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The occurrence of machining chatter may undermine the workpiece surface quality, accelerate the tool wear, and even result in
serious damage to the machine tools. Consequently, it is of great importance to predict and eliminate the presence of such unstable
and detrimental vibration. In this paper, we present an extended Adams-Moulton-based method for the stability prediction of
milling processes withmultiple delays. Taking the nonuniform pitch cutters or the tool runout into account, the regenerative chatter
for milling operations can be formulated as delay differential equations with multiple delays. The dynamics model for milling
regenerative chatter is rewritten in the state-space form. Dividing the spindle rotation period equally into small time intervals, the
delay terms are approximated by Lagrange interpolation polynomials, and the Adams-Moulton method is adopted to construct the
Floquet transition matrix. On this basis, the milling stability can be derived from the spectral radius of the transition matrix based
on Floquet theory. The calculation efficiency and accuracy of the proposed algorithm are verified through making comparisons
with the semidiscretization method (SDM) and the enhanced multistage homotopy perturbation method (EMHPM). The results
show that the proposed method has both high computational efficiency and accuracy.

1. Introduction

In machining operations, chatter vibration is still one of
the main constraints to high productivity and part quality.
It is a typical kind of self-excited vibration between the
cutter and the workpiece and can occur in almost every
machining process. The onset of such detrimental instability
may result in poor surface roughness, rapid tool wear, and
large reduction of tool life. Therefore, many researches on
the modelling, prediction, and avoidance of milling chatter
have been conducted [1–3]. Theoretically speaking, mode-
coupling, frictional, thermomechanical, and regenerative
mechanisms can induce chatter to occur [4]. With regard
to milling operations, the regenerative chatter is considered
as the most common unstable situation. The corresponding
mathematical model can be described by delay differential
equations (DDEs) with time-periodic coefficients [5, 6].

To achieve stable milling operations, one effective and
significant technique is selecting proper cutting parame-
ters based on the stability lobe diagrams, which can be

acquired via the milling stability prediction.Therefore, many
approaches have been proposed to approximate the DDEs to
derive the milling stability lobe diagrams, such as numerical
methods [7–10], analytical methods [11–13], and semianalyti-
cal methods [14–40]. Analytical and semianalytical methods
have significant advantages over numerical methods on the
computation efficiency. Consequently, they are widely used
in industrial applications and gained extensive attention from
the academic fields. Altintaş and Budak [11, 12] proposed the
zero-order approximationmethod for the stability prediction
of milling operations in the frequency domain. The promi-
nent advantage of this approach is its low computational
cost. Nevertheless, the zero-order approximation method is
not quite competent for low radial immersion conditions.
To improve the zero-order approximation method, Merdol
and Altintas [13] presented the so-called multifrequency
solution through including more numbers of harmonics.
With the help of the weighted residual method, Bayly et
al. [14] introduced the temporal finite element analysis
(TFEA) method to predict milling stability. Butcher et al. [15]
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developed the Chebyshev collocation method for the sta-
bility analysis of milling processes. Urbikain and coworkers
extended the Chebyshev collocation method for various
turning processes, including turning of nonrigid parts [16],
turning of rigid parts [17], turning with low rotational speeds
[18], and heavy-duty turning processes [19]. Insperger et
al. [20–22] presented the well-accepted semidiscretization
methods (0st SDM and 1st SDM) based on Floquet theory
for periodic delayed systems. The semidiscretization meth-
ods can effectively be utilized for predicting stability of
different milling processes [6]. Consequently, the SDMs are
commonly utilized as benchmarks methods for other time-
domain semianalytical methods. To obtain higher accuracy
and efficiency, Jiang et al. [23] presented a second-order
semidiscretizationmethod by utilizing Newton interpolation
polynomials and improved precise time-integration algo-
rithm.Different from the SDMs,Ding et al. [24, 25] developed
the full-discretization methods (1st FDM and 2nd FDM)
for milling stability prediction, in which the state term, the
delay term, and the parameter matrix are approximated by
linear interpolations, respectively. Three-order and hyper-
third-order FDMs were subsequently investigated by Quo et
al. [26] and Ozoegwu et al. [27], respectively. However, these
methods lead to an increase in computational time since the
structures aremore complex.Ding et al. [28, 29] presented the
numerical integration method (NIM) for milling operations
with both constant and variable spindle speeds. Niu and
coworkers [30] further developed the variable-step numerical
integration method (VNIM) for milling stability prediction
with periodic spindle speed variation. Different from SDMs
and FDMs, Li et al. [31] developed the complete discretization
scheme (CDS) by discretizing all parts of DDE and utilizing
Euler’s method. Xie [32] presented an improved complete
discretization method for more efficient stability prediction
of milling processes, in which the coefficient matrixes were
approximated by linear interpolation. To improve the accu-
racy of the CDS, Li et al. [33] developed the Runge-Kutta-
based complete discretization method. By approximating the
term with time-derivative with a weighted linear sum of the
corresponding function values, Ding et al. [34] suggested
the so-called differential quadrature method (DQM) for the
stability analysis of milling operations. Olvera and coworkers
[35] combined homotopy method with simulated annealing
algorithm for fast prediction of milling stability lobes. Niu
et al. [36] proposed the Runge–Kutta methods (CRKM
and GRKM). Ding et al. [37] developed the wavelet-based
approach for stability analysis of periodic delay differential
systems. Zhang et al. [38] suggested Simpson based method
(SBM) for the milling stability prediction. Applying the
finite difference method and extrapolation method, Zhang et
al. [39] presented the numerical differentiation method for
stability analysis ofmilling processes.More recently, Qin et al.
[40] presented the Adams-Moulton-based method (AMM)
for the stability prediction of milling processes, which has
high efficiency and accuracy compared with the 1st SDM and
the SBM.

Nevertheless, the above works were mostly conducted
based on the ideal milling operations with regular uniform
pitch cutters, in which there exists only single time delay.

Taking the nonuniform pitch cutters or the case tool runout
into account, the regenerative chatter models for milling
operations are described by delay differential equations with
multiple delays. As a consequence, many efforts have been
made to extend the above algorithms to the multiple delays
case. Altintaş et al. [41] developed an analytical method
for stability prediction of milling process with variable
pitch cutters, which was well validated by extensive milling
experiments. The results of their research demonstrated the
significant influence of the pitch angles on the stability
domain.With the aid of the analyticalmethod, Budak [42, 43]
developed an optimal pitch angles designmethod for increas-
ing the milling stability. On the basis of cluster treatment of
characteristic roots method, Olgac and Sipahi [44] studied
the stability boundary of milling process with unequally
pitched cutters and presented an optimization procedure for
the geometry design of variable pitch cutters. Sims et al.
[45] employed the modified SDM, the time-averaged SDM,
and the TFEA method to investigate the stability of variable
pitch and variable helix milling cutters. Their works showed
that under small radial immersions condition the cyclic-fold
bifurcations can arise for both nonuniform pitch and variable
helix milling tools. Based on the updated semidiscretization
method from [21], Wan et al. [46] developed a unified
method to predict milling stability with multiple delays
arising in variable pitch cutters or cutter runout. Zhang et
al. [47, 48] developed an improved FDM and a variable-step
NIM for the stability prediction of milling operations with
multiple delays. Compeán and coworkers [49] developed
the enhanced multistage homotopy perturbation method
(EMHPM) for milling stability analysis with multiple delays.
The so-called spectral element approach was introduced by
Khasawneh and Mann [50] for stability analysis of time-
periodic delay equations with multiple delays. Jin et al. [51–
53] presented an improved SDM to investigate the effect
of the tool geometries on the stability trends for variable
pitch or variable helix milling. Sims [54] introduced an
efficient approach to variable helix tool stability based upon
the Laplace transform. Ding and coworkers [55] extended
the differential quadrature method for stability analysis of
dynamic systems with multiple delays. By combining three-
order FDM and variable interpolation technique, Guo et
al. [56] proposed a time-domain semianalytical method for
prediction of milling stability lobes with nonuniform helix
tools.

In recent years, efficient and accurate milling stability
prediction has been a key issue both in academic and
industrial fields. However, it is difficult to achieve both
high computational accuracy and efficiency simultaneously.
Based on our previous work [40], this paper develops an
extended Adams-Moulton-based method for the milling
stability prediction with multiple delays. The remainder of
this paper is organized as follows. After the introduction,
Section 2 gives a concise description of the dynamics model
for milling operations with multiple delays. The extended
Adams-Moulton-based method (EAMM) is proposed in
Section 3. Section 4 validates the computation accuracy and
efficiency of the proposed method by a two-DOF milling
operation. Finally, the conclusion is drawn in Section 5.
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2. Mathematical Model of Milling Operations

Theoretically speaking, when the constant pitch cutter is
employed and the cutter runout is neglected, there exists only
one delay term in the system dynamics equation. Based on [1,
6, 21], the dynamics model of milling operations that include
the regenerative effect can bemodelled by the following delay
differential equation:

M ̈q (𝑡) + C ̇q (𝑡) + Kq (𝑡) = 𝑎𝑝K𝑐 (𝑡) [q (𝑡) − q (𝑡 − 𝑇)] , (1)

where q(𝑡) denotes the modal vector of the cutter.M, C, and
K represent the modal parameter matrixes. 𝑎𝑝 denotes the
depth of cut. K𝑐(𝑡) is the periodic coefficient matrix, that is,
K𝑐(𝑡) = K𝑐(𝑡 + 𝑇). 𝑇 is the time delay. For milling operations,𝑇 equals the tooth passing period.

However, the actual milling cutters cannot be always
completely symmetrical. Therefore, there may exist a certain
deviation between the spindle rotation axis and the tool
geometry axis, which constitutes the so-called cutter runout.
In addition, when the variable pitch cutter without cutter
runout is considered, any cutting point will always remove
the surface left by the first previous tooth. In this case, due
to the unevenly pitched space angle, the delays that equal
relevant tooth passing period will be different. Consequently,
in regard to the practical milling process, the governing
dynamics equation should be modelled as delay differential
equations with multiple delays instead. Based on [41, 46, 47],
the governing equation of the milling process with multiple
delays can be modelled by

M ̈q (𝑡) + C ̇q (𝑡) + Kq (𝑡)= 𝑁∑
𝑗=1

K𝑗 (𝑡) [q (𝑡) − q (𝑡 − 𝑇𝑗)] , (2)

where 𝑁 denotes the number of flutes, and the periodic
coefficient matrix K𝑗(𝑡) is defined as

K𝑗 (𝑡) = (ℎ𝑗𝑥𝑥 (𝑡) ℎ𝑗𝑥𝑦 (𝑡)ℎ𝑗𝑦𝑥 (𝑡) ℎ𝑗𝑦𝑦 (𝑡)) . (3)

Without loss of generality, we utilize milling with non-
constant pitch cutter to illustrate the mathematical model of
milling with multiple delays. Based on [41, 46, 47], the tool
is firstly divided into a finite number of disk elements along
the axial direction. Then the resultant cutting forces in the𝑋
and 𝑌 directions are acquired by numerically summing the
force components acting on each individual element. In such
conditions, ℎ𝑗𝑥𝑥(𝑡), ℎ𝑗𝑥𝑦(𝑡), ℎ𝑗𝑦𝑥(𝑡), and ℎ𝑗𝑦𝑦(𝑡) can be finally
obtained by

ℎ𝑗𝑥𝑥 (𝑡) = ∫𝑎𝑝
0
− [𝐾𝑡 cos (𝜙𝑗 (𝑡, 𝑧)) + 𝐾𝑛 sin (𝜙𝑗 (𝑡, 𝑧))]⋅ 𝑔 (𝜙𝑗 (𝑡, 𝑧)) sin (𝜙𝑗 (𝑡, 𝑧)) 𝑑𝑧, (4)

ℎ𝑗𝑥𝑦 (𝑡) = ∫𝑎𝑝
0
− [𝐾𝑡 cos (𝜙𝑗 (𝑡, 𝑧)) + 𝐾𝑛 sin (𝜙𝑗 (𝑡, 𝑧))]⋅ 𝑔 (𝜙𝑗 (𝑡, 𝑧)) cos (𝜙𝑗 (𝑡, 𝑧)) 𝑑𝑧, (5)

ℎ𝑗𝑦𝑥 (𝑡)= ∫𝑎𝑝
0
− [−𝐾𝑡 sin (𝜙𝑗 (𝑡, 𝑧)) + 𝐾𝑛 cos (𝜙𝑗 (𝑡, 𝑧))]⋅ 𝑔 (𝜙𝑗 (𝑡, 𝑧)) sin (𝜙𝑗 (𝑡, 𝑧)) 𝑑𝑧, (6)

ℎ𝑗𝑦𝑦 (𝑡)= ∫𝑎𝑝
0
− [−𝐾𝑡 sin (𝜙𝑗 (𝑡, 𝑧)) + 𝐾𝑛 cos (𝜙𝑗 (𝑡, 𝑧))]⋅ 𝑔 (𝜙𝑗 (𝑡, 𝑧)) cos (𝜙𝑗 (𝑡, 𝑧)) 𝑑𝑧, (7)

where 𝐾𝑡 and 𝐾𝑛 are the tangential and normal cutting force
coefficients, respectively. 𝜙𝑗(𝑡, 𝑧) denotes the angular position
of the 𝑗th tooth, given by

𝜙𝑗 (𝑡, 𝑧) = {{{{{{{{{
2𝜋Ω60 𝑡 − 𝑧 tan𝛽𝑅 , 𝑗 = 1,2𝜋Ω60 𝑡 − 𝑧 tan𝛽𝑅 + 𝑗∑

𝑗=2

𝜓𝑗, 1 < 𝑗 < 𝑁, (8)

where 𝛽 denotes the helix angle, 𝜓𝑗 represents the pitch angle
between the 𝑗th tooth and the (𝑗 − 1)th tooth, 𝑅 is the radius
of the cutter, andΩ represents the spindle speed.

The screen function 𝑔(𝜙𝑗(𝑡)) is utilized to determine
whether the tool is cutting the part, given by

𝑔 (𝜙𝑗 (𝑡, 𝑧)) = {{{1, 𝜙st < mod (𝜙𝑗 (𝑡) , 2𝜋) < 𝜙ex,0, otherwise, (9)

where 𝜙st and 𝜙ex represent the start and exit angles of tool.
For downmilling, 𝜙st = arcos(2𝑎/𝐷–1), and 𝜙ex = 𝜋; for
upmilling, 𝜙st = 0, and 𝜙ex = arcos(1–2𝑎/𝐷), where 𝑎/𝐷 is
the radial immersion ratio.

For more details of the milling dynamics models, one can
refer to [1, 6, 21, 41, 46, 47].

3. Extended Adams-Moulton-Based Method

To numerically determine the milling stability, the governing
equation (2) should be reexpressed in the state-space form.
Specifically, define p(𝑡) = M ̇q(𝑡) + Cq(𝑡)/2 and y(𝑡) =[q(𝑡), p(𝑡)]𝑇; (2) can be rewritten as

̇y (𝑡) = A𝑐y (𝑡) + 𝑁∑
𝑗=1

A𝑗 (𝑡) [y (𝑡) − y (𝑡 − 𝑇𝑗)] , (10)
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where

A𝑐 = ( −M−1C2 M−1

CM−1C4 − K −CM−12 ) ,
A𝑗 (𝑡) = ( 0 0

K𝑗 (𝑡) 0
) . (11)

By applying the state-space theory, the analytical response
of (10) can be deduced as

y (𝑡) = 𝑒A𝑐(𝑡−𝑡0)y (𝑡0)+ 𝑁∑
𝑗=1

∫𝑡
𝑡0

𝑒A𝑐(𝑡−𝜀)A𝑗 (𝜀) [y (𝜀) − y (𝜀 − 𝑇𝑗)] 𝑑𝜀, (12)

where y(𝑡0) denotes initial state point and 𝑡0 represents the
initial time instant.

Firstly, the spindle rotation period 𝑇 is divided equally
into𝑚 small time intervals, which makes 𝑇 = 𝑚ℎ. Obviously,
these (𝑚 + 1) discretized points can be expressed as𝑡𝑛 = 𝑡0 + (𝑛 − 1) ℎ, 𝑛 = 1, 2, . . . , 𝑚 + 1. (13)

During the 𝑛th time interval, that is, 𝑡𝑛 < 𝑡 < 𝑡𝑛+1, (12)
can be equivalently reexpressed as

y (𝑡) = 𝑒A𝑐(𝑡−𝑡𝑛)y (𝑡𝑛)+ 𝑁∑
𝑗=1

∫𝑡
𝑡𝑛

𝑒A𝑐(𝑡−𝜀)A𝑗 (𝜀) [y (𝜀) − y (𝜀 − 𝑇𝑗)] 𝑑𝜀. (14)

By substituting 𝑡 = 𝑡𝑛+1, y(𝑡𝑛+1) is defined as

y (𝑡𝑛+1)= 𝑒A𝑐ℎy (𝑡𝑛)+ 𝑁∑
𝑗=1

∫𝑡𝑛+1
𝑡𝑛

𝑒A𝑐(𝑡𝑛+1−𝜀)A𝑗 (𝜀) [y (𝜀) − y (𝜀 − 𝑇𝑗)] 𝑑𝜀. (15)

In order to simplify the derivation process, we will use
some abbreviated expressions; that is, y𝑛 denotes y(𝑡𝑛), y𝑛−𝑇
denotes y(𝑡𝑛 − 𝑇), and A𝑛 denotes A(𝑡𝑛). It is noted that
(15) is derived from the analytical solution. Consequently,
the key to solving (15) is to approximate the Duhamel term
with high accuracy and numerical stability. Based on the
two-step Adams-Moulton method, the state term y𝑛+1 can be
approximated by

y𝑛+1 = 𝑒A𝑐ℎy𝑛 + 𝑁∑
𝑗=1

ℎ12 (5A𝑗,𝑛+1 [y𝑛+1 − y𝑛+1−𝑇𝑗]+ 8𝑒A𝑐ℎA𝑗,𝑛 [y𝑛 − y𝑛−𝑇𝑗]− 𝑒2ℎA𝑐A𝑗,𝑛−1 [y𝑛−1 − y𝑛−1−𝑇𝑗]) .
(16)

When the time delay𝑇𝑗 is not equal to integermultiples of
the step length ℎ, the delay term y𝑛−𝑇𝑗 should be interpolated
by using the relevant boundary values. Define𝑚𝑗 = fix(𝑇𝑗/ℎ);
then 𝑇𝑗 = 𝑚𝑗ℎ + 𝜂𝑗, 𝜂𝑗 = 𝑇𝑗 − 𝑚𝑗ℎ, where the function
fix(𝑠) denotes the integer part of 𝑠. For example, we can
approximate y𝑛+1−𝑇𝑗 linearly by using the two boundary
values, that is, y𝑛+1−𝑚𝑗 and y𝑛−𝑚𝑗 , resulting in

y𝑛+1−𝑇𝑗 = y𝑛+1−𝑚𝑗−𝜂𝑗= 𝜂𝑗ℎ y𝑛−𝑚𝑗+𝑚−𝑇 + ℎ − 𝜂𝑗ℎ y𝑛+1−𝑚𝑗+𝑚−𝑇. (17)

Similarly, the delay terms y𝑛−𝑇𝑗 and y𝑛−1−𝑇𝑗 can be approx-
imated linearly by

y𝑛−𝑇𝑗 = 𝜂𝑗ℎ y𝑛−1−𝑚𝑗+𝑚−𝑇 + ℎ − 𝜂𝑗ℎ y𝑛−𝑚𝑗+𝑚−𝑇, (18)

y𝑛−1−𝑇𝑗 = 𝜂𝑗ℎ y𝑛−2−𝑚𝑗+𝑚−𝑇 + ℎ − 𝜂𝑗ℎ y𝑛−1−𝑚𝑗+𝑚−𝑇. (19)

By substituting (17)–(19) into (16), one can read
P𝑛−1y𝑛−1 + P𝑛y𝑛 + P𝑛+1y𝑛+1= 𝑁∑
𝑗=1

Q𝑗𝑛−2+𝑚−𝑚𝑗y𝑛−2−𝑚𝑗+𝑚−𝑇

+ 𝑁∑
𝑗=1

Q𝑗𝑛−1+𝑚−𝑚𝑗y𝑛−1−𝑚𝑗+𝑚−𝑇

+ 𝑁∑
𝑗=1

Q𝑗𝑛+𝑚−𝑚𝑗y𝑛−𝑚𝑗+𝑚−𝑇

+ 𝑁∑
𝑗=1

Q𝑗𝑛+1+𝑚−𝑚𝑗y𝑛+1−𝑚𝑗+𝑚−𝑇,
(20)

where

P𝑛−1 = 𝑁∑
𝑗=1

ℎ12𝑒2ℎA𝑐A𝑗,𝑛−1,
P𝑛 = −𝑒A𝑐ℎ − 𝑁∑

𝑗=1

2ℎ3 𝑒A𝑐ℎA𝑗,𝑛,
P𝑛+1 = I − 𝑁∑

𝑗=1

5ℎ12A𝑗,𝑛+1,
Q𝑗𝑛−2+𝑚−𝑚𝑗 = 𝜂𝑗12𝑒2ℎA𝑐A𝑗,𝑛−1,
Q𝑗𝑛−1+𝑚−𝑚𝑗 = ℎ − 𝜂𝑗12 𝑒2ℎA𝑐A𝑗,𝑛−1 − 2𝜂𝑗3 𝑒A𝑐ℎA𝑗,𝑛,
Q𝑗𝑛+𝑚−𝑚𝑗 = −2ℎ − 2𝜂𝑗3 𝑒A𝑐ℎA𝑗,𝑛 − 5𝜂𝑗12 A𝑗,𝑛+1,

Q𝑗𝑛+1+𝑚−𝑚𝑗 = −5ℎ − 5𝜂𝑗12 A𝑗,𝑛+1.

(21)
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In addition, y2 can be approximated with the one-step
Adams-Moulton formula(−𝑒A𝑐ℎ − 𝑁∑

𝑗=1

ℎ2 𝑒A𝑐ℎA𝑗,1) y1 + (I − 𝑁∑
𝑗=1

ℎ2A𝑗,2) y2

= − 𝑁∑
𝑗=1

ℎ2 𝑒A𝑐ℎA𝑗,1y1−𝑇𝑗 − 𝑁∑
𝑗=1

ℎ2A𝑗,2y2−𝑇𝑗 . (22)

Let 𝑛 = 1 and substituting (17) and (18) into (22) yields

Εy1 + Fy2 = 𝑁∑
𝑗=1

U𝑗0+𝑚−𝑚𝑗y0−𝑚𝑗+𝑚−𝑇

+ 𝑁∑
𝑗=1

V𝑗1+𝑚−𝑚𝑗y1−𝑚𝑗+𝑚−𝑇

+ 𝑁∑
𝑗=1

W𝑗2+𝑚−𝑚𝑗y2−𝑚𝑗+𝑚−𝑇,
(23)

where

Ε = −𝑒A𝑐ℎ − 𝑁∑
𝑗=1

ℎ2 𝑒A𝑐ℎA𝑗,1,
F = I − 𝑁∑

𝑗=1

ℎ2A𝑗,2,
U𝑗0+𝑚−𝑚𝑗 = −𝜂𝑗2 𝑒A𝑐ℎA𝑗,1,

V𝑗1+𝑚−𝑚𝑗 = −ℎ − 𝜂𝑗2 𝑒A𝑐ℎA𝑗,1 − 𝜂𝑗2 A𝑗,2,
W𝑗2+𝑚−𝑚𝑗 = −ℎ − 𝜂𝑗2 A𝑗,2.

(24)

Obviously, y1 and y𝑚+1−𝑇 satisfy

y1 = y𝑚+1−𝑇. (25)

By combining (20), (23), and (25), a discrete map can be
obtained by

G
((((
(

y1
y2...
y𝑚
y𝑚+1

))))
)

= 𝑁∑
𝑗=1

S𝑗
((((
(

y1−𝑇
y2−𝑇...
y𝑚−𝑇
y𝑚+1−𝑇

))))
)

+ 𝑁∑
𝑗=1

R𝑗
((((
(

y1
y2...
y𝑚
y𝑚+1

))))
)

,
(26)

where

G =(((
(

I

E F

P1 P2 P3
d d d

P𝑚−1 P𝑚 P𝑚+1

)))
)

,

S𝑗 =
((((((((((((((((((
(

I𝑁
U𝑗0+𝑚−𝑚𝑗 V𝑗1+𝑚−𝑚𝑗 W𝑗2+𝑚−𝑚𝑗
Q𝑗0+𝑚−𝑚𝑗 Q𝑗1+𝑚−𝑚𝑗 Q𝑗2+𝑚−𝑚𝑗 Q𝑗3+𝑚−𝑚𝑗

Q𝑗1+𝑚−𝑚𝑗 Q𝑗2+𝑚−𝑚𝑗 Q𝑗3+𝑚−𝑚𝑗 Q𝑗4+𝑚−𝑚𝑗
d d d d

Q𝑗𝑚−2 Q𝑗𝑚−1 Q𝑗𝑚 Q𝑗𝑚+1
Q𝑗𝑚−1 Q𝑗𝑚 Q𝑗𝑚+1

Q𝑗𝑚 Q𝑗𝑚+1
Q𝑗𝑚+1

))))))))))))))))))
)

,
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R𝑗 =
((((((((((((((
(

Q𝑗𝑚+2
Q𝑗𝑚+2 Q𝑗𝑚+3
Q𝑗𝑚+2 Q𝑗𝑚+3 Q𝑗𝑚+4
Q𝑗𝑚+2 Q𝑗𝑚+3 Q𝑗𝑚+4 Q𝑗𝑚+5

Q𝑗𝑚+3 Q𝑗𝑚+4 Q𝑗𝑚+5 Q𝑗𝑚+6
d d d d

Q𝑗2𝑚−2−𝑚𝑗 Q𝑗2𝑚−1−𝑚𝑗 Q𝑗2𝑚−𝑚𝑗 Q𝑗2𝑚+1−𝑚𝑗
Q𝑗2𝑚−1−𝑚𝑗 Q𝑗2𝑚−𝑚𝑗 Q𝑗2𝑚+1−𝑚𝑗 Q𝑗2𝑚+2−𝑚𝑗

))))))))))))))
)

.

(27)

Finally, the transition matrix Ψ with the EAMM can be
written as

Ψ = (G − 𝑁∑
𝑗=1

R𝑗)−1( 𝑁∑
𝑗=1

S𝑗) . (28)

According to Floquet theory, the stability of periodic
systems depends on the spectral radius of the transition
matrix. Consequently, the stability of milling operations can
be obtained from the following criterion:

𝜌 (Ψ){{{{{{{{{
>1, unstable,=1, critical,<1, stable, (29)

where 𝜌(Ψ) presents the spectral radius; that is, 𝜌(Ψ) =
max(|𝜆(Ψ)|).

It should be noted that the construction of the Floquet
transition matrix should be based on the period of the
coefficient matrix rather than on that of the delay terms. For
milling processes with single delay, the time period𝑇 is equal
to the tooth passing period. However, it is equal to the spindle
speed period for milling processes with multiple delays.
Consequently, the spindle speed period is discretized. On the
other hand, the ratio of time period to time delay (ROTPTD)
is equal to one for milling processes with single delay,
while it can be arbitrary for milling with multiple delays.
In the proposed method, the delay terms are approximated
by Lagrange interpolation polynomials with corresponding
boundary values. Consequently, the proposed algorithm can
be utilized for stability analysis of periodic delay systems with
an arbitrary ROTPTD.

4. Validation and Comparison

In this section, the computation efficiency and accuracy of
the proposed method are verified by a two-DOF milling
operation with variable pitch cutter in [41]. Note that Wan et
al. [46] had extended the semidiscretization method in [21]

to the milling stability analysis with multiple delays. To eval-
uate the effectiveness of the proposed method, we will make
comparisons with the semidiscretization method (SDM) and
the enhanced multistage homotopy perturbation method
(EMHPM), in which the same program structure and the
same model parameters are adopted.

Based on [41], the dynamics model of two-DOF milling
operations can be modelled as

(𝑚𝑡𝑥 00 𝑚𝑡𝑦)( ̈𝑥 (𝑡)̈𝑦 (𝑡))
+ (2𝜁𝑥𝜔𝑛𝑥𝑚𝑡𝑥 00 2𝜁𝜔𝑛𝑦𝑚𝑡𝑦)( ̇𝑥 (𝑡)̇𝑦 (𝑡))
+ (𝜔𝑛𝑥2𝑚𝑡𝑥 00 𝜔𝑛𝑦2𝑚𝑡𝑦)(𝑥 (𝑡)𝑦 (𝑡))
= 𝑁∑
𝑗=1

(ℎ𝑗𝑥𝑥 (𝑡) ℎ𝑗𝑥𝑦 (𝑡)ℎ𝑗𝑦𝑥 (𝑡) ℎ𝑗𝑦𝑦 (𝑡))[[(𝑥 (𝑡)𝑦 (𝑡))
− (𝑥 (𝑡 − 𝑇𝑗)𝑦 (𝑡 − 𝑇𝑗))]] .

(30)

In (30),𝑚𝑡𝑥,𝑚𝑡𝑦, 𝜔𝑛𝑥, 𝜔𝑛𝑦, 𝜁𝑥, and 𝜁𝑦 represent the modal
parameters of the system. The nonconstant pitch cutter has
four flutes, a diameter of 19.05mm, and a helix angle of 30∘.
There are three modes in the 𝑋 direction and one mode in
the 𝑌 direction. In-depth analysis showed that the second
mode in the 𝑋 direction has dominant influence on the
system stability. Consequently, the other two modes in the𝑋 direction are not taken into consideration. The modal
parameters of the downmilling system are the same as [41]:
the modal masses are 𝑚𝑡𝑥 = 1.4986 kg and 𝑚𝑡𝑦 = 1.199 kg,
the natural angular frequencies are 𝜔𝑛𝑥 = 563.6 × 2𝜋 rad/s
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and 𝜔𝑛𝑦 = 516.21 × 2𝜋 rad/s, and the damping ratios are𝜁𝑥 = 0.0558 and 𝜁𝑦 = 0.025. The coefficient matrix K𝑐(𝑡) is
the same as that given by (4). The time delay 𝑇𝑗 represents
the pitch period related to the pitch angle. The pitch angles
of the cutter are 70∘-110∘-70∘-110∘, which results in four time
delays; that is, 𝑇1 = 𝑇3 = 7/36𝑇, and 𝑇2 = 𝑇4 = 11/36𝑇. The
part material is Al356 alloy, and the cutting force coefficients
are𝐾𝑡 = 6.79 × 108N/m2 and𝐾𝑛 = 2.56 × 108N/m2.

With the same matrix transformation presented in Sec-
tion 2, (30) can be rewritten in the state-space form:

̇y (𝑡) = A𝑐y (𝑡) + 𝑁∑
𝑗=1

A𝑗 (𝑡) [y (𝑡) − y (𝑡 − 𝑇𝑗)] , (31)

where

A𝑐 =(((
(

−𝜁𝜔𝑛𝑥 0 1𝑚𝑡𝑥 00 −𝜁𝜔𝑛𝑦 0 1𝑚𝑡𝑦(𝜁𝑥2 − 1)𝜔𝑛𝑥2𝑚𝑡𝑥 0 −𝜁𝑥𝜔𝑛𝑥 00 (𝜁𝑦2 − 1)𝜔𝑛𝑦2𝑚𝑡𝑦 0 −𝜁𝑦𝜔𝑛𝑦
)))
)

,

A𝑗 (𝑡) =( 0 0 0 00 0 0 0ℎ𝑗𝑥𝑥 (𝑡) ℎ𝑗𝑥𝑦 (𝑡) 0 0ℎ𝑗𝑦𝑥 (𝑡) ℎ𝑗𝑦𝑦 (𝑡) 0 0).
(32)

To verify the feasibility of the proposed method, both
large and low radial immersion milling conditions need to
be investigated. First, the radial immersion ratio 𝑎/𝐷 is set
as 1 and 0.6 to examine large radial immersions conditions.
The stability lobe diagrams are constructed over a 200 ×
120 sized grid. The time interval 𝑚 is selected as 55 and
75, respectively. The cutting parameter combinations are
set as follows: the spindle speed Ω ranges from 2 krpm
to 12 krpm, and the depths of cut 𝑎𝑝 ranges from 0 to
15mm. The reference stability limits demoded by the red
line are computed by the SDM with 𝑚 = 600. Figures 1
and 2 show the stability lobe diagrams under large radial
immersion conditions and the efficiency of these methods.
The results demonstrate that the proposed method achieves
a much higher computational efficiency than the SDM and
the EMHPM. Indeed, the computation time of the proposed
method can be reduced by 67–70% and 45–52%, compared
with those of the SDM and the EMHPM, respectively. The
stability lobe diagrams computed by the proposed method
agree well with the exact stability lobe diagrams. In general,
the accuracy of the stability lobe diagrams with the EAMM
is higher than those with the other two methods based on
the same computational parameters. The relative errors of
these methods over the spindle speed range from 2000 rpm
to 5000 rpm are presented in Figure 3. It demonstrates that
the EAMM is of the highest accuracy. For instance, when
compared with the SDM, the accuracy can be improved by
up to 23% at the spindle speed Ω = 2000 rpm with the radial
immersion ratio 𝑎/𝐷 = 1 and by up to 38% with the radial
immersion ratio 𝑎/𝐷 = 0.6.

Meanwhile, we set the radial immersion ratio 𝑎/𝐷 set as
0.3 and 0.1 to examine low radial immersions milling. The
time interval 𝑚 is also selected as 55 and 75. The stability
lobe diagrams are constructed over a 200 × 120 sized grid.
The range of the spindle speed Ω remains the same as the
previous case, while the depths of cut 𝑎𝑝 range from 0 to
20mm.The exact stability limits demoded by the red line are
also calculated by the SDM with 𝑚 = 600. Figures 4 and 5
show the stability lobe diagrams under low radial immersion
conditions and the computational time of the SDM, the
EMHPM, and the EAMM. It shows that the stability charts
computed by the proposed method also agree well with the
reference stability lobe diagrams for low radial immersions
conditions. Moreover, the proposed method achieves a much
higher computational efficiency than the other two methods.
Compared with the SDM and the EMHPM, the computation
time of the proposed method can be reduced by 67–69%
and 45–53%, respectively. In addition, the results show that
under the same computational parameters the accuracy of
the EAMM is better than the SDM and the EMHPM. The
relative errors of these three methods over the spindle speed
range from 2000 rpm to 5500 rpm are presented in Figure 6.
It shows that the accuracy of the EAMM is much better than
the other two methods over this range of spindle speeds. For
instance, when compared with the SDM, the accuracy can be
improved by up to 22% at the spindle speed Ω = 2000 rpm
and the radial immersion ratio 𝑎/𝐷 = 0.3 and by up to 19%
at the spindle speedΩ = 3200 rpm and the radial immersion
ratio 𝑎/𝐷 = 0.1.
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Figure 1: Stability lobe diagrams computed by the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 1.
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Figure 2: Stability lobe diagrams computed by the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 0.6.
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Figure 3: Comparisons of relative errors among the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 1 and𝑎/𝐷 = 0.6.
5. Conclusion

In this work, an efficient and accurate semianalytical algo-
rithm is proposed for the stability prediction of milling
processes with multiple delays. Firstly, the milling dynamics
model for regenerative chatter is rewritten in the state-space
form. After the spindle rotation period is equally discretized,
the delay terms are approximated by Lagrange interpolation
polynomials, and the Adams-Moulton method is employed
to construct the Floquet transition matrix. Finally, the sta-
bility of milling operations can be predicted by examining
the spectral radius of the Floquet transition matrix. A two-
DOFmillingmodel with variable pitch tool has been adopted
to demonstrate the proposed method. The numerical results

demonstrate that under the same computational condition
the proposed method achieves a higher computational effi-
ciency than the SDM and the EMHPM. Compared with
the SDM and the EMHPM, the computation time of the
proposed method can be reduced by 67–70% and 45–53%,
respectively. In general, the accuracy of the EAMM is higher
than the SDM and the EMHPM. In addition, the accuracy
of the stability lobe diagrams computed by the proposed
method can be improved significantly over the spindle speed
range from 2000 rpm to 5000 rpm.
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Figure 4: Stability lobe diagrams computed by the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 0.3.
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Figure 5: Stability lobe diagrams computed by the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 0.1.
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Figure 6: Comparisons of relative errors among the SDM, the EMHPM, and the EAMM with the radial immersion ratio 𝑎/𝐷 = 0.3 and𝑎/𝐷 = 0.1.
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