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ABSTRACT. A new class of composition operators PQ: HZ(T) + HZ(T), with ¢: T+D is
introduced. Sufficient conditions on ¢ for P¢ to be bounded and Hilbert-Schmidt are
with ¢(eit) = aelt + be-it

obtained. Properties of P for different values of the

¢
parameters a and b have been investigated. This paper concludes with a discussion
on the compactness of P¢ .
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1. PRELIMINARIES.
For a complex valued function £ analytic in D = {z: |z] <1} and for 1 <p s =

set
1

M (r,f) = (f2" |f(reie)|p %2_)p , 1sp <w
P 0 m
and

M (r,f) = Sup |f(teie)|.
0< & 2m

The function f is said to be in HP(D) , 1f 1lim Mp(r,f) <o , Similarly, let
r>l=

HP(T), T = {z: ]zl = 1}, be the class of functions in LP(T) such that

iné

Peel®) o1 4o m 0, n=1,2,3 c0e... .
0

i8
e

It is known [1,2] that for f in Hp(D) 1lim f(reie) = f,( ) exists for almost all

r+~le
8 and f, belongs to Hp(T). Conversely, the Poisson integral of a function in Hp(T)
is in HP(D). Also, if f in HP(D) has the sequence {an} as its Taylor coefficients
then, f, has the same sequence as its Fourier coefficients and vice versa. This corre-

spondence establishes an isometrical isomorphism between Hp(D) and HP(T). Thus, these
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two spaces are interchangeably used and are usually referred to as the Hardy Space

uPr1,2].
In the sequel we came across another space familiarly known as the weighted Hardy

space [3] . Let p(n) be a sequence of positive numbers. An analytic function f£:D>C,
given by f(z) =L anzn , 1s said to be in the class H2(p), if Hf“p = Z|an|2 p(n)<=,

Also we need the following definition. Let H be a Hilbert space and T be a bounded
linear operator on H. Then, T 1is said to be Hilbert Schmidt if there exists an ortho-
normal basis {en} in H such that I ||Ten||2 < e,

Throughout in the present paper we denote by e »n= 0,1,2,..., the function

e (eit

a ) = eint . We note that {en} forms an orthonormal basis for HZ2.

2. A NEW CLASS OF CONPOSITION OPERATORS.

Let ¢: D > D be analytic and let C HP(D) > HP(D) be defined by (C¢f)(z) =

o
f(¢(z)), z in D. The operator C¢ is known as a composition operator on Hp(D) and

is extensively studied in the literature [4]. In the present paper we introduce and

study a new class of composition operators P on H2?(T) where ¢: T > D many be 'non-

¢
analytic' also. That is ¢ nonvanishing negative Fourier coefficients.

DEFINITION. Let ¢: T + D satisfy the following properties:

(a) for every set EC T, of linear measure zero, ¢‘1(E) ={zeT: ¢(z) =w, weT}is

also a set of linear measure zero and
(b) for every f in H2(T), fo¢ 1is in L2(T).

Then, define P, :

¢ H2(T) » H2(T) by P,f = P(fop) where P 1is the projection of L2(T)

¢
into H2(T).

Here some explanations are in order. We observe that a function f in H2(T) can
be extended analytically into D as described in Section 1. So with the condition (a),
fo¢ is defined almost everywhere on T . Futher, let f be represented by the Fourier
series ZO aneino . Then by the Weierstrass theorem, nZO an(¢(eie))n converges point-

wise to f(¢(eie)) for all © such that ¢(eie) € D and by a result of Carleson [5]

nZO an(¢(eie))n converges pointwise to f(¢(eie)) for almost all © such that

¢(eie)e T. Hence nZO an(¢(eie))n converges pointwise almost everywhere on T to

n

f(¢(eie)). Thus throughout in this paper we write nzo an(¢(e10)) in place of f(¢(eie».

We note theat if ¢ satisfies the conditions of the definition, then by the Closed

Graph Theorem, P¢ is a bounded operator. So a natural question is: wunder what condi-

tions on ¢, fo¢p is in L2(T) for all f in H2(T). The present paper primarily deals
with this question.

In the following sections we first obtain bounds for the norm of P under suitable

¢

conditions on ¢. Then we consider ¢ defined by ¢(eit) = ae1t + be-it and study
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conditions on a and b such that fo¢ € L2(T) for all f in H2(T). In the last

section we have discussed the compactness of P¢ with the help of some examples.

3. NORM OF P¢.

We have the following results.
THEOREM 1. Let ¢: T->D be such that

IZﬂ dt

0 T lpedne NPT o

Then, P, 1is Hilbert Schmidt and e, Il < M9y /2m /2
n

PROOF. Let f in HZ(T) be given by f(z) = Zanz , 2z in T. Then,

l£e®®) (2 = | za_6(e)™2 < @la D) @lo® ™™
= ez —L— s
1 -lee!®]2

So,

2 M(¢)
e ell? < ||f0¢||25||f||§ o
and we get ||P¢|| < (M(¢)/2")1/2~

Next, with the orthonormal basis esn= 0,1,2,..., of HZ(T), we have

2w

Zo Megepl12 < Bl o2 = B0 4= £ 1oe!H %" ae = aaeor/2m< =

Thus, P¢ is Hilbert Schmidt.

COROLLARY 2. If ¢: T»D is continuous then P¢ is Hilbert Schmidt.

PROOF. The condition (3.1) is trivially satisfied if ¢ 1is continuous.
By an example in the next section we will show that (3.1) is only a sufficient con-

dition for P¢ to be Hilbert Schmidt. We need the following lemma due to Gabriel [6]

for the proof of our next theorem.
LEMMA. Let T be a rectifiable convex curve in the closed unit disc. Then, for

every f in H?
[le|? Jawl < anlle]]?

THEOREM 2. Let ¢: T»D be such that

(1) ¢ describes a closed rectifiable convex curve in D and
(11) m = infl¢' (18] >0, 0< t < 27,
Then, ||P¢|| < @2mtfz

PROOF. By lemma and the condition (ii) we have

v

anl|€]]2 2 62“ [£o e )2 [o' ()] dt > m 62" | (fo0) (el®)]2at

so that
1 2 i 2
Hegell? < 5 2% lctow) 1% ae < 2 11212
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The conditions (i) and (ii) in the above theorem are not necessary for P¢ to be

bounded. As an example consider
it
¢ (t) = (e )=[

so that ¢ does not satisfy any of the conditions (i) or (ii) of the theorem.

eit 0O<t<m

0 T<t<2n

Now,

1

2n

L

1 i
3 [ 1012 ae = 5 1T 22 ax +

12" 5oy |2ae < |1£]]2 .
m 2
This shows that P¢ is bounded with ||P¢|| <v2.

4. A FAMILY OF COMPOSITION OPERATORS.

In this section we study the properties of P¢ for the particular family of func-

tions ¢ : T > D given by
$(z) = az + bz, z €T (4.1)
where |a| + |b| < 1. We note that if Ial # Ibl then the curve traced by ¢ 1is an

it

ellipse containing the orgin in its interior. Also m = inflae_ - b| > ||a| - |bl|>0.

Hence by Theorem 2, P¢ is bounded. It turns out that P¢ has many interesting pro-

perties for different values of the parameters a and b . We need the following tech-
nical lemma.
LEMMA 1. For all n , k in Z+

+
n + 2k < 2n+2k (4.2)
k

PROOF. We shall prove (4.2) by method of induction on n . Let n =0 so that we have

to show
G < 2% for k= 1,2,3,00ii. (4.3)
We establish (4.3), also by the process of induction on k . For k =1, (f) =2 < 22

is trivially true. Next, assume that

2k 2k (2k) ! 2k
( k) <277, 1d.e. WD kD <2
To complete induction on k we consider
(2(k+1) (2k+2)! < 22k 2 (2k+1) < 22(k+1) .

Kl ) T D) T (k+1)
Thus, (4.3) is true for all k =1,2,3 .... . Next, let n =1 . Then,

2k+ly _ 2k, (2k+1) k _ k+l
Hh = Co R e 2 2= 2

n+2k 2n+2k

Now, assume that ( Kk ) < To complete the induction we consider

n+1+2k - (n+2k)! (n+1+2k) n+2k n+l1+2k
Ce ) " e (i <2 <2< 2 .

Thus (4.3) is true for all k = 1,2,..... and n =0,1,2..... .
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THEOREM 3. Let ¢: T + D be glven by ¢(z) = az + bz , z in T.

A

1) 1f J|a] +|b] <1, |a] #|b], b#0 and |a] < % then P, 1is Hilbert Schmide.

@) 1t al + [b] = 3

is not defined on the whole of HZ .

then fo¢ need not be in L2 for all f in H2 so that P¢

(iii) The inequality lal < % in (1) is best possible.

PROOF. Consider the orthonormal basis e s 0= 0,1,2,.... , for HZ . With respect

to this basis P, has a matrix representation

]
0 if n<m
n+2k, n k
tmn (k ) a (ab) if n - m =2k
0 if n-m=2k+1

where m , n, and k € Z+ . Now

|2 - ¥ ¥ (n:2k)2 |a|2n |ab|2k

If e nZo mdo

m,n

n+2k)2|al2n |ab|2k)

© Zn @
Lo Cla I°% + 2, (%)

n=0
1
1—|a|2

We use Lemma 1 to show that the second sum in the right hand side is convergent.

+2k, 2 2 2k
+ n§0 kgl (nk )* |a|™® |ab]

k§1 ¢ (n+2k)2 IaIZn labIZk < 1z 22n+4k laIZn |abl2n - I |28|2n |4ab|2k
=1 n=0 * k
1 1

. < o

1-|2a|? 1-|4ab|2?

since |a| < % » which also implies Iab| < % . This proves that P¢ is Hilbert

Schmidt. (4i) For the proof of (ii) consider the H2 function f£(z) = (l-z)-u, 0<a<%.
For a=b = % s ¢(eie) = cos © . Thus,
1 1

£(8(e™®)) = £(cos ©) = T a.e.
(l-cos ©) (27 sin f)
and
2-2a 2-2a

12 eo(et®)) |2 g0 = [M12 L — w0 2" ge--

Y 0 sin'" 0 0 94a
if o > % . In the above we have made use of the well known inequality %9 < 8in 6<0
for 0 <0 <.
(iii) In view of (ii), for the proof of (iii), it is sufficient to show that P is

¢
not Hilbert Schmidt if a + b =1 and a > b. In fact, we show that under the above

condition I |t |2 =o
m ' m,m

Observe that
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- n - - -
en(¢(eie)) _ (aeie + be i@)n - 50 (;) o k bk e1(11 k)© . 1k .

n o n, n-k k
Since (a + b) =1, we have k£0 (k) a b~ = 1. Hence considering this sum as the

inner product of two vectors

a0, M a™t el o, (M %" fana | 1,0 (TR
We see that, since ll[l,l,....., 1]||2 = (n+l) , by Cauchy Schwarz inequality
n n, n-k _k |2 1
o [G0 27 b7 122 gy

n-r

Further, we observe that if a > b then (:) am T bt > ( n ) a' b so that over half

n-r
of the above sum is from terms where n-k > k and so ||P¢ enH2 > 1/2(n+l) , leading

us to I ltn n |2 = ® ., This completes the proof of the theorem.
n b

Also, with the help of the same function ¢(z) = az + bz , we show that the condi-
tion (3.1) of Theorem 1 is not a necessary condition for P¢ to be a Hilbert Schmidt.

For this take a , b in R, ab > 0 and Ial + |b| = 1. Then,
2T dt 2T dt

= = o

0 1-l¢e!t )2 0 (1-(a-b)2) sin? ¢

However, in view of Theorem 3, it follows that P¢ is Hilbert Schmidt.

In the following theorem we present a sufficient condition on f in H? to
ensure that fo¢ is in L2(T).
THEOREM 4. Let ¢: T»D be given by ¢(z) = az + bz . |a| = |b] -% and f in H?

be given by f(z) = nzo a z" . Further if a = 0 (l;) with o > % , then fo¢ € L2,
n

PROOF. First let a =b = % » so that ¢(eie) = cos O©. Now,

P n
o™ |2 < | £, 2252 |2 (4.4)
n
We know that
1 @ n+B n
oy Tnko Ca) 2 (4.5)
and [7]
8
ntB, . n
Ca) ™ T (4.6)

Taking B = -a in (4.5) and (4.6), we get
cos” © I'(-a+l)

=0 n® - (l-cose)(l-a)

Thus, to complete the proof, it is sufficient to show that

62ﬂ (1—cose)(2“'2)de = 62“ sin(éa_é) g do < =

. To dispose of the general case

Slw

However, this 1is ture because of the condition a >



NEW CLASS OF COMPOSITION OPERATORS 479

we observe that if 2a = eiu and 2b = eiY then O(eie) = ei(M'Y)/2 cos(c——;+—ze-) and

this leads to similar calculations as above.

Taking cue from the above theorem we next show that fo¢ € L2 for £ e HZ(p(n))
for a suitable choice of the sequence p(n).
i@

THEOREM 5. Let ¢: T > D be given by ¢(eie) = ge” + be-ie N |a| = |b| -% and

p(n) = nB. Then,

(1) foé 4s in L2 for all f in H2 (p(n)) if 8>%,

N

(i1) for each B < there is a function fB in Hz(p(n)) such that fBOO is not in

L2
PROOF. As in the previous theorem we assume a =b = % so that f(¢(eie)) = f(cos 6).

Let f in Hz(p) be given by f(z) = nzo a z". We have
el (2 = [ F, a cos® 0]2 < (E [a |2 g, o)
(6(e™"))|° = | L, 8 cos s (Zg la 2 ) 2y o)
Now using (4.5) and (4.6) as in the previous theorem it can be shown that
-8

® n 2n
nEO TBrD) cos” O.

Thus fo¢ 4s in L2 if B>-12-.
For the proof of (ii) consider the function
1 @ n
f(z) = ——— =JA z .
(l_z)aﬂ n
By (4.6),

.

zlAulg nB~ P n2a+B
n

The sum on the right hand converges if 2a + 8 < -1 i.e. a < - (B+1)/2. Thus, f 1is

B8

in H2(p), p(n) =n° for a < - (B+1)/2. However,

1 f"

1
dé = o
220t+1 0 sin4a+4 N

62" [£6®)]2 a0 =

if o 2 -%— « Thus, for given 8 <-;— , 1f we chose a = - (3+28+2)/8 , f 1is in H2(p)

but fo$ is not in L2.

N

REMARK. The case p(n) = n~ , remains open in the above theorem. However, in the next
theorem we prove the same result for a sequence p(n) having faster rate of growth than

1/2 1/2+4¢

n but with slower rate than n for any € >0 .

1/z(log n)B. Then,

THEOREM 6. Let ¢: T > D be as in the previous theorem and p(n) = n
(1) fop is in 1?2 for all f 1in H2 (p(n)) 4if B > 1,
(i1) for each B < 0, there is a function fB in H2(p(n)) such that fBo¢ is not in

L2,
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PROOF (1) Let £, given by f£f(z) = nzo anzn , be in HZ(p(n)) so that

lell, = 2 n'/ X10gm®la |2¢ =

By Cauchy Schwarz inequality,

2n
<] ®  1/2 B 2y, ® cos~ ©
leoe®®n ]2 < E) % 0g mF la |2 E ) . D)
n=0 n n=0 nllz(log n)B
It is known [7, p. 192] that 1if
1 _aB_ = (a,B) n
II:;;EIT (log l-z) nEO A z (4.8)
then for a > 2, a # -1,-2,-3,....., o, B e R
(a,B) _ n® B
A Ta+n) (108 )
so that
A (-1/2,-8) 1
n /n nllz(log n)B
i.e.
1 =  (cos? )" 1 a -8 _ 27" b -8
~ ~ (log )y o= (log =) »
yn n=0 nl/z(logn)s (1-cos? 6)1/2 1-cos? © sin & sin 6
b="a (4.9)

In view of (4.7) and (4.9), in order to show that fo¢ is in L2 , it is suffi-
cient to show that

IZW

1 1 .-B
o sin © (1og sin 6) e < = °
Further, because of the inequality (26/7) < sin ® < 6 , it is sufficient to show the
integrability, in an interval (0,8), of the function

n(e) = & (log 5)7°

Making the substitution 1log (%) = u, we get

1,1~ 1,1~
61 1.-8 (log 3) g (log 3) 8
1lim / 5(103 5) do = 1im T =8
e*0 € e+0
Thus, the above integral converges if B > 1. This completes the proof of (1).
(11) Let p(n) = nllz(logn)-B, B > 0. Now consider the function
1 a.y Y n
f(z) = —57 (log =—) "' = IA z
(1_2)1/4 1-z n

where =-1/2 > y < (B-1)/2. We first observe that f 4is in H%(p(n)). In fact, a com-
parison of f with (4.8) shows that

-3/4

Y n Y
A ~ T (log n) ' .

n
Thus,

zlal|2 p(n) ~ zn™! (log n)?Y"B

and the right hand side series converges because Yy < (B-1)/2. Now,
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2n 10,12 _oy-l/2, w2 1 b
£ g™ 2 a0 =2 407 smol*® gine

AT

where b = % . The above integral diverges with the integral

/2 (108 52 a0

N

because of the condition Yy > . Thus, we prove that although f € HZ(p(n)) , fo¢ 1is

not in L2 .

N

REMARK. The case p(n) = n (logn)B, 0 < B <1 remains unsettled.
We conclude this section by showing that P¢ is an unbounded operator on H? for

¢(eit) = (eit + e'it)/z = cos t . This we do by exhibiting a sequence of function fn

in H2 for which lim ||P¢fn|| =

nre
£ P2 s g 2 1
Let n(z) =L an (z) = P log 1= s° that
k k
it 0 cos t it ® cos t
sn(t) £, (o(e ))'kzl,l——k-— and g(t) = f(¢(e” 7)) N el
Observe that g 1s in L1 but isnot in LZ. Let a, and aén) respectively be the

kth Fourier coefficients of g and g, * Since

lim /27 lg (&) - g(t) | de = 0

nre 0
we get
1im a(n) = ak . Now,
nre 0
- (n)2 2 1 it, 2 -
1im ||p¢|| lim k__n la | k__a Ia | T Slge™) |2 dt = = .,
nre
5. COMPACTNESS OF P¢
In this section we discuss some examples illustrating cases when PO is compact
and when it is not. Let 01 s ¢2 N °3 :t T+D, be defined by
W 4" = a7t s ek =1 0<tx<2r
r it . 0o<t<m
(1) ¢t
LO s mT<t< 2w
1t s 0O<ts<m
(111) ¢, =
it -it
Lae” " + be N T<t<2r @a+b=1 a¥b, a,b>0

(1) P¢1 is a finite rank, hence a compact, operator. For, if f in H2 {s given by

® n it ® n -int
f(z) n§0 az then (P¢1f)(e ) P (nEO aa e ) = a .
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For composition operators with analytic ¢ Schwartz [8] has shown that if

C¢: HP(D) > HP(D) is compact then I¢(eit)| <1 a.e. where ¢(eit) is the radial
limit of ¢(z). We observe in this example that PM deviates in behaviour from C0 .
(1i1) We have shown at the end of Section 3 that ||P0 I| < /2 . We show here that P0

2 2
is not compact.

By Riemann-Lebesgue Lemma the sequence e» n= 0,1,2,... converges to zero weakly

in H2 , However, P¢ (en) = P(eno¢2), does not converge strongly to zero. For, if
2
the Fourier series of e _o¢, 1s given by (e _o¢ )(eit) = % a eimt then by direct
n "2 n "2 m=-® “m ’

computation it can be seen that

i
m if n-m 1is odd
a = 0 if n-m is even

N

if n=m

2 . 2,1
and ||P¢2(en)“2 mEO |aml > Thus, P¢2 is not compact.
By a similar argument as in (ii) it can be shown that P¢ is bounded but not a
3
compact operator.
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