# OSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS 

S.R. GRACE<br>Lie:p.artment of Mathematics<br>P. O. Box 1682<br>University of Petroleum \& Minerals<br>Dhahran, Saudi Arabia<br>and<br>B.S. LALLI<br>Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan S7N OWO Canada<br>(Received November 28, 1984 and in revised form March 28, 1986)

ABSTRACT, New oscillation criteria for the oscillatory behaviour of the differential

$$
(a(t) \dot{x}(t))^{\cdot}+p(t) \dot{x}(t)+q(t) f(x[g(t)])=0, \quad\left(\cdot=\frac{d}{d t}\right)
$$

and

$$
(a(t) \psi(x(t)) \dot{x}(t))^{\dot{0}}+p(t) \dot{x}(t)+q(t) f(x[g(t)])=0
$$

are established.

KEY WORDS AND PHRASES. Oscillation theorems, differential equations, non-oscillations. 1980 AMS SUBJECT CLASSIFICATION CODE. 34 ClO .

## 1. INTRODUCTION.

This paper is concerned with the oscillatory behavior of solutions of second order nonlinear damped differential equations with deviating argument of the form

$$
\begin{equation*}
(a(t) \dot{x}(t))^{\cdot}+p(t) \dot{x}(t)+q(t) f(x[q(t)])=0, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(a(t) \psi(x(t)) \dot{x}(t))^{\cdot}+p(t) \dot{x}(t)+q(t) f(x[g(t)])=0 \tag{1.2}
\end{equation*}
$$

where $a, g, p, q:\left[t_{0}, \infty\right) \rightarrow[0, \infty), \psi, f: R \rightarrow R=(-\infty, \infty)$ are continuous, $a(t)>0$, $q(t)$ not identically zero on any ray of the form $\left[t^{*}, \infty\right)$ for some $t^{*} \geq t_{0}$ and $\lim g(t)=\infty$. $t->\infty$

We restrict our attention to those solutions of equations(1..1) and(1.2) which exist on some ray $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$ and which are nontrivial in any neighborhood of
infinity. Such a solution is called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory.

In the study of the second order sublinear differential equation

$$
\begin{equation*}
\ddot{x}(t)+q(t)|x(t)|^{\alpha} \operatorname{sgn} x(t)=0, \quad 0<a<1, \tag{1.3}
\end{equation*}
$$

where $q:\left[t_{0}, \infty\right) \rightarrow R$ is continuous, there are many criteria for oscillation which involve the behavior of the integral of $q$. In particular, Belohorec [1] has shown that the condition

$$
\int^{\infty} s^{\beta} q(s) d s=\infty \quad \text { for some } \beta \in[0, \alpha]
$$

is sufficient for the oscillation of equation (1.3), and Kamenev [6] has established that equation (3) is oscillatory if

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t} \int_{t_{0}}^{t}(t-s) q(s) d s=\infty
$$

Recently, Kura [7] has presented a new criterion for the oscillation of equation (1.3) which improves upon those of Belohorec and Kamenev. Kura proved that a sufficient condition for the oscillation of equation (3) is that

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t} \int_{t_{0}}^{t}(t-s) s^{R} q(s) d s=\infty \quad \text { for some } \beta \varepsilon[0, a]
$$

These results have been further extended by Philos [8] to a more general equation

$$
\ddot{x}(t)+p(t) \dot{x}(t)+q(t) f(x(t))=0,
$$

where $p, q:\left[t_{0}, \infty\right) \rightarrow R, f: R \rightarrow R$ are continuous, $x f(x)>0, f^{\prime}(x)>0$ for $x \neq 0$ and $f$ is strongly sublinear i.e. $\int_{ \pm 0} \frac{d u}{f(u)}<\infty$. The above results can be applied only to ordinary differential equations.

The purpose of this paper is to establish some new oscillation criteria for the differential equations (1.1) and (1.2). In fact, we impose no conditions on the function $f$ other that $x f(x)>0$ for $x \neq 0$ and nondecreasing. Thus our results can be applied to superlinear, linear and sublinear differential equations. We also like to mention that we do not stipulate that the function $g$ in equations (1.1) and (1.2) is either retarded or advanced. Hence our theorems hold for ordinary, retarded, advanced and equations of mixed-type.
2. THE EQUATION (1.1).

We assume that

$$
\begin{array}{ll}
x f(x)>0 \text { and } f^{\prime}(x) \geq 0 \text { for } x \neq 0, & \left(1=\frac{d}{d x}\right), \\
\int_{T}^{\infty} \frac{1}{a(s)} \exp \left(\int_{T}^{s}-\frac{p(u)}{a(u)} d u\right) d s=\infty, & T \geq t_{0} . \tag{2.2}
\end{array}
$$

Suppose further that there is a differentiable function

$$
\sigma: \quad\left[t_{0}, \infty\right) \rightarrow(0, \infty)
$$

such that

$$
\begin{equation*}
\sigma(t) \leq g(t), \dot{\sigma}(t) \geq 0 \quad \text { for } \quad t \geq t_{0} \quad \text { and } \quad \lim _{t \rightarrow \infty} \sigma(t)=\infty \tag{2.3}
\end{equation*}
$$

THEOREM 1. Let conditions (2.1) - (2.3) hold and assume that there exists a twice differentiable function

$$
\rho:\left[t_{0}, \infty\right) \rightarrow(0, \infty)
$$

such that

$$
\begin{equation*}
\ddot{\rho}(t) \leq 0 \quad \text { and } \quad \frac{\rho(t)}{\rho(t)}+\frac{a(t)}{\rho(t)}\left(\frac{\rho(t)}{a(t)}\right) \leq \frac{p(t)}{a(t)} \text { for } t \geq t_{0} . \tag{2.4}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s=\infty \quad \text { for some } n \geq 1 \tag{2.5}
\end{equation*}
$$

then equation (1.1) is oscillatory.
PROOF. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0$ for $t \geq t_{1}$. By a Lemma in [5] and condition (2.2), there exists a $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
\dot{x}(t)>0 \text { and } \dot{x}[g(t)]>0 \quad \text { for all } t \geq t_{2} \text {. } \tag{2.6}
\end{equation*}
$$

Now, define

$$
\omega(t)=\rho(t) \int_{t_{2}}^{t} \frac{\dot{x}(s)}{f(x[\dot{\sigma}(s)])} d s, t \geq t_{2} .
$$

Then it is easy to verify that

$$
\begin{align*}
& \ddot{w}(t)=\ddot{\sigma}(t) \quad \int_{t_{2}}^{t} \frac{\dot{x}(s)}{f(x[\sigma(s)])} a s+\frac{\dot{p}(t) \dot{x}(t)}{f(x \mid \sigma(t)])}+\left(\frac{\rho(t)}{a(t)}\right) \frac{a(t) \dot{x}(t)}{f(x[a(t)])}  \tag{2.7}\\
& +\frac{\rho(t)}{\frac{a(t)}{(a(t) \dot{x}(t))}} \underset{f(x[\sigma(t)])}{\bullet}-\rho(t) \dot{\sigma}(t) \frac{\dot{x}(t) \dot{x}[\sigma(t)] f^{\prime}(x[\sigma(t)])}{f^{2}(x[\sigma(t)])}
\end{align*}
$$

$$
\begin{aligned}
& =-\frac{\rho(t)}{a(t)} q(t) \frac{f(x[g(t)])}{f(x[\sigma(t)])}+\ddot{\rho(t)} \int_{t_{2}}^{t} \frac{\dot{x}(s)}{f(x \mid \sigma(s)])} d s \\
& +\left[\rho(t)+a(t)\left(\frac{\rho(t)}{a(t))}-\frac{p(t) \sigma(t)}{a(t)}\right] \frac{\dot{x}(t)}{f(x[\sigma(t)])}\right. \\
& -\rho(t) \dot{\sigma}(t) \frac{\dot{x}(t) \dot{x}[\sigma(t)] f^{\prime}(x[\sigma(t)])}{f^{2}(x[\sigma(t)])}
\end{aligned}
$$

Using conditions (2.1), (2.3) and (2.6) we obtain

$$
f(x[o(t)]) \leq f(x[g(t)]) \quad \text { for } \quad t \geq t_{2},
$$

and by conditions (2.1), (2.3), (2.4) and (2.6) we have

$$
\begin{equation*}
\ddot{\omega}(t) \leq-\frac{\rho(t)}{a(t)} q(t) \quad \text { for every } t \geq t_{2} \tag{2.8}
\end{equation*}
$$

Thus, for $t \geq t_{2}$ we have

$$
\begin{aligned}
\int_{t_{2}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s & \leq-\int_{t_{2}}^{t}(t-s)^{n} \ddot{\omega}(s) d s \\
& =\left(t-t_{2}\right)^{n}{ }_{\omega}\left(t_{2}\right)+n\left(t-t_{2}\right)^{n-1} \omega\left(t_{2}\right) \\
& -n(n-1) \int_{t_{2}}^{t}(t-s)^{n-2} \omega(s) d s \\
& \leq\left(t-t_{2}\right)^{n} \dot{\omega}\left(t_{2}\right)+n\left(t-t_{2}\right)^{n-1}{ }_{\omega}\left(t_{2}\right)
\end{aligned}
$$

## Hence,

$$
\frac{1}{t^{n}} \int_{t_{2}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s \leq\left(1-\frac{t_{2}}{t}\right)^{n} \omega\left(t_{2}\right)+\frac{n \omega\left(t_{2}\right)}{t}\left(1-\frac{t_{2}}{t}\right)^{n-1}, t \geq t_{2}
$$

On the other hand, for $t \geq t_{2}$ we have

$$
\begin{aligned}
& \frac{1}{t^{n}} \int_{t_{0}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s-\frac{1}{t^{n}} \int_{t_{2}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s \\
&=\frac{1}{t^{n}} \int_{t_{0}}^{t_{2}}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s \\
& \leq\left(1-\frac{t_{0}}{t}\right)^{n} \int_{t_{0}}^{t_{2}} \frac{\rho(s)}{a(s)} q(s) d s .
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \frac{1}{t^{n}} \int_{t_{0}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s \leq\left(1-\frac{t_{2}}{t}\right)^{n} \dot{w}\left(t_{2}\right)+\frac{n u\left(t_{2}\right)}{t}\left(1-t_{t}^{t_{2}}\right)^{n-1} \\
& \quad+\left(1-\frac{t_{0}}{t}\right)^{n} \int_{t_{0}}^{t_{2}} \frac{f(s)}{a(s)} q(s) d s, \quad \text { for } t \geq t_{2} .
\end{aligned}
$$

This gives,
$\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}(t-s)^{n} \frac{\rho(s)}{a(s)} q(s) d s \leq \dot{\omega\left(t_{2}\right)}+\int_{t_{0}}^{t_{2}} \frac{\rho(s)}{a(s)} q(s) d s$,
which contradicts (2.5). This completes the proof of the theorem.
For illustration we consider the following examples.
EXAMPLE 1. The differential equation

$$
\begin{gather*}
\ddot{x}(t)+\left(\frac{1}{t}-1\right) \dot{x}(t)+\frac{1}{t(\ln [t+\sin t])^{\alpha}}|x[t+\sin t]|^{\alpha} \operatorname{sgnx}[t+\sin t]=0,  \tag{2.9}\\
0<\alpha \leq 1 \text { and } t>e .
\end{gather*}
$$

has a nonoscillatory solution $x(t)=\ln t$. Only the damping coefficient $P(t)$ is negative for $t>e$, violating the assumptions of Theorem 1.

EXAMPLE 2. Consider the differential equation

$$
\begin{array}{r}
\left(\frac{1}{t} \dot{x}(t)\right)^{\cdot}+\frac{2}{t^{2}} \dot{x}(t)+\frac{1}{t_{\cdot} \cdot t}|x[t+\cos t]|^{\alpha} \operatorname{sgn} x[t+\cos t]=0,  \tag{2.10}\\
\alpha>0 \text { and } t \geq t_{0} \geq 2 .
\end{array}
$$

We let $\rho(t)=\sqrt{t}$ and $\sigma(t)=t-1$. The conditions of Theorem 1 are satisfied and so, all solutions of equation (2.10) are oscillatory.

EXAMPLE 3. The differential equation

$$
\begin{equation*}
\ddot{x}(t)+\frac{1}{t} \dot{x}(t)-t^{3 \alpha-3}\left|x\left[t^{3}\right]\right|^{\alpha} \operatorname{sgnx}\left[t^{3}\right]=0, \alpha \geq \frac{1}{2} \text { and } t \geq t_{0}=1, \tag{2.11}
\end{equation*}
$$

has a nonoscillatory solution $x(t)=\frac{1}{t}$. All the conditions of Theorem 1 are satisfied for $\rho(t)=t$ and $\sigma(t)=t^{3}$ except condition (2.5), since the function $q(t)$ is negative for $t \geq t_{0}$. On the other hand, the differential equation

$$
\begin{equation*}
\ddot{x}(t)+\frac{1}{t} \dot{x}(t)+t^{3 \alpha-3}\left|x\left[t^{3}\right]\right|^{\alpha} \operatorname{sgn} x\left[t^{3}\right]=0, \alpha \geq \frac{1}{2} \text { and } t \geq t_{0}=1 \tag{2.12}
\end{equation*}
$$

is oscillatory by Theorem 1 for $\rho(t)=t^{1 / 2}$ and $\sigma(t)=t^{3}$.
One can check that none of the oscillation criteria of [1] - [9] can describe the oscillatory character of either equation (2.10) for $\alpha>0$ or equation (2.12) for $\alpha \geq \frac{1}{2}$.

The following theorem is concerned with the case when condition (2.4) fails.
We assume that

$$
\begin{equation*}
\int^{+\infty} \frac{d u}{\mathrm{f}}(\mathrm{u})<\infty \quad \text { and } \quad \int^{-\infty} \frac{d u}{\mathrm{f}(\mathrm{u})}<\infty . \tag{2.13}
\end{equation*}
$$

It will be convenient to make use of the following notation: for any $t \geq t_{0}$ we let

$$
r(t, c)=\dot{\rho}(t)+a(t)\left(\frac{\rho(t)}{a(t)}\right)^{\cdot}-\frac{p(t) \rho(t)}{c a(t)},
$$

where $\quad \rho \varepsilon C^{2}\left[\left[t_{0}, \infty\right),(0, \infty)\right]$.
THEOREM 2. Let conditions (2.1) - (2.3) and (2.13) hold and let $\sigma(t) \geq t$ for $t \geq t_{0}$ and the function $\rho$ be as in Theorem 1 such that

$$
\begin{equation*}
\ddot{\rho}(t) \geq 0, \gamma(t, 1) \geq 0, \dot{\gamma}(t, 1) \leq 0 \text { for } t \geq t_{0} \tag{2.14}
\end{equation*}
$$

and

$$
\lim _{t \rightarrow \infty} \sup \frac{t}{\rho(t)}<\infty .
$$

If
$\lim _{t \rightarrow \infty} \sup \frac{1}{\rho(t)} \int_{t_{0}}^{t} \int_{t_{0}}^{s} \frac{\rho(u)}{a(u)} q(u) d u d s=\infty \quad$,
then equation (1.1) is oscillatory.
PROOF. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0$ for $t \geq t_{0}$. As in the proof of Theorem 1 we get (2.7). Now, using (2.6) and the fact that $\sigma(t) \geq t$ for $t \geq t_{2}$ we obtain
$\ddot{\omega}(t) \leq-\frac{\rho(t)}{a(t)} q(t)+\dot{\rho}(t) \int_{t_{2}}^{t} \frac{\dot{x}(s)}{f(x(s))} d s+\gamma(t, 1) \frac{\dot{x}(t)}{f(x(t))}$.
By condition (2.13), we have

$$
\ddot{\omega}(t) \leq-\frac{\rho(t)}{a(t)} q(t)+\ddot{c}(t)+\gamma(t, 1) \frac{\dot{x}(t)}{f(x(t))},
$$

where $C=\int_{x\left(t_{2}\right)}^{\infty} \frac{d u}{f(u)}$. Integrating the above inequality from $t_{2}$ to $t$ we get

$$
\dot{\omega}(t) \leq \dot{\omega}\left(t_{2}\right)-\int_{t_{2}}^{t} \frac{\rho(s)}{a(s)} q(s) d s+\dot{C} \rho(t)-\dot{C} \rho\left(t_{2}\right)+\int_{t_{2}}^{t} \gamma(s, 1) \frac{\dot{x}(s)}{f(x(s))} d s
$$

By the Bonnet theorem, for any $t \geq t_{2}$, there exists a $\xi \in\left[t_{2}\right.$, $\left.t\right]$ such that

$$
\int_{t_{2}}^{t} r(s, 1) \frac{\dot{x}(s)}{f(x(s))} d s=r\left(t_{2}, 1\right) \int_{t_{2}}^{\xi} \frac{\dot{x}(s)}{f(x(s))} d s
$$

$$
\begin{aligned}
& =\gamma\left(t_{2}, 1\right) \int_{x\left(t_{2}\right)}^{x(\xi)} \frac{d u}{f(u)} \\
& \leq r\left(t_{2}, 1\right) \int_{x\left(t_{2}\right)}^{\infty} \frac{d u}{f(u)} .
\end{aligned}
$$

Thus, for every $t \geq t_{2}$

$$
\begin{equation*}
\dot{\omega}(t) \leq K-\int_{t_{2}}^{t} \frac{\rho(s)}{a(s)} q(s) d s+\dot{c}(t) \tag{2.16}
\end{equation*}
$$

where $K=\dot{\omega}\left(t_{2}\right)-\dot{\rho}\left(t_{2}\right)+\gamma\left(t_{2}, 1\right) \int_{x\left(t_{2}\right)}^{\infty} \frac{d u}{f(u)}$.
Integrating (2.16) from $t_{2}$ to $t$ we have

$$
\int_{t_{2}}^{t} \int_{t_{2}}^{s} \frac{\rho(s)}{a(s)} q(u) d u d s \leq C_{\rho}(t)+K t-\omega(t)+\left(\omega\left(t_{2}\right)-C_{\rho}\left(t_{2}\right)\right)
$$

Dividing by $\rho(t)$ and taking limit superior of both side as $t \rightarrow \infty$, we obtain a contradiction to (2.15). This completes the proof of the theorem.

REMARK. It is easy to check that Theorem 2 is not applicable to equation (2.12) if $\frac{1}{2} \leq \alpha \leq 1$. On the other hand, Theorem 2 can be applied in some cases in which Theorem 1 is not applicable. Such a case is described in Example 4 below.

## EXAMPLE 4. Consider the differential equation

$$
\begin{equation*}
\ddot{x}(t)+\frac{1}{t} \dot{x}(t)+\left.\frac{c}{t^{2}}[x[g, t)]\right|^{a} \operatorname{sgnx}[g(t)]=0, t \geq t_{0}>0, \tag{2.17}
\end{equation*}
$$

where $c>0, \alpha>1$ and $\sigma(t)=g(t) \geq t$ with $\sigma(t) \geq 0$ for $t \geq t_{0}$. The conditions of Theorem 2 are satisfied for $\rho(t)=t$ and hence equation (2.17) is oscillatory.
3. THE EQUATION.

In order to obtain results for equation (1.2) similar to those in section 2 we assume

$$
\begin{align*}
& 0<c \leq \psi(x) \leq c_{1} \text { for all } x,  \tag{3.1}\\
& \int_{T}^{\infty} \frac{1}{a(s)} \exp \left(\int_{T}^{s}-\frac{p(u)}{c a(u)} d u\right) d s=\infty, \text { for all } T \geq t_{0} . \tag{3.2}
\end{align*}
$$

THEOREM 3. Let conditions (2.1), (2.3), (3.1) and (3.2) hold and let $\rho$ be as in Theorem 1 such that

$$
\begin{equation*}
\ddot{\rho}(t) \leq 0 \text { and } \frac{\dot{\rho}(t)}{\rho(t)}+\frac{a(t)}{\rho(t)}\left(\frac{\rho(t)}{a(t)}\right) \leq \frac{1}{c_{1}} \frac{p(t)}{a(t)} \text { for all } t \geq t_{0} \tag{3.3}
\end{equation*}
$$

PROOF. Let $x(t)$ be a nonoscillatory solution of equation (1.2). Assume that $x(t)>0$ for $t \geq t_{0}$. There exists a $t_{1} \geq t_{0}$ so that $x[\sigma(t)]>0$ for $t \geq t_{1}$. The hypotheses of Lemma in [5] are satisfied and hence there exists a $t_{2} \geq{ }^{t}{ }_{1}$ such that

$$
\dot{x}(t)>0 \quad \text { and } \quad \dot{x}[\sigma(t)]>0 \quad \text { for all } t \geq t_{2} .
$$

Now, we define

$$
\omega(t)=\rho(t) \int_{t_{2}}^{t} \frac{\psi(x(s)) \dot{x}(s)}{f(x \mid \sigma(s) J)} d s, \text { for } t \geq t_{2} \text {. }
$$

Then for every $t \geq t_{2}$ we obtain

$$
\begin{aligned}
\ddot{\omega}(t)= & -\frac{\rho(t)}{a(t)} q(t) \frac{f(x[g(t)])}{f(x[\sigma(t)])}+\cdots(t) \int_{t_{2}}^{t} \frac{\psi(x(s)) \dot{x}(s)}{f(x[\sigma(s)])} d s \\
& +\left[\dot{\rho}(t)+a(t)\left(\frac{\rho(t)}{a(t)}\right)^{\cdot}-\frac{\rho(t) \rho(t)}{a(t)} \frac{1}{\psi(x(t))}\right] \frac{\psi(x(t)) \dot{x}(t)}{f(x[\sigma(t)])} \\
& -\rho(t) \dot{\sigma}(t) \frac{\psi(x(t)) f^{\prime}(x[\sigma(t) j) \dot{x}(t) \dot{x}[\sigma(t)]}{f^{2}(x[v(t)])} .
\end{aligned}
$$

It is easy to verify that

$$
\begin{aligned}
\ddot{\omega}(t) & \leq-\frac{\rho(t)}{a(t)} q(t)+\left[\dot{\rho}(t)+a(t)\left(\frac{\rho(t)}{a(t)}\right)^{\cdot}-\frac{\rho(t) \rho(t)}{c_{1} a(t)}\right] \frac{\psi(x(t)) \dot{x}(t)}{f(x[\sigma(t)])} \\
& \leq-\frac{\rho(t)}{a(t)} q(t), \quad t \geq t_{2} .
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 1 and hence is omitted.
Next, we present an interesting result, where condition on $\psi$ is weakened, i.e., we replace condition (3.1) by the following one.

$$
\begin{equation*}
\psi(x) \geq c>0 \quad \text { for all } x . \tag{3.4}
\end{equation*}
$$

The result is an immediate consequence of Theorem 3, so we omit the proof.
THEOREM 4. Let conditions (2.1), (2.3), (3.2) and (3.4) hold and assume that there exists a function $\left.\rho \in C^{2}\left[t_{0}, \infty\right),(0, \infty)\right]$ such that
$\ddot{p}(t) \leq 0 \quad$ and $\quad \dot{\rho}(t)+a(t)\left(\frac{\rho(t)}{a(t)}\right)^{\bullet} \leq 0 \quad$ for $t \geq t_{0}$.

If condition (2.5) holds, then equation (1.2) is oscillatory.
The following examples are illustrative.
EXAMPLE 5. Consider the differential equation

$$
\begin{equation*}
\left(\frac{1}{t} e^{|x|} x\right)+\frac{2}{t^{2}} \dot{x}+\frac{1}{t^{2} \ln t}\left(1-\frac{2}{t}\right) x=0, \text { for } t \geq t_{0}=e . \tag{3.6}
\end{equation*}
$$

The conditions (2.1), (2.3), (2.5) and (3.2) of Theorem 3 are satisfied for $\rho(t)=t$. The upper bound $c_{1}$ of the function $e^{|x|}$ is undefined and hence both conditions (3.1) and (3.3) fail. Equation (3.6) has a nonoscillatory solution $x(t)=1 n t$.

EXAMPLE 6. Consider the differential equation

$$
\begin{equation*}
\left(t e^{|x|} x\right)+\frac{1}{\sqrt{t}}\left|x\left[\beta t^{\beta} 1 \pm \beta_{2} \sin t\right]\right|^{\alpha} \operatorname{sgn} x\left[\beta t^{\beta} 1 \pm \beta_{2} \sin t\right]=0 \tag{3.7}
\end{equation*}
$$

where $\beta>0, \beta_{1}>0$ and $\beta_{2} \geq 0, \alpha>0$ and $t \geq t_{0}=1$. We take $\rho(t)=\sqrt{t}$ and $\sigma(t)=\beta t^{\beta_{1}}-\beta_{2}$. All the conditions of Theorem 4 are satisfied and so, every solution of equation (3.7) is oscillatory.

We note that the results in [1] - [9] cannot be applied to equation (3.7) since, some of the conditions of the form

$$
\frac{f^{\prime}(x)}{\psi(x)} \geq K>0 \quad \text { for } x \neq 0, \text { or } \int^{ \pm \infty} \frac{\psi(u)}{f(u)} d u<\infty, \text { or } \int_{ \pm 0} \frac{\psi(u)}{f(u)} d u<\infty \text {, }
$$

required in these papers, are not satisfied.
EXAMPLE 7. Consider the differential equation

$$
\begin{equation*}
((2-\sin x) \dot{x})+\frac{1}{t^{*}} \dot{x}+t^{-7,6}|x[g(t)]|_{\operatorname{sgn} x[g(t)]=0, t \geq t_{0}=1, ~}^{x} \tag{3.8}
\end{equation*}
$$

where $\alpha>0$ and $g(t)$ satisfies either (i) or (ii):
(i) $g$ is a nondecreasing continuous function for $t \geq t_{0}$ with $\lim _{t \rightarrow \infty} g(t)=\infty$. (ii) $g(t)=\beta t^{\beta_{1}} \pm \beta_{2} \cos t, \beta>0, \beta_{1}>0$ and $\beta_{2} \geq 0$.

We let $\sigma(t)=g(t)$ in case (i) and $\sigma(t)=\beta_{1}^{2}-\beta_{2}$ in case (ii) and take $\rho(t)=t^{1 / 6}$.

The conditions of Theorem 3 are satisfied and so, every solution of equation (3.8) is oscillatory.

It is easy to check that Theorem 4 is not applicable to equation (3.8) because condition (3.5) is violated.

Next, we consider the differential equation

$$
\begin{equation*}
\left(\left(1+x^{2}\right) \dot{x}\right)+\frac{1}{t} \dot{x}+\frac{1}{t}|x[g(t)]|^{x} \operatorname{sgn} x[g(t)]=0, \quad t \geq t_{0}=1 \tag{3.9}
\end{equation*}
$$

where $\alpha>0$ and $g(t)$ is as in equation (3.8). Equation (3.9) is oscillatory by Theorem 4 for $\rho(t)=1$.

It is easy to verify that Theorem 3 fails to apply to equation (3.9), since condition (3.1) is not satisfied.

REMARK. The above examples illustrate that our results apply to superlinear, linear or sublinear damped differential equations. Moreover, since we impose no restrictions on the function $g$ in equations (1.1) and (1.2), our results are applicable to ordinary, retarded, advanced and equations of mixed type.

We believe that the oscillatory behavior of equation (3.7) - (3.9) is not deducible from any other known oscillation criteria.

Finally, we give the following oscillation criterion which is similar to the one in Theorem 2. Here we omit the proof.

THEOREM 5. Let conditions (2.1), (2.3), (3.1) and (3.2) hold, $\sigma(t) \geq t$ for $t \geq t_{0}$, and

$$
\begin{equation*}
\int^{\infty} \frac{i(u)}{f(u)} d u<\infty \quad \text { and } \quad \int^{-\infty} \frac{\frac{v(u)}{f(u)} d u<\infty}{\infty} \tag{3.10}
\end{equation*}
$$

Assume that there exists a function $\rho \varepsilon C^{2}\left[\left[t_{0}, \infty\right),(0, \infty)\right]$ such that

$$
\begin{equation*}
\ddot{\rho}(t) \geq 0, \quad \gamma\left(t, c_{1}\right) \geq 0, \quad \dot{\gamma}\left(t, c_{1}\right) \leq 0 \text { for } t \geq t_{0} \tag{3.11}
\end{equation*}
$$

and

$$
\lim _{t \rightarrow \infty} \sup \frac{t}{\rho(t)}<\infty
$$

If condition (2.15) holds, than equation (1.2) is oscillatory. The following example is illustrative. EXAMPLE 8. Consider the differential equation

$$
((2-\sin x) \dot{x})+\frac{1}{t} \dot{x}+\frac{1}{t^{2}}|x[g(t)]|^{a} \operatorname{sgn} x[g(t)]=0, \quad t \geq t_{0}>0
$$

where $\alpha>1$ and $g(t)$ is any nondecreasing continuous function with $g(t) \geq t$ for $t \geq t_{0}$. It is easy to check that the conditions of Theorem 5 are satisfied with $\rho(t)=t$ and hence equations (3.12) is oscillatory.

## REMARKS.

1. If $p(t)=0$, then conditions (2.2) and (3.2) take the form

$$
\int^{\infty} \frac{1}{a(s)} d s=\infty
$$

and condition (3.2) can be replaced by condition (3.4).
2. The results of this paper can be applied to equations of the form (1.1) and (1.2) when $f$ is not a monotonic function. In that case, we can introduce a continuous, nondecreasing function $F$ on $R$ such that

$$
\begin{equation*}
x F(x)>0 \quad \text { ar. }] \quad \frac{f(x)}{F(x)} \geq \delta>C \quad \text { for } x \neq 0 \tag{3.13}
\end{equation*}
$$

For illustration we can consider the following differential equation.

$$
\begin{equation*}
(t \psi(x) \dot{x}) \cdot t^{-\epsilon} f(x[g(t)])=0, \quad t \geq t_{0}>0,0 \leq \epsilon \leq \frac{1}{2} \tag{3.14}
\end{equation*}
$$

where $g$ is as in Example 7, $f$ is any continuous, nondecreasing function on $R$
with $x f(x)>0$ for $x \neq 0$ e.g. $f(x)=\left|\begin{array}{l}\alpha \\ x\end{array}\right| \operatorname{sgnx}, \alpha>0$ or $f(x)=\sinh x$
or $f$ is any continuous function on $R$ satisfying condition (3.13) e.g.
$f(x)=|x|^{\alpha} e^{\sin x} \operatorname{sgnx}, \alpha>0 . \ldots e t c$. and $\psi$ is any continuous function on $R$ satisfying condition (3.4) e.g. $\psi(x)=1+x^{2}$ or $e^{x}$ or $\ln \left(e+x^{2}\right)$ or $2 \pm \operatorname{sinx}$. If we take $\rho(t)=\sqrt{t}$, the conditions of Theorem 4 are satisfied and thus all solutions of equation (3.14) are oscillatory.
In the case $\psi(x)=1, \varepsilon=0, f(x)=x$ and $g(t)=t$, equation (3.14) has the oscillatory solution $x(t)=$ sinlnt.
3. The results of this paper are presented in a form which is essentially new.

## REFERENCES

1. BELOHOREC, S., Two Remarks on the Properties of Solutions of a Nonlinear Differential Equation. Acta. Fac. Renum. Natur. Univ. Comenian. Math., 22 (1969), 19-26.
2. GRACE, S. R. and LALLI, B. S., Oscillation Theorems for Nonlinear Second Order Functional Differential Equations with Damping. Bull. Inst. Math. Acad. Sinica, 13 (1985), 192-193.
3. GRACE, S. R. and LALLI, B. S., Oscillation Theorems for Second Order Nonlinear Differential Equations. J. Math. Anal. Appl. (to appear).
4. GRACE, S. R. and LALLI, B. S., Oscillation of Solutions of Damped Nonlinear Second Order Functional Differential Equations. Bull. Inst. Math. Acad. Sinica, 12 (1984), 5-9.
5. GRACE, S.R., LALLI, B.S. and YEH, C.C., Oscillation Theorems for Nonlinear Second Order Differential Equations With a Nonlinear Damping Term. SIAM J. Math. Anal., 15 (1984), 1082-1093.
6. KAMENEV, I. V., Some Specifically Nonlinear Oscillation Theorems. Mat. Zametki., 10 (1971), 129-134.
7. KURA, T., Oscillation Theorems For a Second Order Sublinear Ordinary Differential Equation. Proc. Amer. Math. Soc., 84 (1982), 535-538.
8. PHILOS, Ch. G., Oscillation of Sublinear Differential Equations of Second Order. Nonlinear Anal. Theory, Method and Appl., 7 (1983), 1071-1080.
9. WONG, J. S. W., On Second Order Nonlinear Oscillation, Funkcial Ekvac., 11 (1968), 207-234.


Advances in
Operations Research $=-$


The Scientific World Journal



Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$


Journal of Probability and Statistics
$\qquad$


International Journal of Differential Equations


