)n--E0 (fan Imn + k-El k lal labl

.n+2k. 2 2n 2k+ n-ZO k--El k al abl

We use Lemma to show that the second sum in the right hand side is convergent.

.n+2k. 2 2n 2k 22n+4k 2n 2n 2n 2k
kl n0 k lal labl ZZ lal lab ZZ 12al

1-12al 2 1-14abl 2

since lal < which also implies labl < This proves that P is Hilbert

Schmldt. (il) For the proof of (ll) consider the H2 function f(z) (l-z)
-a 0<a<1/2

(eie)For a b cos e Thus,

f(eie)) f(cos O)
(1-cos e)

a
(2
a in2a e

s

and

ie) 2 22-2a f/2 22-2af2 I(f((e )12 de / de > de
0 0 sin

4a e 0 e4a

2e < sin e < eif a > In the above we have made use of the well known inequality

for 0 < e <-
2

(iii) In view of (ii), for the proof of (iii), it is sufficient to show that P@ is

not Hilbert Schmidt if a / b and a > b. In fact, we show that under the above

condition mE Itm,ml 2--

Observe that
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en((eiO) (aeiO + be-iO)n kOn (k)n a
n-k

b
k

e
i(n-k)O e-ikO

n n an-k b
k

Since (a + b) n we have k=Z0 (k) I. Hence considering this sum as the

inner product of two vectors

()an
b
0 ()an-I

b (nn) a
0

b
n land I,I ..(.n.+.l!..t.e.r.s,

We see that, since II [, ]II (n+l) by Cauchy Schwarz inequality

n n n-k
b
k

kffiZ0 [(k a [2 >
(n+l)

n r bn-rFurther, we observe that if a > b then () a
n-r

b
r > (n_r) a so that over half

of the above sum is from terms where n-k _> k and so [[P en[ [z _> il2(n+l) leading

us to I It [2 This completes the proof of the theorem.
n n,n

Also, with the help of the same function (z) az + bz we show that the condl-

tion (3. I) of Theorem is not a necessary condition for P to be a Hilbert Schmidt.

For this take a b in R ab > 0 and al + bl I. Then,

f2 dt f2 dt

0 l_l(eit )12 0 (1-(a-b) 2) sin2 t

However, in view of Theorem 3, it follows that P is Hilbert Schmidt.

In the following theorem we present a sufficient condition on f in H2 to

ensure that fo is in L2(T).

THEOREM 4. Let : T/D be given by (z) az + bz lal Ibl and f in H2

be given by f(z) n0 an z Further if an 0 with > then fo E L2.
n

io)PROOF. First let a b so that (e cos O. Now,

We know that

and [7]

n
if((eiO))12 _< into cos= o

n+B n
n-E0- n

zB+(I-z)

n+B n
n r(B+l)

Taking B -a in (4.5) and (4.6), we get

(4.4)

(4.5)

(4.6)

n
cos 0 r(-a+l)

nffi0
n (1-cosO) (l-a)

Thus, to complete the proof, it is sufficient to show that

f2 (1-cosO) (2-2)d0 f2 sin(4a-4) _.0 dO <
0 0 2

3However, this is ture because of the condition a > To dispose of the general case
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ia eiV ei8) ei (a+V)/2 a-+28we observe that if 2a e and 25 then $( cos() and

this leads to similar calculations as above.

Taking cue from the above theorem we next show that fo@ e L2 for f e H2(p(n))
for a suitable choice of the sequence p(n).

THEOREM 5. Let : T be given by (etO) aeiO + be-iO la ib 1 and

o(n) n8. Then,

(i) fo# is in L2 for all f in H2 (0(n)) if 8 > _I
2

(ii) for each 8 < there is a function f8 in H2(D(n)) such that

L2

PROOF. As in the previous theorem we assume a b - so that f(@(eiO)) f(cos e).

Let f in H2(0) be given by f(z) n__E0 an z We have

2n
io) n ai cos o)cos 12 < (-o p(n)) (-o p(n)If(*(e )i 2 I0 %

ow using (4,5) and (,6) as in the previous theorem it can be shom that

-In 2nsin
28-2 8 n=E0 r(-8+I) cos 8.

Thus fo is in L2 if 8 >

For the proof of (ll) consider the function

f(z) A
a n

a+1 n
z

(l-z)

By (4.6),

f8o@ is not in

2a+8ZlAI 2 nS,,, Z nn

The sum on the right hand converges if 2a + 8 < -1 i.e. a < (8+1)/2. Thus, f is

in H2(O), p(n) n8 for a <- (8+I)/2. However,

27 ]f((ei8))[2 dO f/0 22a/I 0 sl-n4a4- dO

if a a- Thus, for given 8 < if we chose a (3+28+2)/8 f is in H2(D)

but fo is not in L2.

2REMARK. The case 0(n) n remains open in the above theorem. However, in the next

theorem we prove the same result for a sequence 0 (n) having faster rate of growth than

I/2 I/2+n but with slower rate than n for any 0

THEOREM 6. Let : T be as in the previous theorem and D(n) nl/2(logn)8. Then,

(i) fo# is in L2 for all f in H2 (p(n)) if 8 > I,

(il) for each 8 < 0, there is a function f8 in H2(p(n)) such that f8o is not in

L2
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PROOF (i) Let f, given by f(z) nffiZ0 anzn be in H2(0(n)) so that

1/2(log n) 8II I : = fan 12<
By Cauchy Schwarz inequality,

nl/2 8If((eiS))l 2 <_. n.0 (log n) lan
It is known [7, p. 192] that if

a 8

(l_z)a+l
(log -L)

then for a > 2, a # -I,-2,-3, a, 8 R

A (a,8) n 8
n r(a+1) (log n)

(117 RI
n

so that

(a 8) nZ= A z
n 0 n

ieee

/ nI/2(log n) 8

2n
cos 812)(n0= 1/2

n (log n)
B.)) (4.7)

(4.8)

(4.9)

In view of (4.7) and (4.9), in order to show that fo@ is in L2 it is suffi-

cient to show that

f2 (log 8)-8 dO <
0 sin 8 sin

Further, because of the inequality (28/) < sin 8 < 8 it is sufficient to show the

integrability, in an interval (0,6), of the function

-8h(O) =., (log

Making the substitution log () u, we get

I-8 _I. I-8
_61 -8 (log ) (log )

lim/0 (log ) dO lira 8/0

Thus, the above integral converges if 8 > I. This completes the proof of (i).

112((ll) Let p(n) n logn) -8 8 > 0. Now consider the function

f(z) a y 7.AYzn1/4 (log Tz n
(l-z)

where -I/2 > y < (8-I)12. We first observe that f is in H2(p(n)). In fact, a com-

parison of f with (4.8) shows that

-3/4
A7 n

(log n) Yn r’(I14)
Thus,

ZlAVnl 2 p(n) rn-I (log n) 2Y-

and the right hand side series converges because Y < (8-I)/2. Now,

! (cos2 O)n a -8 2-8 b -8
/ n__Z0 nl/2(logn) 8 (l-cos2 0)I/2

(log sln----- (log Kin O
l-cos2 6)
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iO) 2y-1/2 f/2 b 2y$20 If(*(e )12 dO 4
0 sin 0(18 ’sin O dO

awhere b The above integral diverges with the integral

f/2 2
0 (log ) de

because of the condition > Thus, we prove that although f H2(p(n)) fo, is

not in L2

REMARK. The case p(n) n2(logn) 8, 0 _< 8 < remains unsettled.

We conclude this section by showing that P, is an unbounded operator on H2 for

it*(eit) (eit + e- )/2 cos t This we do by exhibiting a sequence of function f
n

in H2 for which lim lP,fnl
n+oo

k k
Let fn(Z) =kE=l. and f(z) k=El --= log Z so that

gn(t) f (,(eIt)) knffiZ cskt
and ()) cskt

n k g(t) f_,_elt__ k=gl k

(n)g is in L but is not in L2. Let a
k

and a respectively be theObserve that
n

kth Fourier coefficients of g and gn Since

lim f2w ign(t) S(t) dt 0
n+m 0

we get

(n)a a.. Now,

n (n)1tm IP, 22 ltm k_n lal 12 k.z_. lak 12 /Ig(eit) 12 at
n+oo

5. COHPACTNESS OF

In this section we discuss some examples illustrating cases when P, is compact

and when it is not. Let ’1 ’2 ’3 T / D be defined by

(elt -it(1) ’I ae Jaj 0 < t < 2

it

(ll) ,2(eIt) [e 0 _< t <

L 0

e
It

0 _< t _<
(ill) *3 (eli)

Laeit + be-it _< t _< 2 a+b a # b, a,b _> 0

(i) P,I is a finite rank, hence a compact, operator. For, if f in H2 is given by

(p, (elt n -intf(z) n__Z0 a z
n

then f) P (n=0 a a e an n o
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For composition operators with analytic Schwartz [8] has shown that if

C: HP(D) HP(D) is compact then I(e )1 < a.e. where (eit) is the radial

limit of (z). We observe in this example that PI deviates in behaviour from C
(ii) We have shown at the end of Section 3 that lP211 < /2 We show here that P2
is not compact.

By Riemann-Lebesgue Lemma the sequence e n 0,I,2,... converges to zero weaklyn

in H2 However, P2 (en) P(en2)’ does not converge strongly to zero. For, if

imtthe Fourier series of e o02 is given by (enOO2)(eit) Z a e then by direct

computation it can be seen that

and [IPqb
2

i
(n-m) if n-m is odd

a 0 if n-m is evenm

if nffim

2(en)[[ 2 mEffi0 [am 12 > Thus, P2 is not compact.

By a similar argument as in (ii) it can be shown that P3 is bounded but not a

compact operator.
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