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We �rstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions,
new kinds of transformations are de�ned to discover the exact approximate solutions of nonlinear partial di�erential equations.
Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width
wave equations (CEWE), we �nd new exact solutions of two equations and analyze the properties of them by taking di�erent
parameter values of the generalized hyperbolic functions.We think that these solutions are very important to explain some physical
phenomena.

1. Introduction

�o �nd exact solutions to nonlinear evolution equations,
some new techniques have been introduced in recent years
such as the Hirota method, the extended Jacobi ellip-
tic function expansion method, the exponential function
method, (𝐺𝐺′/𝐺𝐺𝐺-expansion method, the simplest equation
method, the trial equation method, Kudryashov’s method,
and solitary ansatz method [1–19]. Also some authors de�ne
new functions which are named generalized hyperbolic
functions for constructing new solutions [20–22]. ere are
a lot of nonlinear evolution equations that are integrated
using the various mathematical methods. Soliton solutions,
compactons, singular solitons, and other solutions have been
found by using these approaches. ese types of solutions
are very important and appear in various areas of applied
mathematics.

In Section 2, we give the de�nition and properties of gen-
eralized hyperbolic functions. In Section 3, as applications,
we obtain exact solutions of the generalized KdV equation
and the coupled equal width wave equations.

�. �he De�nition and Properties of the
Symmetrical Hyperbolic Fibonacci
and Lucas Functions

In this section, we will de�ne new functions which are named
the symmetrical hyperbolic Fibonacci and Lucas functions
for constructing new exact solutions of NPDEs and then
study the properties of these functions.

De�nition 1� Suppose that 𝜉𝜉 is an independent variable; 𝑝𝑝,
𝑞𝑞, and 𝑘𝑘 are all constants. e generalized hyperbolic sine
function is

sinh𝑎𝑎 (𝜉𝜉) =
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘

2
, (1)

generalized hyperbolic cosine function is

cosh𝑎𝑎 (𝜉𝜉) =
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘

2
, (2)

generalized hyperbolic tangent function is

tanh𝑎𝑎 (𝜉𝜉) =
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘
, (3)
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generalized hyperbolic cotangent function is

coth𝑎𝑎 (𝜉𝜉) =
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘
, (4)

generalized hyperbolic secant function is

sech𝑎𝑎 (𝜉𝜉) =
2

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘
, (5)

generalized hyperbolic cosecant function is

cosech𝑎𝑎 (𝜉𝜉) =
2

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘
, (6)

and the above six kinds of functions are said to be generalized
new hyperbolic functions. us we can prove the following
theory of generalized hyperbolic functions on the basis of
�e�nition 1.

eorem 2. e generalized hyperbolic functions satisfy the
following relations:

cosh2
𝑎𝑎 (𝜉𝜉) − sinh2

𝑎𝑎 (𝜉𝜉) = 𝑝𝑝𝑝𝑝𝑝

1 − tanh2
𝑎𝑎 (𝜉𝜉) = 𝑝𝑝𝑝𝑝 sech2𝑎𝑎 (𝜉𝜉) ,

1 − coth2
𝑎𝑎 (𝜉𝜉) = −𝑝𝑝𝑝𝑝 cosech 2

𝑎𝑎 (𝜉𝜉) ,

sech𝑎𝑎 (𝜉𝜉) =
1

cosh𝑎𝑎 (𝜉𝜉)
,

cosech𝑎𝑎 (𝜉𝜉) =
1

sinh𝑎𝑎 (𝜉𝜉)
,

tanh𝑎𝑎 (𝜉𝜉) =
sinh𝑎𝑎 (𝜉𝜉)
cosh𝑎𝑎 (𝜉𝜉)

,

coth𝑎𝑎 (𝜉𝜉) =
cosh𝑎𝑎 (𝜉𝜉)
sinh𝑎𝑎 (𝜉𝜉)

.

(7)

e following �ust part of them are proved here for simpli�ca�
tion.

eorem 3. e derivative formulae of generalized hyperbolic
functions are as follows:

𝑑𝑑 󶀡󶀡sinh𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑎𝑎 (𝜉𝜉) ,

𝑑𝑑 󶀡󶀡cosh𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑎𝑎 (𝜉𝜉) ,

𝑑𝑑 󶀡󶀡tanh𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘  sech2𝑎𝑎 (𝜉𝜉) ,

𝑑𝑑 󶀡󶀡coth𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘  cosech 2
𝑎𝑎 (𝜉𝜉) ,

𝑑𝑑 󶀡󶀡sech𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= −𝑘𝑘 𝑘𝑘𝑘𝑘  sech𝑎𝑎 (𝜉𝜉) tanh𝑎𝑎 (𝜉𝜉) ,

𝑑𝑑 󶀡󶀡cosech𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= −𝑘𝑘 𝑘𝑘𝑘𝑘  cosech𝑎𝑎 (𝜉𝜉) coth𝑎𝑎 (𝜉𝜉) .

(8)

Proof of (8). According to (7) and (8), we can get

𝑑𝑑 󶀡󶀡tanh𝑎𝑎 (𝜉𝜉)󶀱󶀱
𝑑𝑑𝑑𝑑

= 󶀥󶀥
sinh𝑎𝑎 (𝜉𝜉)
cosh𝑎𝑎 (𝜉𝜉)

󶀵󶀵
′

=
󶀡󶀡sinh𝑎𝑎 (𝜉𝜉)󶀱󶀱

′cosh𝑎𝑎 (𝜉𝜉) − 󶀡󶀡cosh𝑎𝑎 (𝜉𝜉)󶀱󶀱
′sinh𝑎𝑎 (𝜉𝜉)

cosh2
𝑎𝑎 (𝜉𝜉)

=
𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  2

𝑎𝑎 (𝜉𝜉) − 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  2
𝑎𝑎 (𝜉𝜉)

cosh2
𝑎𝑎 (𝜉𝜉)

= 𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘  sech2
𝑎𝑎 (𝜉𝜉) .

(9)

Similarly, we can prove other differential coefficient formulae
ineorem 3.

Remark 4. We see that when 𝑝𝑝 𝑝𝑝 , 𝑞𝑞 𝑞𝑞 , 𝑘𝑘 𝑘𝑘 , and 𝑎𝑎 𝑎 𝑎𝑎
in (1)–(6), new generalized hyperbolic functions sinh𝑎𝑎(𝜉𝜉𝜉,
cosh𝑎𝑎(𝜉𝜉𝜉, tanh𝑎𝑎(𝜉𝜉𝜉, coth𝑎𝑎(𝜉𝜉𝜉, sech𝑎𝑎(𝜉𝜉𝜉, and cosech𝑎𝑎(𝜉𝜉𝜉 degen-
erate as hyperbolic functions sinh(𝜉𝜉𝜉, cosh(𝜉𝜉𝜉, tanh(𝜉𝜉𝜉,
coth(𝜉𝜉𝜉, sech(𝜉𝜉𝜉, and cosech(𝜉𝜉𝜉, respectively. In addition,
when 𝑝𝑝 𝑝 𝑝 or 𝑞𝑞 𝑞𝑞  in (1)–(6), sinh𝑎𝑎(𝜉𝜉𝜉, cosh𝑎𝑎(𝜉𝜉𝜉, tanh𝑎𝑎(𝜉𝜉𝜉,
coth𝑎𝑎(𝜉𝜉𝜉, sech𝑎𝑎(𝜉𝜉𝜉, and cosech𝑎𝑎(𝜉𝜉𝜉 degenerate as exponential
function (1/2)𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘, ±(1/2)𝑞𝑞𝑞𝑞−𝑘𝑘𝑘𝑘𝑘𝑘, 2𝑝𝑝𝑝𝑝−𝑘𝑘𝑘𝑘𝑘𝑘, ±2𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘𝑘𝑘, and
±1, respectively.

3. Applications

Example 5. Application to the generalized form of KdV
equation is presented.

e generalized KdV equation that will be studied in this
paper are given by [23]

󶀢󶀢𝑢𝑢𝑙𝑙󶀲󶀲𝑡𝑡 + 𝛼𝛼𝛼𝛼𝑛𝑛𝑢𝑢𝑥𝑥 + 𝛽𝛽󶀡󶀡𝑢𝑢𝑛𝑛𝑢𝑢𝑥𝑥𝑥𝑥󶀱󶀱𝑥𝑥 + 𝛾𝛾𝛾𝛾󶀡󶀡𝑢𝑢𝑛𝑛󶀱󶀱𝑥𝑥𝑥𝑥𝑥𝑥 = 0, (10)

where the �rst term represents the generalized evolution.e
special case with 𝑙𝑙 𝑙𝑙  is the regular evolution term. e
coefficients of 𝛼𝛼 are the nonlinear terms while the coefficients
of 𝛽𝛽 and 𝛾𝛾 are the nonlinear dispersion terms. is equation
with 𝑙𝑙 𝑙𝑙  has been already studied by [18], where, in addition
to soliton solution, compactons and periodic solutions were
also obtained. e hypothesis for solving this equation is

𝑢𝑢 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴

cosh𝑠𝑠
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

, (11)

where

𝜂𝜂 𝜂 𝜂𝜂 (𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥) . (12)

Here, in (11) and (12), 𝐴𝐴 represents the amplitude of the
soliton while 𝐵𝐵 is the inverse width of the soliton and 𝑣𝑣
is the velocity of the soliton. e exponent 𝑠𝑠 is unknown
at this point and will be evaluated during the course of
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the derivation of the solutions to (10). From (11), it is possible
to obtain

󶀢󶀢𝑢𝑢𝑙𝑙󶀲󶀲𝑡𝑡 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

𝑢𝑢𝑛𝑛𝑢𝑢𝑥𝑥 =
−𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

󶀡󶀡𝑢𝑢𝑛𝑛𝑢𝑢𝑥𝑥𝑥𝑥󶀱󶀱𝑥𝑥

=
𝑘𝑘3𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝐵𝐵3𝑝𝑝𝑝𝑝(ln𝑎𝑎 )3 (𝑠𝑠𝑠𝑠  )( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    𝑠) tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘3𝑠𝑠3 (𝑛𝑛 𝑛 𝑛)𝐴𝐴𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

𝑢𝑢󶀡󶀡𝑢𝑢𝑛𝑛󶀱󶀱𝑥𝑥𝑥𝑥𝑥𝑥

=
−𝑘𝑘3𝑠𝑠3𝑛𝑛3𝐴𝐴𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

+
𝑘𝑘3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3 (𝑠𝑠𝑠𝑠𝑠𝑠  )( 𝑠𝑠𝑠𝑠𝑠  𝑠) tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
.

(13)

ese results will now be substituted in (10) to obtain the 1-
soliton solution of the generalized KdV equation. Equation
(10) by virtue of (13) reduces to

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

+
𝛽𝛽𝛽𝛽3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3 (𝑠𝑠𝑠𝑠  )( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    𝑠) tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝛽𝛽𝛽𝛽3𝑠𝑠3 (𝑛𝑛 𝑛 𝑛)𝐴𝐴𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

+
𝛾𝛾𝛾𝛾3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3 (𝑠𝑠𝑠𝑠𝑠𝑠  )( 𝑠𝑠𝑠𝑠𝑠  𝑠) tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝛾𝛾𝛾𝛾3𝑠𝑠3𝑛𝑛3𝐴𝐴𝑛𝑛𝑛𝑛𝐵𝐵3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
= 0.

(14)

From (14), equating the exponents 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    𝑠 gives

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      𝑠𝑠 (15)

that leads to

𝑠𝑠𝑠
2

𝑙𝑙 𝑙𝑙𝑙𝑙𝑙  
. (16)

Now from (14), the two linearly independent functions are
1/cosh𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for 𝑗𝑗𝑗𝑗𝑗𝑗   .us setting their coefficients to zero
gives

𝑣𝑣𝑣
𝛼𝛼𝛼𝛼𝛼𝛼 󶀡󶀡𝛽𝛽𝛽𝛽 (𝑙𝑙 𝑙𝑙𝑙𝑙𝑙   ) + 𝑛𝑛𝑛𝑛 (𝑙𝑙 𝑙𝑙 )( 𝑙𝑙 𝑙𝑙𝑙𝑙𝑙   )󶀱󶀱

2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 󶀡󶀡𝛽𝛽 (𝑛𝑛 𝑛 𝑛) + 𝑛𝑛3𝛾𝛾󶀱󶀱
, (17)

𝐵𝐵 𝐵
√−𝛼𝛼 (𝑛𝑛 𝑛 𝑛 𝑛𝑛𝑛 )

2𝑘𝑘 𝑘𝑘𝑘𝑘 󵀆󵀆𝛽𝛽 (𝑛𝑛 𝑛 𝑛) + 𝑛𝑛3𝛾𝛾
. (18)

us the 1-soliton solution of the generalized KdV equation
with generalized evolution is given by

𝑢𝑢 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴

cosh2/(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎 [𝐵𝐵 (𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 )]
. (19)

is shows that the restriction on the nonlinear exponents of
(10) must be

𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙   (20)

Remark 6. If we take the corresponding values for some
parameters, the solution (19) can be reduced to the solution
(17)mentioned in [23].

Example 7. Application to the coupled equal width wave
equations is presented.

We consider the coupled equal width wave equations [24]

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑟𝑟𝑥𝑥 = 0,

𝑟𝑟𝑡𝑡 + 𝑟𝑟𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥 = 0.
(21)

e hypothesis for solving these equations is

𝑟𝑟 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴1

cosh𝑠𝑠1𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

𝑢𝑢 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴2

cosh𝑠𝑠2𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

(22)

where

𝜂𝜂 𝜂𝜂𝜂  (𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 ) . (23)

Here in (22)–(23) 𝐴𝐴1 and 𝐴𝐴2 are the amplitudes of the 𝑟𝑟-
soliton and 𝑢𝑢-soliton, respectively, while 𝑣𝑣1 and 𝑣𝑣2 are the
velocity of the soliton and 𝐵𝐵1 and 𝐵𝐵2 are the inverse widths
of the solitons. e exponents 𝑠𝑠1 and 𝑠𝑠2 are unknown at this
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point and their values will fall out in the process of deriving
the solution of this equation. From (22), it is possible to obtain

𝑢𝑢𝑡𝑡 =
𝑘𝑘𝑘𝑘2𝑣𝑣𝑣𝑣2𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

,

𝑟𝑟𝑡𝑡 =
𝑘𝑘𝑘𝑘1𝑣𝑣𝑣𝑣1𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠1
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

,

(24)

𝑢𝑢𝑥𝑥 =
−𝑘𝑘𝑘𝑘2𝐴𝐴2𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

,

𝑟𝑟𝑥𝑥 =
−𝑘𝑘𝑘𝑘1𝐴𝐴1𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

cosh𝑠𝑠1
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

,

(25)

𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑘𝑘3𝑠𝑠32𝑣𝑣𝑣𝑣2𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘3𝑠𝑠2𝑝𝑝𝑝𝑝 󶀡󶀡𝑠𝑠2 + 1󶀱󶀱 𝑣𝑣𝑣𝑣2𝐵𝐵

3(ln𝑎𝑎 )3 󶀡󶀡𝑠𝑠2 + 2󶀱󶀱 tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠2+2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
,

(26)

𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑘𝑘3𝑠𝑠31𝑣𝑣𝑣𝑣1𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠1

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘3𝑠𝑠1𝑝𝑝𝑝𝑝 󶀡󶀡𝑠𝑠1 + 1󶀱󶀱 𝑣𝑣𝑣𝑣1𝐵𝐵

3(ln𝑎𝑎 )3 󶀡󶀡𝑠𝑠1 + 2󶀱󶀱 tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠1+2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
.

(27)

Substituting these into (21) yields to

𝑘𝑘𝑘𝑘2𝑣𝑣𝑣𝑣2𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
−

𝑘𝑘𝑘𝑘2𝐴𝐴
2
2𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh2𝑠𝑠2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘3𝑠𝑠32𝑣𝑣𝑣𝑣2𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

+
𝑘𝑘3𝑠𝑠2 󶀡󶀡𝑠𝑠2 + 1󶀱󶀱 󶀱󶀱𝑠𝑠2 + 2󶀱󶀱 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠2+2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘𝑘𝑘1𝐴𝐴

2
1𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh2𝑠𝑠1

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
= 0,

(28)

𝑘𝑘𝑘𝑘1𝑣𝑣𝑣𝑣1𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠1

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
−

𝑘𝑘𝑘𝑘1𝐴𝐴
2
1𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh2𝑠𝑠1

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

−
𝑘𝑘3𝑠𝑠31𝑣𝑣𝑣𝑣1𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠1

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

+
𝑘𝑘3𝑠𝑠1 󶀡󶀡𝑠𝑠1 + 1󶀱󶀱 󶀱󶀱𝑠𝑠1 + 2󶀱󶀱 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝐵𝐵

3(ln𝑎𝑎 )3tanh𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
cosh𝑠𝑠1+2

𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱
= 0.

(29)

Now from (28) and (29), equating the exponents 2𝑠𝑠1 and 𝑠𝑠1+2
and also 2𝑠𝑠2 and 𝑠𝑠2 + 2 gives, respectively,

2𝑠𝑠1 = 𝑠𝑠1 + 2, 2𝑠𝑠2 = 𝑠𝑠2 + 2, (30)

that leads to

𝑠𝑠1 = 𝑠𝑠2 = 2. (31)

So from (28) and (29), the four linearly independent func-
tions are 1/cosh𝑠𝑠1+𝑗𝑗 and 1/cosh𝑠𝑠2+𝑗𝑗 for 𝑗𝑗 𝑗𝑗𝑗𝑗  . erefore,
setting their respective coefficients to zero we obtain 𝐴𝐴2, 𝐵𝐵,
and 𝑣𝑣 as follow.

Case 1. One has

𝐴𝐴2 =
𝐴𝐴1
2

󶀢󶀢1 ± 𝑖𝑖√3󶀲󶀲 , 𝐵𝐵 𝐵𝐵
1

2𝑘𝑘 𝑘𝑘𝑘𝑘
, 𝑣𝑣 𝑣

𝐴𝐴1
3𝑝𝑝𝑝𝑝

,

(32)

where𝐴𝐴1, 𝑘𝑘,𝑝𝑝, and 𝑞𝑞 are arbitrary constants. Substituting (32)
into (22), we obtain new exact solution to (21),

𝑟𝑟 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴1

cosh2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

, 𝑢𝑢 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴2

cosh2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

, (33)

where 𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂     1/3𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.

Case 2. One has

𝐴𝐴2 =
𝐴𝐴1
2

󶀢󶀢1 ± 𝑖𝑖√3󶀲󶀲 , 𝐵𝐵 𝐵
1

2𝑘𝑘 𝑘𝑘𝑘𝑘
, 𝑣𝑣 𝑣

𝐴𝐴1
3𝑝𝑝𝑝𝑝

, (34)

where𝐴𝐴1, 𝑘𝑘,𝑝𝑝, and 𝑞𝑞 are arbitrary constants. Substituting (34)
into (22), we obtain new exact solution to (21),

𝑟𝑟 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴1

cosh2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

, 𝑢𝑢 (𝑥𝑥𝑥𝑥𝑥 ) =
𝐴𝐴2

cosh2
𝑎𝑎 󶀡󶀡𝜂𝜂󶀱󶀱

, (35)

where 𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂     1/3𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.

Remark 8. If we search the corresponding values for some
parameters andmake some transformations, in particular the
solution (35) can be reduced to the solution (32) mentioned
in [24].

4. Conclusions and Remarks

We consider generalized hyperbolic functions and new kinds
of generalized hyperbolic function transformation to con-
struct new exact solutions of nonlinear partial differential
equations. is paper obtains 1-soliton solution to the gen-
eralized KdV equation and the coupled equal width wave
equations. Our methods also can be applied to construct
new exact solutions of other nonlinear partial differential
equations.
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