A NEW CLASS OF COMPOSITION OPERATORS

S. PATTANAYAK, C.K. MOHAPATRA and A.K. MISHRA

School of Mathematical Sciences
Sambalpur University
Jyoti Vihar 768019, INDIA
(Received May 30, 1984 and in revised form June 14 , 1985)

ABSTRACT. A new class of composition operators $P_{\phi}: H^{2}(T) \rightarrow H^{2}(T)$, with $\phi: T \rightarrow \bar{D}$ is introduced. Sufficient conditions on ϕ for P_{ϕ} to be bounded and Hilbert-Schmidt are obtained. Properties of P_{ϕ} with $\phi\left(e^{i t}\right)=a e^{i t}+b e^{-i t}$ for different values of the parameters a and b have been investigated. This paper concludes with a discussion on the compactness of P_{ϕ}.

KEY WORDS AND PHRASES. ${ }_{I}{ }^{p}$ Space, Composition operator, Hilbert Schmidt operator, Compact operator.

1980 AMS SUBJECT CLASSIFICATION CODES. 47B37, 47B99, $46 J 15$.

1. PRELIMINARIES.

For a complex valued function f analytic in $D=\{z:|z|<1\}$ and for $1 \leq p \leq \infty$ set

$$
M_{p}(r, f)=\left(f_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

and

$$
M(r, f)=\operatorname{Sup}_{0<\theta<2 \pi}\left|f\left(r e^{i \theta}\right)\right| .
$$

The function f is said to be in $H^{P}(D)$, if $\underset{r \rightarrow 1-}{\lim _{p}} M_{p}(r, f)<\infty$. Similarly, let $H^{p}(T), T=\{z:|z|=1\}$, be the class of functions in $L^{p}(T)$ such that

$$
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} d \theta=0, n=1,2,3 \ldots \ldots
$$

It is known $[1,2]$ that for f in $H^{p}(D) \underset{r<1-}{\lim } f\left(r e^{i \theta}\right)=f_{*}\left(e^{i \theta}\right)$ exists for almost all θ and f_{*} belongs to $H^{p}(T)$. Conversely, the Poisson integral of a function in $H^{P}(T)$ is in $H^{P}(D)$. Also, if f in $H^{p}(D)$ has the sequence $\left\{a_{n}\right\}$ as its Taylor coefficients then, f_{*} has the same sequence as its Fourier coefficients and vice versa. This correspondence establishes an isometrical isomorphism between $H^{P}(D)$ and $H^{P}(T)$. Thus, these
two spaces are interchangeably used and are usually referred to as the Hardy Space $\mathrm{H}^{\mathrm{p}}[1,2]$.

In the sequel we came across another space familiarly known as the weighted Hardy space [3]. Let $\rho(n)$ be a sequence of positive numbers. An analytic function $f: D \rightarrow C$, given by $f(z)=\Sigma a_{n} z^{n}$, is said to be in the class $H^{2}(\rho)$, if $\|f\|_{\rho}=\Sigma\left|a_{n}\right|^{2} \rho(n)<\infty$. Also we need the following definition. Let H be a Hilbert space and T be a bounded linear operator on H. Then, T is said to be Hilbert Schmidt if there exists an orthonormal basis $\left\{e_{n}\right\}$ in H such that $\Sigma\left|\mid T e_{n} \|^{2}<\infty\right.$.

Throughout in the present paper we denote by $e_{n}, n=0,1,2, \ldots$, the function $e_{n}\left(e^{i t}\right)=e^{i n t}$. We note that $\left\{e_{n}\right\}$ forms an orthonormal basis for H^{2}.

2. A NEW CLASS OF CONPOSITION OPERATORS.

Let $\phi: D \rightarrow D$ be analytic and let $C_{\phi}: H^{P}(D) \rightarrow H^{P}(D)$ be defined by $\left(C_{\phi} f\right)(z)=$ $f(\phi(z)), z$ in D. The operator C_{ϕ} is known as a composition operator on $H^{p}(D)$ and is extensively studied in the literature [4]. In the present paper we introduce and study a new class of composition operators P_{ϕ} on $\mathrm{H}^{2}(\mathrm{~T})$ where $\phi: T \rightarrow \overline{\mathrm{D}}$ many be 'nonanalytic' also. That is ϕ nonvanishing negative Fourier coefficients.
DEFINITION. Let $\phi: T \rightarrow \bar{D}$ satisfy the following properties:
(a) for every set $E \subset T$, of linear measure zero, $\phi^{-1}(E)=\{z \varepsilon T: \phi(z)=w, w \in T\}$ is also a set of linear measure zero and
(b) for every f in $H^{2}(T)$, fo申 is in $L^{2}(T)$.

Then, define $P_{\phi}: H^{2}(T) \rightarrow H^{2}(T)$ by $P_{\phi} f=P(f o \phi)$ where P is the projection of $L^{2}(T)$ into $H^{2}(T)$.

Here some explanations are in order. We observe that a function f in $H^{2}(T)$ can be extended analytically into D as described in Section 1 . So with the condition (a), fo ϕ is defined almost everywhere on T. Futher, let f be represented by the Fourier series $\sum_{n=0}^{\infty} a_{n} e^{i n \theta}$. Then by the Weierstrass theorem, $\sum_{n=0}^{\infty} a_{n}\left(\phi\left(e^{i \theta}\right)\right)^{n}$ converges pointwise to $f\left(\phi\left(e^{i \theta}\right)\right)$ for all θ such that $\phi\left(e^{i \theta}\right) \varepsilon D$ and by a result of Carleson [5] $\sum_{n=0}^{\infty} a_{n}\left(\phi\left(e^{i \theta}\right)\right)^{n}$ converges pointwise to $f\left(\phi\left(e^{i \theta}\right)\right)$ for almost all θ such that $\phi\left(e^{i \theta}\right) \varepsilon$ T. Hence $\sum_{n=0}^{\infty} a_{n}\left(\phi\left(e^{i \theta}\right)\right)^{n} \quad$ converges pointwise almost everywhere on T to $f\left(\phi\left(e^{i \theta}\right)\right)$. Thus throughout in this paper we write $\sum_{\sum_{0}^{\infty}}^{\infty} a_{n}\left(\phi\left(e^{i \theta}\right)\right)^{n}$ in place of $f\left(\phi\left(e^{i \Theta}\right)\right)$.

We note theat if ϕ satisfies the conditions of the definition, then by the Closed Graph Theorem, P_{ϕ} is a bounded operator. So a natural question is: under what conditions on ϕ, fo ϕ is in $L^{2}(T)$ for $a 11$ f in $H^{2}(T)$. The present paper primarily deals with this question.

In the following sections we first obtain bounds for the norm of P_{ϕ} under suitable conditions on ϕ. Then we consider ϕ defined by $\phi\left(e^{i t}\right)=a e^{i t}+b e^{-i t}$ and study
conditions on a and b such that fod $\varepsilon L^{2}(T)$ for all f in $H^{2}(T)$. In the last section we have discussed the compactness of P_{ϕ} with the help of some examples.
3. NORM OF P_{ϕ}.

We have the following results.
THEOREM 1. Let $\phi: T \rightarrow \bar{D}$ be such that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d t}{1-\left|\phi\left(e^{i t}\right)\right|^{2}}=M(\phi)<\infty \tag{3.1}
\end{equation*}
$$

Then, P_{ϕ} is Hilbert Schmidt and $\left\|P_{\phi}\right\| \leq(M(\phi) / 2 \pi)^{1 / 2} \quad$.
PROOF. Let f in $H^{2}(T)$ be given by $f(z)=\sum a_{n} z^{n}, z$ in T. Then,

$$
\begin{aligned}
\mid f\left(\left.\phi\left(e^{i \theta}\right)\right|^{2}\right. & =\left|\Sigma a_{n}\left(\phi\left(e^{i \theta}\right)\right)^{n}\right|^{2} \leq\left(\Sigma\left|a_{n}\right|^{2}\right)\left(\Sigma\left|\phi\left(e^{i \theta}\right)\right|^{2 n}\right) \\
& =\| f| |^{2} \frac{1}{1-\left|\phi\left(e^{i \theta}\right)\right|^{2}} \quad \text { a.e. }
\end{aligned}
$$

So,

$$
\left\|P_{\phi} f\right\|^{2} \leq\|f o \phi\|_{2}^{2} \leq\|f\|_{2}^{2} \frac{M(\phi)}{2 \pi}
$$

and we get $\left\|P_{\phi}\right\| \leq(M(\phi) / 2 \pi)^{1 / 2}$.
Next, with the orthonormal basis $e_{n}, n=0,1,2, \ldots$, of $H^{2}(T)$, we have

$$
\sum_{r=0}^{\infty}| | p_{\phi}\left(e_{r}\right)\left\|^{2} \leq \sum_{n=0}^{\infty}| | e_{n} o \phi\right\|^{2}=\sum_{n=0}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\phi\left(e^{i t}\right)\right|^{2 n} d t=(M(\phi) / 2 \pi)<\infty .
$$

Thus, P_{ϕ} is Hilbert Schmidt.
COROLLARY 2. If $\phi: T \rightarrow D$ is continuous then P_{ϕ} is Hilbert Schmidt.
PROOF. The condition (3.1) is trivially satisfied if ϕ is continuous.
By an example in the next section we will show that (3.1) is only a sufficient condition for P_{ϕ} to be Hilbert Schmidt. We need the following lemma due to Gabriel [6] for the proof of our next theorem.

LEMMA. Let Γ be a rectifiable convex curve in the closed unit disc. Then, for every f in H^{2}

$$
\int_{\Gamma}|f(w)|^{2}|d w| \leq 4 \pi| | f| |_{2}^{2}
$$

THEOREM 2. Let $\phi: T \rightarrow \bar{D}$ be such that
(i) ϕ describes a closed rectifiable convex curve in \bar{D} and
(ii) $m=i n f\left|\phi^{\prime}\left(e^{i t}\right)\right|>0,0 \leq t \leq 2 \pi$,

Then, $\quad\left\|P_{\phi}\right\| \leq(2 / m)^{1 / 2}$.
PROOF. By lemma and the condition (ii) we have

$$
\left.4 \pi\left||f|_{2}^{2} \geq \int_{0}^{2 \pi}\right| f\left(\phi\left(e^{i t}\right)\right)\right|^{2}\left|\phi^{\prime}(t)\right| d t \geq m \int_{0}^{2 \pi}\left|(f o \phi)\left(e^{i t}\right)\right|^{2} d t
$$

so that

$$
\left\|P_{\phi} f\right\|^{2} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|(f \circ \phi)\left(e^{i t}\right)\right|^{2} d t \leq \frac{2}{m}\|f\|_{2}^{2}
$$

The conditions (i) and (ii) in the above theorem are not necessary for P_{ϕ} to be bounded. As an example consider

$$
\phi(t)=\left(e^{i t}\right)=\left[\begin{array}{ll}
e^{i t} & 0<t<\pi \\
0 & \pi \leq t \leq 2 \pi
\end{array}\right.
$$

so that ϕ does not satisfy any of the conditions (i) or (ii) of the theorem. Now,

$$
\left.\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, f(\phi)\left(e^{i t}\right)\right)\left.\right|^{2} d t=\frac{1}{2 \pi} \int_{0}^{\pi}\left|f\left(e^{i t}\right)\right|^{2} d t+\frac{1}{2 \pi} \int_{\pi}^{2 \pi}|f(o)|^{2} d t \leq \|\left. f\right|_{2} ^{2} .
$$

This shows that P_{ϕ} is bounded with $\left\|P_{\phi}\right\| \leq \sqrt{ } 2$.
4. A FAMILY OF COMPOSITION OPERATORS.

In this section we study the properties of P_{ϕ} for the particular family of functions $\phi: T \rightarrow \bar{D}$ given by

$$
\begin{equation*}
\phi(z)=a z+b \bar{z}, \quad z \varepsilon T \tag{4.1}
\end{equation*}
$$

where $|a|+|b| \leq 1$. We note that if $|a| \neq|b|$ then the curve traced by ϕ is an ellipse containing the orgin in its interior. Also $m=i n f\left|a e^{-i t}-b\right| \geq||a|-|b||>0$. Hence by Theorem 2, P_{ϕ} is bounded. It turns out that P_{ϕ} has many interesting properties for different values of the parameters a and b. We need the following technical lemma.
LEMMA 1. For all n, k in Z_{+}

$$
\begin{equation*}
\binom{n+2 k}{k}^{+}<2^{n+2 k} \tag{4.2}
\end{equation*}
$$

PROOF. We shall prove (4.2) by method of induction on n. Let $n=0$ so that we have to show

$$
\begin{equation*}
\binom{2 k}{k}<2^{2 k} \text { for } k=1,2,3, \ldots \ldots \ldots \tag{4.3}
\end{equation*}
$$

We establish (4.3), also by the process of induction on k. For $k=1,\binom{2}{1}=2<2^{2}$ is trivially true. Next, assume that

$$
\binom{2 k}{k}<2^{2 k}, \text { i.e. } \frac{(2 k)!}{(k!)(k!)}<2^{2 k}
$$

To complete induction on k we consider

$$
\binom{2(k+1)}{k+1}=\frac{(2 k+2)!}{(k+1)!(k+1)!}<2^{2 k} 2 \frac{(2 k+1)}{(k+1)}<2^{2(k+1)}
$$

Thus, (4.3) is true for all $k=1,2,3 \ldots$. Next, let $n=1$. Then,

$$
\binom{2 k+1}{k}=\binom{2 k}{k} \frac{(2 k+1)}{(k+1)}<2^{k} \cdot 2=2^{k+1}
$$

Now, assume that $\binom{\mathrm{n}+2 \mathrm{k}}{\mathrm{k}}<2^{\mathrm{n}+2 \mathrm{k}}$. To complete the induction we consider

$$
\binom{\mathrm{n}+1+2 \mathrm{k}}{\mathrm{k}}=\frac{(\mathrm{n}+2 \mathrm{k})!}{(\mathrm{k}!)(\mathrm{n}+\mathrm{k})!} \frac{(\mathrm{n}+1+2 \mathrm{k})}{(\mathrm{n}+1+\mathrm{k})}<2^{\mathrm{n}+2 \mathrm{k}} \cdot 2<2^{\mathrm{n}+1+2 \mathrm{k}}
$$

Thus (4.3) is true for all $k=1,2, \ldots \ldots$ and $n=0,1,2 \ldots \ldots$.

THEOREM 3. Let $\phi: T \rightarrow \bar{D}$ be given by $\phi(z)=a z+b \bar{z}, z$ in T.
(i) If $|a|+|b| \leq 1,|a| \neq|b|, b \neq 0$ and $|a|<\frac{1}{2}$ then P_{ϕ} is Hilbert Schmidt.
(ii) If $|a|+|b|=\frac{1}{2}$ then fod need not be in L^{2} for all f in H^{2} so that P_{ϕ} is not defined on the whole of H^{2}.
(iii) The inequality $|a|<\frac{1}{2}$ in (i) is best possible.

PROOF. Consider the orthonormal basis $e_{n}, n=0,1,2, \ldots$, for H^{2}. With respect to this basis P_{ϕ} has a matrix representation

$$
t_{\mathrm{mn}}=\left[\begin{array}{ll}
0 & \text { if } n<m \\
\binom{n+2 k}{k} a^{n}(a b)^{k} & \text { if } n-m=2 k \\
0 & \text { if } n-m=2 k+1
\end{array}\right.
$$

where m, n, and $k \varepsilon Z_{+}$. Now

$$
\begin{aligned}
& \Sigma\left|t_{m, n}\right|^{2}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(\begin{array}{c}
n+2 k
\end{array}\right)^{2} \quad|a|^{2 n}|a b|^{2 k} \\
& \sum_{n=0}^{\infty}\left(\left|a_{n}\right|^{2 n}+\sum_{k=1}^{\infty}(\underset{k}{n+2 k})^{2}|a|^{2 n}|a b|^{2 k}\right) \\
& \left.=\frac{1}{1-|a|^{2}}+\sum_{n=0}^{\infty}{ }_{k=1}^{\infty} \sum_{k}^{n+2 k}\right)^{2}|a|^{2 n}|a b|^{2 k}
\end{aligned}
$$

We use Lemma 1 to show that the second sum in the right hand side is convergent.

$$
\begin{aligned}
\sum_{k}^{\infty} \underline{L}_{1} \sum_{n=0}^{\infty}\binom{n+2 k}{k}^{2}|a|^{2 n}|a b|^{2 k} & \leq \Sigma \Sigma 2^{2 n+4 k}|a|^{2 n}|a b|^{2 n}=\Sigma \Sigma|2 a|^{2 n}|4 a b|^{2 k} \\
& =\frac{1}{1-|2 a|^{2}} \cdot \frac{1}{1-|4 a b|^{2}}<\infty
\end{aligned}
$$

since $|a|<\frac{1}{2}$, which also implies $|a b|<\frac{1}{4}$. This proves that P_{ϕ} is Hilbert Schmidt. (ii) For the proof of (ii) consider the H^{2} function $f(z)=(1-z)^{-\alpha}, 0<\alpha<\frac{1}{2}$. For $a=b=\frac{1}{2}, \phi\left(e^{1 \theta}\right)=\cos \theta$. Thus,

$$
f\left(\phi^{\prime}\left(e^{i \theta}\right)\right)=f(\cos \theta)=\frac{1}{(1-\cos \theta)^{\alpha}}=\frac{1}{\left(2^{\alpha} \sin ^{2 \alpha} \frac{\theta}{2}\right)} \quad \text { a.e. }
$$

and

$$
\int_{0}^{2 \pi} \left\lvert\,\left(\left.f\left(\phi\left(e^{i \theta}\right)\right)\right|^{2} d \theta=\int_{0}^{\pi / 2} \frac{2^{2-2 \alpha}}{\sin ^{4 \alpha} \theta} d \theta \geq \int_{0}^{\pi / 2} \frac{2^{2-2 \alpha}}{\theta^{4 \alpha}} d \theta=\infty\right.\right.
$$

if $\alpha>\frac{1}{4}$. In the above we have made use of the well known inequality $\frac{2 \theta}{\pi}<\sin \theta<\theta$ for $0<\theta<\frac{\pi}{2}$.
(iii) In view of (ii), for the proof of (iii), it is sufficient to show that P_{ϕ} is not Hilbert Schmidt if $a+b=1$ and $a>b$. In fact, we show that under the above condition $\sum_{m}\left|t_{m, m}\right|^{2}=\infty$.

Observe that

$$
e_{n}\left(\phi\left(e^{i \theta}\right)\right)=\left(a e^{i \theta}+b e^{-i \theta}\right) n=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} e^{i(n-k) \theta} e^{-i k \theta}
$$

Since $(a+b)^{n}=1$, we have $k_{\sum_{0}}^{n}\binom{n}{k} a^{n-k} b^{k}=1$. Hence considering this sum as the inner product of two vectors

$$
\left[\binom{n}{0} a^{n} b^{0},\binom{n}{1} a^{n-1} b^{1}, \ldots, \left.\binom{n}{n} a^{0} b^{n} \right\rvert\, \text { and } \mid 1,1 \ldots \ldots \ldots, \ldots, 1\right]
$$

We see that, since $\|[1,1, \ldots \ldots, 1]\|^{2}=(n+1)$, by Cauchy Schwarz inequality

$$
\sum_{k=0}^{n}\left|\binom{n}{k} a^{n-k} b^{k}\right|^{2} \geq \frac{1}{(n+1)} .
$$

Further, we observe that if $a>b$ then $(\underset{r}{n}) a^{n-r} b^{r}>\left(\begin{array}{c}n-r\end{array}\right) a^{r} b^{n-r}$ so that over half of the above sum is from terms where $n-k \geq k$ and so $\left\|P_{\phi} e_{n}\right\|^{2} \geq 1 / 2(n+1)$, leading us to $\sum_{n}\left|t_{n, n}\right|^{2}=\infty$. This completes the proof of the theorem.

Also, with the help of the same function $\phi(z)=a z+b \bar{z}$, we show that the condition (3.1) of Theorem 1 is not a necessary condition for P_{ϕ} to be a Hilbert Schmidt. For this take a, b in $R, a b>0$ and $|a|+|b|=1$. Then,

$$
\int_{0}^{2 \pi} \frac{d t}{1-\left|\phi\left(e^{i t}\right)\right|^{2}}=\int_{0}^{2 \pi} \frac{d t}{\left(1-(a-b)^{2}\right) \sin ^{2} t}=\infty
$$

However, in view of Theorem 3, it follows that P_{ϕ} is Hilbert Schmidt.
In the following theorem we present a sufficient condition on f in H^{2} to ensure that foф is in $L^{2}(T)$.
THEOREM 4. Let $\phi: T \rightarrow \bar{D}$ be given by $\phi(z)=a z+b \bar{z} .|a|=|b|=\frac{1}{2}$ and f in H^{2} be given by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Further if $a_{n}=0\left(\frac{1}{n}\right)$ with $\alpha>\frac{3}{4}$, then foф εL^{2}. PROOF. First let $a=b=\frac{1}{2}$, so that $\phi\left(e^{i \theta}\right)=\cos \theta$. Now,

$$
\begin{equation*}
\left|f\left(\phi\left(e^{i \theta}\right)\right)\right|^{2} \leq\left.\left.\right|_{n=0} ^{\infty} \frac{\cos ^{n} \theta}{n^{\alpha}}\right|^{2} \tag{4.4}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\frac{1}{(1-z)^{\beta+1}}=\sum_{n=0}^{\infty}\binom{n+\beta}{n} z^{n} \tag{4.5}
\end{equation*}
$$

and [7]

$$
\begin{equation*}
\binom{\mathrm{n}+\beta}{\mathrm{n}} \sim \frac{\mathrm{n}^{\beta}}{\Gamma(\beta+1)} \tag{4.6}
\end{equation*}
$$

Taking $\beta=-\alpha$ in (4.5) and (4.6), we get

$$
n=0 \frac{\cos ^{n} \theta}{n^{\alpha}} \sim \frac{\Gamma(-\alpha+1)}{(1-\cos \theta)^{(1-\alpha)}}
$$

Thus, to complete the proof, it is sufficient to show that

$$
\int_{0}^{2 \pi}(1-\cos \theta)^{(2 \alpha-2)} d \theta=\int_{0}^{2 \pi} \sin (4 \alpha-4) \frac{\theta}{2} d \theta<\infty
$$

However, this is ture because of the condition $\alpha>\frac{3}{4}$. To dispose of the general case
we observe that if $2 a=e^{i \alpha}$ and $2 b=e^{i \gamma}$ then $\phi\left(e^{i \theta}\right)=e^{i(\alpha+\gamma) / 2} \cos \left(\frac{\alpha-\gamma+2 \theta}{2}\right)$ and this leads to similar calculations as above.

Taking cue from the above theorem we next show that fo申 εL^{2} for $f \varepsilon H^{2}(\rho(n))$ for a suitable choice of the sequence $\rho(n)$. THEOREM 5. Let $\phi: T \rightarrow \bar{D}$ be given by $\phi\left(e^{i \theta}\right)=a e^{i \theta}+b e^{-i \theta},|a|=|b|=\frac{1}{2}$ and $\rho(n)=n^{B}$. Then,
(i) fod is in L^{2} for all f in $H^{2}(\rho(n))$ if $\beta>\frac{1}{2}$,
(ii) for each $B<\frac{1}{2}$ there is a function f_{β} in $H^{2}(\rho(n))$ such that $f_{\beta} o \phi$ is not in L^{2}
PROOF. As in the previous theorem we assume $a=b=\frac{1}{2}$ so that $f\left(\phi\left(e^{i \theta}\right)\right)=f(\cos \theta)$. Let f in $H^{2}(\rho)$ be given by $f(z)={ }_{n=0}^{\infty} a_{n} z^{n}$. We have

$$
\left|f\left(\phi\left(e^{i \theta}\right)\right)\right|^{2}=\left|{ }_{n} \sum_{0}^{\infty} a_{n} \cos ^{n} \theta\right|^{2} \leq\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \rho(n)\right)\left({ }_{n=0}^{\infty} \frac{\cos ^{2 n} \theta}{\rho(n)}\right) .
$$

Now using (4.5) and (4.6) as in the previous theorem it can be shown that

$$
\sin ^{2 \beta-2} \theta \sim \sum_{n=0}^{\infty} \frac{n^{-\beta}}{\Gamma(-\beta+1)} \cos ^{2 n} \theta
$$

Thus fo ϕ is in L^{2} if $\beta>\frac{1}{2}$.
For the proof of (ii) consider the function

$$
f(z)=\frac{1}{(1-z)^{\alpha+1}}=\sum A_{n}^{\alpha} z^{n} .
$$

By (4.6),

$$
\Sigma\left|A_{n}^{\alpha}\right|^{2} n^{\beta} \sim \Sigma n^{2 \alpha+\beta}
$$

The sum on the right hand converges if $2 \alpha+\beta<-1$ i.e. $\alpha<-(\beta+1) / 2$. Thus, f is in $H^{2}(\rho), \rho(n)=n^{\beta}$ for $\alpha<-(\beta+1) / 2$. However,

$$
\int_{0}^{2 \pi}\left|f\left(\phi\left(e^{i \theta}\right)\right)\right|^{2} d \theta=\frac{1}{2^{2 \alpha+1}} \int_{0}^{\pi} \frac{1}{\sin ^{4 \alpha+4} \theta} d \theta=\infty
$$

if $\alpha \geq-\frac{3}{4}$. Thus, for given $\beta<\frac{1}{2}$, if we chose $\alpha=-(3+2 \beta+2) / 8$, f is in $H^{2}(\rho)$ but fod is not in L^{2}.
REMARK. The case $\rho(n)=n^{\frac{1}{2}}$, remains open in the above theorem. However, in the next theorem we prove the same result for a sequence $\rho(n)$ having faster rate of growth than $n^{1 / 2}$ but with slower rate than $n^{1 / 2+\varepsilon}$ for any $\varepsilon>0$. THEOREM 6. Let $\phi: T \rightarrow \bar{D}$ be as in the previous theorem and $p(n)=n^{1 / 2}(\log n)^{\beta}$. Then, (i) fo ϕ is in L^{2} for all f in $H^{2}(\rho(n))$ if $\beta>1$,
(ii) for each $\beta<0$, there is a function f_{β} in $H^{2}(\rho(n))$ such that f_{β} od is not in L^{2} 。

PROOF (i) Let f, given by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, be in $H^{2}(\rho(n))$ so that

$$
\|f\|_{\rho}=\Sigma n^{1 / 2}(\log n)^{\beta}\left|a_{n}\right|^{2}<\infty .
$$

By Cauchy Schwarz inequality,

$$
\begin{equation*}
\left.\left.\left|f\left(\phi\left(e^{i \theta}\right)\right)\right|^{2} \leq \sum_{n_{=}^{\infty}}^{\infty} n^{1 / 2}(\log n)^{\beta}\left|a_{n}\right|^{2}\right)\left(\sum_{n=0}^{\infty} \frac{\cos ^{2 n} \theta}{n^{1 / 2}(\log n)^{\beta}}\right)\right) \tag{4.7}
\end{equation*}
$$

It is known [7, p. 192] that if

$$
\begin{equation*}
\frac{1}{(1-z)^{\alpha+1}}\left(\log \frac{a}{1-z}\right)^{\beta}=n_{\sum_{0}}^{\infty} A_{n}^{(\alpha, \beta)} z^{n} \tag{4.8}
\end{equation*}
$$

then for $a>2, \alpha \neq-1,-2,-3, \ldots \ldots, \alpha, \beta \in R$

$$
A_{n}^{(\alpha, \beta)} \sim \frac{n^{\alpha}}{\Gamma(\alpha+1)}(\log n)^{\beta}
$$

so that

$$
A_{n}^{(-1 / 2,-\beta)} \sim \frac{1}{\sqrt{\pi n^{1 / 2}(\log n)^{\beta}}}
$$

i.e.

$$
\begin{align*}
& \frac{1}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{\left(\cos ^{2} \theta\right)^{n}}{n^{1 / 2}(\log n)^{\beta}} \sim \frac{1}{\left(1-\cos ^{2} \theta\right)^{1 / 2}}\left(\log \frac{a}{1-\cos ^{2} \theta}\right)^{-\beta}=\frac{2^{-\beta}}{\sin \theta}\left(\log \frac{b}{\sin \theta}\right)^{-\beta}, \\
b= & \sqrt{a} \tag{4.9}
\end{align*}
$$

In view of (4.7) and (4.9), in order to show that foф is in L^{2}, it is sufficient to show that

$$
\int_{0}^{2 \pi} \frac{1}{\sin \theta}\left(\log \frac{1}{\sin \theta}\right)^{-\beta} d \theta<\infty
$$

Further, because of the inequality $(2 \theta / \pi)<\sin \theta<\theta$, it is sufficient to show the integrability, in an interval ($0, \delta$), of the function

$$
h(\theta)=\frac{1}{\theta}\left(\log \frac{1}{\theta}\right)^{-\beta}
$$

Making the substitution $\log \left(\frac{1}{\theta}\right)=u$, we get

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\delta} \frac{1}{\theta}\left(\log \frac{1}{\theta}\right)^{-\beta} d \theta=\lim _{\varepsilon \rightarrow 0} \frac{\left(\log \frac{1}{\varepsilon}\right)^{1-\beta}-\left(\log \frac{1}{\delta}\right)^{1-\beta}}{1-\beta}
$$

Thus, the above integral converges if $\beta>1$. This completes the proof of (1).
(i1) Let $\rho(n)=n^{1 / 2}(\log n)^{-\beta}, \beta>0$. Now consider the function

$$
f(z)=\frac{1}{(1-z)^{1 / 4}}\left(\log \frac{a}{1-z}\right)^{\gamma}=\Sigma A_{n}^{\gamma} z^{n}
$$

where $-1 / 2>\gamma<(\beta-1) / 2$. We first observe that f is in $H^{2}(\rho(n))$. In fact, a comparison of f with (4.8) shows that

$$
A_{n}^{\gamma} \sim \frac{n^{-3 / 4}}{\Gamma(1 / 4)}(\log n)^{\gamma} .
$$

Thus,

$$
\Sigma\left|A_{n}^{\gamma}\right|^{2} \rho(n) \sim \Sigma n^{-1}(\log n)^{2 \gamma-\beta}
$$

and the right hand side series converges because $\gamma<(\beta-1) / 2$. Now,

$$
\int_{0}^{2 \pi}\left|f\left(\phi\left(e^{1 \theta}\right)\right)\right|^{2} d \theta=2^{\gamma-1 / 2} 4 \int_{0}^{\pi / 2} \frac{1}{\sin \theta}\left(\log \frac{b}{\sin \theta}\right)^{2 \gamma} d \theta
$$

where $b=\frac{a}{2}$. The above integral diverges with the integral

$$
\int_{0}^{\pi / 2} \frac{1}{\theta}\left(\log \frac{1}{\theta}\right)^{2 \gamma} d \theta
$$

because of the condition $\gamma>\frac{1}{2}$. Thus, we prove that although $f \varepsilon H^{2}(\rho(n))$, foф is not in L^{2}.
REMARK. The case $\rho(n)=n^{\frac{1}{2}}(\log n)^{\beta}, 0 \leq \beta<1$ remains unsettled.
We conclude this section by showing that P_{ϕ} is an unbounded operator on H^{2} for $\phi\left(e^{i t}\right)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$. This we do by exhibiting a sequence of function f_{n} in H^{2} for which $\lim _{n \rightarrow \infty}\left\|P_{\phi} f_{n}\right\|=\infty$

Let $f_{n}(z)=\sum_{k=1}^{n} \cdot \frac{z^{k}}{k}$ and $f(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k}=\log \frac{1}{1-z}$ so that

$$
g_{n}(t)=f_{n}\left(\phi\left(e^{i t}\right)\right)=\sum_{k=1}^{n} \frac{\cos ^{k} t}{k} \quad \text { and } g(t)=f\left(\phi\left(e^{i t}\right)\right)=\sum_{k=1}^{\infty} \frac{\cos ^{k} t}{k}
$$

Observe that g is in L^{1} but is not in L^{2}. Let a_{k} and $a_{n}^{(n)}$ respectively be the $k^{\text {th }}$ Fourier coefficients of g and g_{n}. Since

$$
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left|g_{n}(t)-g(t)\right| d t=0
$$

we get

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty} a_{n}^{(n)}=a_{k} \cdot \text { Now, } \\
& \lim _{n \rightarrow \infty}| | p_{\phi}| |_{2}^{2}=\lim _{n \rightarrow \infty} \sum_{k=-n}^{\sum_{m=-}^{n}}\left|a_{k}^{(n)}\right|^{2}={ }_{k=-\infty}^{\infty}\left|a_{k}\right|^{2} \quad \frac{1}{2 \pi} \int\left|g\left(e^{i t}\right)\right|^{2} d t=\infty .
\end{aligned}
$$

5. COMPACTNESS OF P_{ϕ}

In this section we discuss some examples illustrating cases when P_{ϕ} is compact and when it is not. Let $\phi_{1}, \phi_{2}, \phi_{3}: T \rightarrow \bar{D}$, be defined by
(i) $\phi_{1}\left(e^{i t}\right)=a e^{-i t} \quad, \quad|a|=1 \quad 0 \leq t \leq 2 \pi$
(ii) $\phi_{2}\left(e^{i t}\right)\left[\begin{array}{ll}e^{i t} & 0 \leq t<\pi \\ 0 & ,\end{array}\right.$
(iii) $\phi_{3}\left(e^{i t}\right)=\left[\begin{array}{l}e^{i t} \\ a e^{i t}+b e^{-i t}\end{array}\right.$

$$
0 \leq t \leq \pi
$$

(i) $P_{\phi 1}$ is a finite rank, hence a compact, operator. For, if f in H^{2} is given by $f(z)={ }_{n=0}^{\infty} a_{n} z^{n}$ then $\left(P_{\phi_{1}} f\right)\left(e^{i t}\right)=P\left(\sum_{n=0}^{\infty} a_{n} a^{n} e^{-i n t}\right)=a_{0}$.

For composition operators with analytic ϕ Schwartz [8] has shown that if $C_{\phi}: \quad H^{P}(D) \rightarrow H^{P}(D)$ is compact then $\left|\phi\left(e^{i t}\right)\right| \leqslant 1$ a.e. where $\phi\left(e^{i t}\right)$ is the radial limit of $\phi(z)$. We observe in this example that $P_{\phi l}$ deviates in behaviour from C_{ϕ}. (ii) We have shown at the end of Section 3 that $\left\|P_{\phi_{2}}\right\|<\sqrt{ } \|$. We show here that $P_{\phi_{2}}$ is not compact.

By Riemann-Lebesgue Lemma the sequence $e_{n}, n=0,1,2, \ldots$ converges to zero weakly in H^{2}. However, $P_{\phi_{2}}\left(e_{n}\right)=P\left(e_{n} o \phi_{2}\right)$, does not converge strongly to zero. For, if the Fourier series of $e_{n} o \phi_{2}$ is given by $\left(e_{n} o \phi_{2}\right)\left(e^{i t}\right)=\sum_{m=-\infty}^{\infty} a_{m} e^{i m t}$, then by direct computation it can be seen that

$$
a_{m}=\left[\begin{array}{ll}
\frac{1}{\pi(n-m)} & \text { if } n-m \text { is odd } \\
0 & \text { if } n-m \text { is even } \\
\frac{1}{2} & \text { if } n=m
\end{array}\right.
$$

and $\left\|P_{\phi_{2}}\left(e_{n}\right)\right\|_{2}^{2}=\sum_{m=0}^{\infty}\left|a_{m}\right|^{2}>\frac{1}{4}$. Thus, $P_{\phi_{2}}$ is not compact.
By a similar argument as in (ii) it can be shown that $P_{\phi_{3}}$ is bounded but not a compact operator.
ACKNOWLEDGEMENT. The authors thank the referee for his useful suggestions regarding the definition of P_{ϕ}.

REFERENCES

1. DUREN, P.L., H^{p} Spaces, Academic Press, New York, 1970.
2. HOFFMAN, K., Banach Spaces of Analytic Functions, Prentic-Hall, Englewood Cliffs, New Jersey, 1962.
3. HALMOS, P.R., A Hilbert Space Problem Book, Springer-Verlag, New York, Inc., Gra duate texts in Mathematics, Vol. 19.
4. NORDGREN, E.A., Composition Operators in Hilbert Spaces, Lecture notes in Mathematics, 639, Springer-Verlag, Berlin, 1978.
5. CARLESON, L., On Convergence Growth of Partial Sums of Fourier Series. Acta Math, 116 (1966), 135-157.
6. GABRIEL, R.M., Some Results Concerning the Moduli of Regular Functions Along Curves of Certain Types, Proc. London Math. Soc. 28(1928), 121-127.
7. ZYGMOND, A., Trigonometric Series, 2nd Ed., Cambridge University Press, 1959.
8. SCHWARTZ, H. Composition Operators on HP, Dissertation, University of Toledo, 1969

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

