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ABSTRACT, New oscillation criteria for the oscillatory behaviour of the differential

d(a(t) x(t)) + p(t)x(t) + q(t) f(x[g(t)]) 0 (" -t)

and

(a (t) (x (t)) (t))

are established

+ p(t)x(t) + q(t) f (x [g (t) ]) 0
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I. INTRODUCTION.

This paper is concerned with the oscillatory behavior of solutions of second

order nonlinear damped differential equations with deviating argument of the form

(a(t)x(t)) + p(t)x(t) + q(t) f(x[q(t)]) 0 (I.I)

and

(a (t) ,(x (t) x (t) + p(t)x(t) + q(t) f(x[g(t)]) 0 (1.2)

where a, g, p, q: [tO, -) -> [0, ), , f: R-> R (-", ") are continuous, a(t) > 0,

q(t) not identically zero on any ray of the form It*, ) for some t* _> to and

lim g(t) .
t->

We restrict our attention to those solutions of equations(.T_l)and(l.)which exist

on some ray [t -), t _> to and which are nontrivial in any neighborhood of
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infinity. Such a solution is called oscillatory if it has arbitrarily large zeros,

otherwise it is called nonoscillatory. An equation is called oscillatory if all its

solutions are oscillatory.

In the study of the second order sublinear differential equation

x (t) + q(t)Ix(t)lasnx(t) 0, 0 < ,< i (1.3)

where q: [tO, ) -> R is continuous, there are many criteria for oscillation which

involve the behavior of the integral of q. In particular, Belohorec [I] has shown

that the condition

/=sSq(s) ds for some 8 [0, ]

is sufficient for the oscillation of equation (1.3), and Kamenev [6] has established

that equation (3) is oscillatory if

t
ilira sup [ (t s)q(s)ds

t-> to

Recently, Kura [7] has presented a new criterion for the oscillation of equation (1.3)

which improves upon those of Belohorec and Kamenev. Kura proved that a sufficient

condition for the oscillation of equation (3) is that

i
t

lira sup (t s) sq(s)ds
t-> to

for some S [0,]

These results have been further extended by Philos [8] to a more general equation

x (t) + p(t) x(t) + q(t) f(x(t)) 0

where p, q: [t
O

(R)) -> R, f: R-> R are continuous, xf(x) > 0, f’(x) > 0 for x 0

and f is strongly sublinear i.e. f du
f-< -. The above results can be applied

+/-0
only to ordinary differential equations.

The purpose of this paper is to establish some new oscillation criteria for the

differential equations (I.I) and (1.2). In fact, we impose no conditions on the

function f other that xf(x) > 0 for x 0 and nondecreasing. Thus our

results can be applied to superlinear, linear and sublinear differential equations.

We also like to mention that we do not stipulate that the function g in equations

(I.I) and (1.2) is either retarded or advanced. Hence our theorems hold for ordinary,

retarded, advanced and equations of mixed-type.

2. THE EUATION
assmae that
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xf(x) > 0 and f’(x) > 0 for x # 0

s
]- du) dsa- exp( a (u)T T

T>_ to

Suppose further that there is a dlfferentiable function

(2.1)

(2.2)

o’: [to =)-> (0, (R))

such that

o(t) < g(t) o(t) > 0 for t >__ t O and limo(t) (2.3)

THEOREM 1. Let conditions (2.1) (2.3) hold and asste that there exists a

twice differentiable function

p: [t0,) -> (0, (R))

such that

If

a (t) < p (t) h p(t)
0 (t) < 0 and p (t) +0(t) a--/ < for t > tO

(2.4)
a(t)

t1
lira sup f
t-> - to

(t-s)
n o(s) q(s)ds for some n >_ i (2.5)

then equation (l. I) is oscillatory.

PROOF. Let x(t) be a nonoscillatory solution of equation (I.I), say x(t) > 0

for t _> tI. By a Lemma in [5] and condition (2.2), there exists a t
2 _> t such

that

x(t) > 0 and x[g(t)] > 0 for all t >__ t2 (2.6)

Now, define

t x(s)
(t) 0(t) [ f(x [d(s)])

t2

Then it is easy to verify that

ds t>_t2

] {(x[)]) f(x [(t)]) \a(t)/ f[(t)])
t2

a (a(t) x(t) x (t) X[o (t) f’ (x[o(t)+ f"(x[ o(t) ])
(t)o (t) 2(x o(t)

(2.7)
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t2

oCt)Ct) x(t) x[o(tl]f’ (x[oCt)])

Using conditions (2.1), (2.3) and (2.6) ue obtain

f(x[ o(t) ]) <_ for t>_t2

and by conditions (2.1), (2.3), (2.4) and (2.6) we have

for ever t >__ t2

Thus, for = >_ t
2

we have

t
(s) ds

2

(t-t2)n= (t2) + nCt-t2) n-I

t

t2

(t-s) n-2 u(a) de

tn t2

<_ (t-t2)n .(t2) + n(t-t2)n’l(t2)

the other hand, for t > t2 e have

0 - O (-sln qlslds

2
i- a(s) q(s)d=

0

eli2.

(2.8)
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and consequently

1 it n p(s) <I t2)n n’"(t2) < t2’-I
-5 to

(t S) a- q(s) ds < --- (t2) + i ---u/

)n tit2/ <I- a(s) q(s) ds,

0

for t >__ t
2

This gives,

t
lira sup 1

t-> to

t2
(t s) n

0(s) 0(s)
a(s) q(s)ds _< (t2) + a q(s)ds

to

39

which contradicts (2.5). This completes the proof of the theorem.

For illustration we consider the following examples.

EXAMPLE I. The differential equation

x (t) + (- l)x(t) sgnx[t+sint] 0 (2.9)
t(in[t+sint])

Ix[t+sint]
a

0 < < 1 and t > e

has a nonoscillatory solution x(t) In t. Only the damping coefficient P(t) is

negative for t > e, violating the assumptions of Theorem I.

EXAMPLE 2. Consider the differential equation

1 2 I sgnx[t + cost] 0([ x(t)) + 2 x(t) +----_Ix[t + cost]
a

(2.10)

> 0 and t >_t0 >_ 2.

We let p(t)- 4 and (t)- t- I. The conditions of Theorem are satisfied and

so, all solutions of equation (2.10) are oscillatory.

EXAMPLE 3. The differential equation

1 t3a -3 i
x (t) + x(t) Ix[t3]l sgnx[t3] 0 >_ and t >_ to 1 (2.11)

has a nonoscillatory solution x(t) . All the conditions of Theorem are

satisfied for p(t) t and (t) t
3

except condition (2.5), since the function

q(t) is negative for t to On the other hand, the differential equation

i t3a-3 a t
3 i

x (t) + x(t) + Ix[t3] sgnx[ 0 ,a >_ and t >__ to 1 (2.12)

is oscillatory by Theorem for p(t) t
I/2

and (t) t3.
One can check that none of the oscillation criteria of If] [9] can describe the

oscillatory character of either equation (2.10) for a > 0 or equation (2,12) for

The following theorem is concerned with the case when condition (2.4) fails.

We assume that
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du
and ] f(u) (2.13)

It will be convenient to make use of the following notation: for any t t
O

we let

(t, c) (t) + a(t) a(t) ca(t)

where 0 c C2[[to ) (0,, )].,
THEOREM 2. Let conditions (2.1) (2.3) and (2.13) hold and let o(t) > t for

t > tO and the function p be as in Theorem such that

0 (t) >_ 0 ]’(t, i) >_ 0 7 (t, !) <_ 0 for t >_ to (2.14)

and

tlira sup <

If

t->
0(t)

to tO a(u) q(u)duds (2.15)

then equation (I. I) is oscillatory.

PROOF. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0

for t _> to As in the proof of Theorem we get (2.7). Now, using (2.6) and the

fact that O(t) >_ t for t >_ t
2

we obtain

t
ds + Y(t, i)ct) < "it fcx( fcxa(t) q(t) +. x(t)

t2

By condition (2.13), we have

" x(t)(t) <- pt)
(t) + (t l)

f(x(t))a(t) q(t) + C"

duwhere C {(t2)f(U). Integrating the above inequality from t
2

to t we get

t t x (s) dst -- C’0(t) C0(t2) + y(s i) f(x(s))Ct) < (t2) a(s) q(s)ds +

2

By the Bonnet theorem, for any t > t2, there exists a ; [t2, t] such that

t xCs)
{

dsf y(s, I) f(x(s)) ds vCt2, I) f(x(s))
t2

t2
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(t2
i)

x(t2)
du
f(u)

du
< Y(t2, i) / f(u)

x(t2)
Thus, for every t >’t

2

(t) < K
t

t2
q(s) ds + C’(t)

(2.16)

where K (t2) C(t2 + y(t2 I) f(u"x(t
2

Integrating (2.16) from t
2 to t we have

t s
f f a q(u)duds _< C-(t) + Kt -(t) + ((t2) C0(t2)t2 t2

Dividing by O(t) and taking limit superior of both side as t -> , we obtain a
contradiction to (2.15). This completes the proof of the theorem.

IREMARK. It is easy to check that Theorem 2 is not applicable to equation (2.12)
if u I. On the other hand, Theorem 2 can be applied in some cases in which
Theorem is not applicable. Such a case is described in Example 4 below.

EXAMPLE 4. Consider the differential equation

x (t) + x(t) + --ix[g,t)] lasgnx[g(t)] 0 t L to
t

> 0,
(2.17)

where c > 0, a > and o(t) g(t) t with o(t) 0 for t to
The conditions of Theorem 2 are satisfied for p(t) t and hence equation (2.17) is

oscillatory.

3. TRE EQUATION.

In order to obtain results for equation (1.2) similar to those in section 2 we

assume

0 < C _< (x) <_ C1 for all x
(3.1)

S

a exp(
T T

p [u) du) ds for all T > toca(u) (3.2)

THEOREM 3. Let conditions (2.1), (2.3), (3.1) and (3.2) hold and let p be as

in Theorem such that

(t) < 0 and - + <a_)/(_h 1 p__) for all t > t
(t) (t)\a.()/ c a(t) 0 (3.3)

If condition (2.5). holds, then equation (1.2) is oscillatory.
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PROOF Let x(t) be a nonoscillatory solution of equation (I2). Assume that

x(t) > 0 for t >_ to There exists a t _> t
O

so that x[o(t)] > 0 for t _> t I.
The hypotheses of Lemma in [5] are satisfied and hence there exists a t

2 _> t such

that

x (t) > 0 and x[ (t) > 0 for all t >_ t2

Now, we define

f(x[)-[i ds for t >_ t2
t2

Then for every t t
2

we obtain

t
@(x (s)) (s) ds

(t) f(xg(t)]) + (t)m (t)
a(t)

q(t) f(x[o(t)]) -f(x[o(S)])t2

+ (t) + a(t)
a(t) a(t)

1 (x (t)) (t)
(x (t) f(x[o(t)])

o(t)(t) *lx(t))f’(x[o(tI])x(t)x[o(t)]
f2(x[ o(t)

It is easy to verify that

(t) <-a(t) q(t) + (t) + a(t)a(t cla(t f(x[o(t)])

<--- a(t) q(t) t >__ t
2

The rest of the proof is similar to that of Theorem and hence is omitted.

Next, we present an interesting result, where condition on is weakened, i.e.,

we replace condition (3.1) by the following one.

%(x) > C > 0 for all x (3.4)

The result is an immediate consequence of Theorem 3, so we omit the proof.

THEOREM 4. Let conditions (2oi), (2.3), (3.2) and (3.4) hold and assume that

a function 0 [t
0, "), (0, ’)] such thatthere exists

< )P- < 0 for t > to(t) <_ 0 and (t) + a(t) a(t)

If condition (2.5) holds, then equation (1.2) is oscillatory.

The following examples are illustrative.

EXAMPLE 5. Consider the differential equation

(i ) x 0 for t >_ tO e

(3.5)

(3.6)
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The conditions (2.1), (2.3), (2.5) and (3.2), of Theorem 3 are satisfied for p(t) t.

The upper bound c of the function elXl is undefined and hence both conditions

(3.1) and (3.3) fail. Equation (3.6) has a nonoscillatory solution x(t) Int.

EXAMPLE 6. Consider the differential equation

+ H2 sint] sgnx[,t --+ 2 sint] 0 (3.7)

where 8 > 0, 81 > 0 and 82 > 0, a > 0 and t > to I. We take p(t) J and

o(t) 8t -82 All the conditions of Theorem 4 are satisfied and so, every

solution of equation (3.7) is oscillatory.

We note that the results in [I] [9] cannot be applied to equation (3.7) since,

some of the conditions of the form

f--) > K > 0 for x / 0(x)
+ (u) (u)o= lu< or ,--=..u<

+0

required in these papers, are not satisfied.

EXAMPLE 7. Consider the differential equation

((2 sinx)) + + t-7/61x[g(t)]imsgnx[g(t)] 0 t >_ tO 1 (3.8)

where a > 0 and g(t) satisfies either (i) or (ii):

(1) g is a nondecreasing continuous functlm for t > to with lim g(t) =-.
81 t-

_>0.(ii) g(t) 8t +/- 82 cost, 8 > 0, 81 > 0 and 8281We let o(t) g(t) in case (i) and (t) 8t B 2 in case (ii) and take

P(t) t I/6.
The conditions of Theorem 3 are satisfied and so, every solution of equation

(3.8) is oscillatory.

It is easy to check that Theorem 4 is not applicable to equation (3.8) because

condition (3.5) is violated.

Next, we consider the differential equation

i i i((I + x2)) + [ x + E Ix[g(t)] sgnx[g(t) 0 t >_ tO 1 (3.9)

where a > 0 and g(t) is as in equation (3.8). Equation (3.9) is oscillatory by

Theorem 4 for p(t) 1.

It is easy to verify that Theorem 3 fails to apply to equation (3.9), since

condition (3.1) is not satisfied.

REMARK. The above examples illustrate that our results apply to superlinear,

linear or sublinear damped differential equations. Moreover, since we impose no

restrictions on the function g in equations (I.I) and (1.2), our results are
applicable to ordinary, retarded, advanced and equations of mixed type.
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We believe that the oscillatory behavior of equation (3.7) (3.9) is not

deducible from any other known oscillation criteria.

Finally, we give the following oscillation criterion which is similar to the one

in Theorem 2. Here we omit the proof.

THEOREM 5. Let conditions (2.1), (2.3), (3.1) and (3.2) hold, o(t) > t for

t t
O

and

du < and <
f(u) f(u)

cu (3. i0)

Assume that there exists a function p C2[[t0,(R)), (0,(R))] such that

(t) >_ 0 -((t, CI) >__ 0 7Ct, c-I) < 0 for t > to (3.11)

and

t
lira sup <
t->

condition (2.15) holds, than equation (1.2) is oscillatory.

The following example is illustrative.

EXAMPLE 8. Consider the differential equation

1 i
((2 sinx)) + x +--IxCgCt)]lsgnx[g(t)] 0 t > tO

> 0
t

where a > and g(t) is any nondecreasing continuous function with g(t) > t for

t > tO It is easy to check that the conditions of Theorem 5 are satisfied with

P(t) t and hence equations (3.12) is oscillatory.

I. If p(t) 0, then conditions (2.2) and (3.2) take the form

fas) ds

and condition (3.2) can be replaced by condition (3.4).

2. The results of this paper can be applied to equations of the form (I.I) and (1.2)

when f is not a monotonic function. In that case, we can introduce a continuous,

nondecreasing function F on R such that

f()
xF(x) > 0 ar.] >_ C for x # 0 (3.13)

For illustration we can consider the following differential equation.

1
(t.Cx)) + t f(x[gCt)]) 0 t >_ to > 0 0 < e < (3.14)

where g is as in Example 7, f is any continuous, nondecreaslng function on R
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with xf(x)> 0 for x # 0 e.g. f(x) II sgnx, = > 0 or f(x) sinhx

or f is any continuous function on R satisfying condition (3.13) e.g.
sinx

f(x) x e sgnx, e > 0...etc. and is any continuous function on R
2 xsatisfying condition (3.4) e.g. (x) + x or e or In(e + x2) or 2 +/- sinx.

If we take p(t) /, the conditions of Theorem 4 are satisfied and thus all

solutions of equation (3.14) are oscillatory.

In the case (x) I, e --0, f(x) x and g(t) t, equation (3.14) has the

oscillatory solution x(t) sinlnt.

3. The results of this paper are presented in a form which is essentially new.
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