THE BESSEL-STRUVE INTERTWINING OPERATOR ON © AND MEAN-PERIODIC FUNCTIONS

A. GASMI and M. SIFI

Received 22 September 2003

Abstract

We give a description of all transmutation operators from the Bessel-Struve operator to the second-derivative operator. Next we define and characterize the mean-periodic functions on the space \mathscr{H} of entire functions and we characterize the continuous linear mappings from \mathscr{H} into itself which commute with Bessel-Struve operator.

2000 Mathematics Subject Classification: 44A15, 41A58, 42A75.

1. Introduction. Let A and B be two differential operators on a linear space X. We say that χ is a transmutation operator of A into B if χ is an isomorphism from X into itself such that $A \chi=\chi B$. This notion was introduced by Delsarte in [2] and some generalization and applications were given in [1, 3, 7, 10].

In the case where A and B are two differential operators having the same order and without any singularity on the complex plan, acting on the space of entire functions on \mathbb{C} denoted here by \mathscr{H}, Delsarte showed in [3] the existence of a transmutation operator between A and B and gave some applications on the theory of mean-periodic functions on \mathbb{C}.

In this paper, we consider the operator $\ell_{\alpha}, \alpha>-1 / 2$, on \mathbb{C}, given by

$$
\begin{equation*}
\ell_{\alpha} f(z)=\frac{d^{2} f}{d z^{2}}(z)+\frac{2 \alpha+1}{z}\left[\frac{d f}{d z}(z)-\frac{d f}{d z}(0)\right], \tag{1.1}
\end{equation*}
$$

where f is an entire function on \mathbb{C}. We call this operator Bessel-Struve operator on \mathbb{C}.
The Bessel-Struve kernel $S_{\alpha}(\lambda \cdot), \lambda \in \mathbb{C}$, which is the unique solution of the initial value problem $\ell_{\alpha} u(z)=\lambda^{2} u(z)$ with the initial conditions $u(0)=1$ and $u^{\prime}(0)=$ $\lambda \Gamma(\alpha+1) / \sqrt{\pi} \Gamma(\alpha+3 / 2)$, is given by

$$
\begin{equation*}
S_{\alpha}(\lambda z)=j_{\alpha}(i \lambda z)-i h_{\alpha}(i \lambda z) \quad \forall z \in \mathbb{C}, \tag{1.2}
\end{equation*}
$$

where j_{α} and h_{α} are the normalized Bessel and Struve functions (see [4]).
Moreover, the Bessel-Struve kernel is a holomorphic function on $\mathbb{C} \times \mathbb{C}$ and it can be expanded in a power series in the form

$$
\begin{equation*}
S_{\alpha}(\lambda z)=\sum_{n=0}^{+\infty} \frac{(\lambda z)^{n}}{c_{n}(\alpha)}, \quad c_{n}(\alpha)=\frac{\sqrt{\pi} n!\Gamma(n / 2+\alpha+1)}{\Gamma(\alpha+1) \Gamma((n+1) / 2)} . \tag{1.3}
\end{equation*}
$$

The Bessel-Struve intertwining operator χ_{α} is defined from the space \mathscr{H} into itself by

$$
\begin{equation*}
\chi_{\alpha} f(z)=\sum_{n=0}^{+\infty} \frac{d^{n} f}{d z^{n}}(0) \frac{z^{n}}{c_{n}(\alpha)} \quad \forall f \in \mathscr{H}, z \in \mathbb{C} . \tag{1.4}
\end{equation*}
$$

The dual intertwining operator ${ }^{t} \chi_{\alpha}$ of χ_{α} is defined on \mathscr{H}^{\prime} (the dual space of \mathscr{H}) by

$$
\begin{equation*}
\left\langle^{t} \chi_{\alpha} T, g\right\rangle=\left\langle T, \chi_{\alpha} \mathcal{G}\right\rangle \quad \forall g \in \mathscr{H}, T \in \mathscr{H}^{\prime} . \tag{1.5}
\end{equation*}
$$

The Bessel-Struve transform \mathscr{F}_{α} is defined on \mathscr{H}^{\prime} by

$$
\begin{equation*}
\mathscr{F}_{\alpha}(T)(\lambda)=\left\langle T, S_{\alpha}(-i \lambda \cdot)\right\rangle \quad \forall \lambda \in \mathbb{C} . \tag{1.6}
\end{equation*}
$$

We use the transmutation operator χ_{α} to define the Bessel-Struve translation operators $\tau_{z}, z \in \mathbb{C}$, associated with ℓ_{α}, and the Bessel-Struve convolution on $\mathscr{H}^{\text {and }} \mathscr{H}^{\prime}$. A function f in \mathscr{H} is said to be mean periodic if the closed subspace $\Omega(f)$ generated by $\tau_{z} f, z \in \mathbb{C}$, satisfies $\Omega(f) \neq \mathscr{H}$.

The objective of this paper is to characterize every transmutation operator of ℓ_{α} into the second derivative operator from \mathscr{H} into itself. Next, we study the mean-periodic functions associated with the Bessel-Struve operator and we characterize the continuous linear mappings from \mathscr{H} into itself which commute with ℓ_{α}.

We point out that the harmonic analysis associated with differential and differentialdifference operators allows many applications as the study of integral representations (see [9]), Plancherel, and reconstruction formulas and other applications as the use of wavelets packets in the inversion of transmutation operators for the J. L. Lions operator and the Dunkl operator (see [5, 6]).

The content of this paper is as follows.
In Section 2, we prove that the Bessel-Struve intertwining operator χ_{α} is a topological isomorphism from \mathscr{H} into itself satisfying

$$
\begin{gather*}
\forall f \in \mathscr{H}, \quad \ell_{\alpha \chi_{\alpha}} f=\chi_{\alpha} \frac{d^{2}}{d z^{2}} f, \\
\chi_{\alpha} f(0)=f(0), \quad\left(\chi_{\alpha} f\right)^{\prime}(0)=\frac{f^{\prime}(0)}{c_{1}(\alpha)} . \tag{1.7}
\end{gather*}
$$

Using this operator and its dual, we study the harmonic analysis associated with the operator ℓ_{α} (Bessel-Struve transform, Bessel-Struve translation operators, and BesselStruve convolution). Next, we determine all transmutation operators W from the BesselStruve operator ℓ_{α} to the second derivative operator $d^{2} / d z^{2}$.

In Section 3, we study the mean-periodic functions associated with ℓ_{α}. Next, we give the central result of the paper, which characterizes the continuous linear mappings from \mathscr{H} into itself which commute with ℓ_{α}.
2. Bessel-Struve transmutation operators. In this section, we consider the normalized Bessel and Struve functions which allow to define the Bessel-Struve kernel. Next, we define the Bessel-Struve intertwining operator χ_{α} and its dual ${ }^{t} \chi_{\alpha}$; after that, we study the harmonic analysis associated with the operator ℓ_{α}. The aim of this section is to characterize every transmutation operator of ℓ_{α} into $d^{2} / d z^{2}$ from \mathscr{H} into itself.

Let $\alpha>-1 / 2$. The normalized Bessel function j_{α} is the kernel defined on \mathbb{C} by

$$
\begin{equation*}
j_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(z)}{z^{\alpha}}=\Gamma(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^{n}(z / 2)^{2 n}}{n!\Gamma(n+\alpha+1)} \tag{2.1}
\end{equation*}
$$

where J_{α} is the Bessel function of order α (see [4, 12]).
The normalized Struve function h_{α} is the kernel defined on \mathbb{C} by

$$
\begin{equation*}
h_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) \frac{\mathbf{H}_{\alpha}(z)}{z^{\alpha}}=\Gamma(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^{n}(z / 2)^{2 n+1}}{\Gamma(n+3 / 2) \Gamma(n+\alpha+3 / 2)} \tag{2.2}
\end{equation*}
$$

where \mathbf{H}_{α} is the Struve function of order α (see [4, 12]).
This function has the following Poisson integral representation:

$$
\begin{equation*}
h_{\alpha}(z)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha-1 / 2} \sin (z t) d t \tag{2.3}
\end{equation*}
$$

The function $z \rightarrow h_{\alpha}(i \lambda z), \lambda, z \in \mathbb{C}$, is the unique solution of the differential equation

$$
\begin{gather*}
\ell_{\alpha} u(z)=\lambda^{2} u(z) \\
u(0)=0, \quad u^{\prime}(0)=\frac{\lambda \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+3 / 2)} \tag{2.4}
\end{gather*}
$$

The functions h_{α} and j_{α} are related by the formula

$$
\begin{equation*}
h_{\alpha}(z)=\frac{\Gamma(\alpha+1) z}{\sqrt{\pi} \Gamma(\alpha+3 / 2)} \int_{0}^{\pi / 2} j_{\alpha+1 / 2}(z \sin \varphi) \sin \varphi d \varphi \tag{2.5}
\end{equation*}
$$

The Bessel-Struve kernel is the function S_{α} defined on \mathbb{C} by

$$
\begin{equation*}
S_{\alpha}(z)=j_{\alpha}(i z)-i h_{\alpha}(i z) \tag{2.6}
\end{equation*}
$$

This kernel can be expanded in a power series in the form

$$
\begin{equation*}
S_{\alpha}(z)=\sum_{n=0}^{+\infty} \frac{z^{n}}{c_{n}(\alpha)}, \quad c_{n}(\alpha)=\frac{\sqrt{\pi} n!\Gamma(n / 2+\alpha+1)}{\Gamma(\alpha+1) \Gamma((n+1) / 2)}, \tag{2.7}
\end{equation*}
$$

and has the following integral representation:

$$
\begin{equation*}
S_{\alpha}(z)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha-1 / 2} \exp (z t) d t \tag{2.8}
\end{equation*}
$$

The function $z \rightarrow S_{\alpha}(\lambda z), \lambda \in \mathbb{C}$, is the unique solution of the differential equation

$$
\begin{gather*}
\ell_{\alpha} u(z)=\lambda^{2} u(z), \\
u(0)=1, \quad u^{\prime}(0)=\frac{\lambda \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+3 / 2)} . \tag{2.9}
\end{gather*}
$$

Notations.

(i) We denote by \mathscr{H}, the space of entire functions on \mathbb{C}, with the topology of the uniform convergence on compact subsets of \mathbb{C}. Thus \mathscr{H} is a Fréchet space.
(ii) We denote by \mathscr{H}^{\prime}, the dual space of \mathscr{H}.

Proposition 2.1. The operator χ_{α} defined by

$$
\begin{equation*}
\chi_{\alpha} f(z)=\sum_{n=0}^{+\infty} \frac{d^{n} f}{d z^{n}}(0) \frac{z^{n}}{c_{n}(\alpha)}, \quad \forall f \in \mathscr{H}, z \in \mathbb{C}, \tag{2.10}
\end{equation*}
$$

is an isomorphism from \mathscr{H} into itself satisfying the transmutation relation

$$
\begin{gather*}
\forall f \in \mathscr{H}, \quad \ell_{\alpha} \chi_{\alpha} f=\chi_{\alpha} \frac{d^{2}}{d z^{2}} f, \\
\chi_{\alpha} f(0)=f(0), \quad\left(\chi_{\alpha} f\right)^{\prime}(0)=\frac{f^{\prime}(0)}{c_{1}(\alpha)} . \tag{2.11}
\end{gather*}
$$

The inverse of χ_{α} is given by

$$
\begin{equation*}
\chi_{\alpha}^{-1}(f)(z)=\sum_{n=0}^{+\infty} \ell_{\alpha}^{n}(f)(0) \frac{z^{2 n}}{(2 n)!}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(0) \frac{z^{2 n+1}}{(2 n+1)!} \quad \forall f \in \mathscr{H}, z \in \mathbb{C} . \tag{2.12}
\end{equation*}
$$

Proof. First we prove that the image of the function f in \mathscr{H} by χ_{α} is an entire function, and that χ_{α} is a continuous linear operator.

Since f is an entire function, from the Cauchy integral formula, we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \frac{d^{n} f}{d z^{n}}(0)=\frac{n!}{2 i \pi} \int_{C_{R}} \frac{f(w)}{w^{n+1}} d w \tag{2.13}
\end{equation*}
$$

where C_{R} is a circle with center 0 and radius $R>0$. Hence there exists a positive constant M such that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left|\frac{d^{n} f}{d z^{n}}(0) \frac{1}{c_{n}(\alpha)}\right| \leq M R^{-n}\|f\|_{R}, \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\|f\|_{R}=\max _{|z| \leq R}|f(z)| . \tag{2.15}
\end{equation*}
$$

As R is arbitrary, the radius of convergence of the power series in (2.10) is infinite. Thus $\chi_{\alpha}(f)$ is an entire function.

Using (2.14), we obtain

$$
\begin{equation*}
\forall f \in \mathscr{H}, \quad\left\|\chi_{\alpha}(f)\right\|_{R} \leq 2 M\|f\|_{2 R} . \tag{2.16}
\end{equation*}
$$

Thus χ_{α} defines a continuous linear mapping from \mathscr{H} into itself. Furthermore, using the fact that

$$
\begin{equation*}
\forall n \geq 2, \quad \ell_{\alpha}\left(z^{n}\right)=\frac{c_{n}(\alpha)}{c_{n-2}(\alpha)} z^{n-2} \tag{2.17}
\end{equation*}
$$

we get

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad \ell_{\alpha} \chi_{\alpha} f(z)=\sum_{n=2}^{+\infty} \frac{d^{n} f}{d z^{n}}(0) \frac{z^{n-2}}{c_{n-2}(\alpha)}=\sum_{n=0}^{+\infty} \frac{d^{n+2} f}{d z^{n+2}}(0) \frac{z^{n}}{c_{n}(\alpha)}=\chi \alpha \frac{d^{2}}{d z^{2}} f(z) . \tag{2.18}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\chi_{\alpha} f(0)=f(0), \quad\left(\chi_{\alpha} f\right)^{\prime}(0)=\frac{f^{\prime}(0)}{c_{1}(\alpha)} \tag{2.19}
\end{equation*}
$$

Suppose now that $\chi_{\alpha} f=0$ for a certain $f \in \mathscr{H}$. Then, according to (2.10), $\left(d^{n} f / d z^{n}\right)(0)=$ $0, n \in \mathbb{N}$. Hence $f=0$, thus we prove that χ_{α} is a one-to-one mapping from \mathscr{H} into itself.

Now we consider the operator ψ on \mathscr{H} defined by

$$
\begin{equation*}
\psi f(z)=\sum_{n=0}^{+\infty} \ell_{\alpha}^{n} f(0) \frac{z^{2 n}}{(2 n)!}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(0) \frac{z^{2 n+1}}{(2 n+1)!} \quad \forall z \in \mathbb{C} \tag{2.20}
\end{equation*}
$$

In the same way as for χ_{α} and by a simple calculation, we prove that ψ is a continuous linear mapping from \mathscr{H} into itself and

$$
\begin{equation*}
\forall f \in \mathscr{H}, \quad \chi_{\alpha} \psi f=\psi \chi_{\alpha} f=f \tag{2.21}
\end{equation*}
$$

Then χ_{α} is a topological isomorphism from \mathscr{H} into itself.
REMARKS 2.2. (i) The operator χ_{α} which is a transmutation operator from ℓ_{α} into $d^{2} / d z^{2}$ on \mathscr{H} will be called the Bessel-Struve intertwining operator on \mathbb{C}.
(ii) Formula (2.10) means that the Taylor coefficients of the image of an entire function by χ_{α} are multiplied by the Taylor coefficients of the Bessel-Struve kernel.

Corollary 2.3. (i) For $\lambda, z \in \mathbb{C}$,

$$
\begin{equation*}
S_{\alpha}(\lambda z)=\chi_{\alpha}\left(e^{\lambda \cdot}\right)(z) \tag{2.22}
\end{equation*}
$$

(ii) Every function f in \mathscr{H} can be expanded in a power series:

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad f(z)=\sum_{n=0}^{+\infty} \ell_{\alpha}^{n} f(0) \frac{z^{2 n}}{c_{2 n}(\alpha)}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(0) \frac{z^{2 n+1}}{c_{2 n+1}(\alpha)} \tag{2.23}
\end{equation*}
$$

DEFINITION 2.4. The dual intertwining operator ${ }^{t} \chi_{\alpha}$ of χ_{α} is defined on \mathscr{H}^{\prime} by

$$
\begin{equation*}
\left\langle{ }^{t} \chi_{\alpha}(T), g\right\rangle=\left\langle T, \chi_{\alpha}(\mathfrak{g})\right\rangle \quad \forall g \in \mathscr{H} . \tag{2.24}
\end{equation*}
$$

REMARK 2.5. From the properties of the operator χ_{α}, we deduce that the operator ${ }^{t} \chi_{\alpha}$ is an isomorphism from \mathscr{H}^{\prime} into itself; the inverse operator $\left({ }^{t} \chi_{\alpha}\right)^{-1}$ is given by

$$
\begin{equation*}
\left\langle\left({ }^{t} \chi_{\alpha}\right)^{-1}(T), g\right\rangle=\left\langle T, \chi_{\alpha}^{-1}(g)\right\rangle \quad \forall g \in \mathscr{H} . \tag{2.25}
\end{equation*}
$$

Notations.

(i) We denote by $\operatorname{Exp}_{a}(\mathbb{C}), a>0$, the space of functions of exponential type a. It is the space of functions $f \in \mathscr{H}$ such that

$$
\begin{equation*}
N_{a}(f)=\sup _{z \in \mathbb{C}}|f(z)| e^{-a|z|}<+\infty . \tag{2.26}
\end{equation*}
$$

(ii) We denote by $\operatorname{Exp}(\mathbb{C})$, the space of functions with exponential type. It is given by

$$
\begin{equation*}
\operatorname{Exp}(\mathbb{C})=\cup_{a>0} \operatorname{Exp}_{a}(\mathbb{C}) . \tag{2.27}
\end{equation*}
$$

The space $\operatorname{Exp}(\mathbb{C})$ is endowed with the inductive limit topology.
(iii) We denote by \mathscr{F}, the classical Fourier transform defined on \mathscr{H}^{\prime} by

$$
\begin{equation*}
\mathscr{F}(T)(\lambda)=\left\langle T, e^{-i \lambda \cdot}\right\rangle \quad \forall \lambda \in \mathbb{C} . \tag{2.28}
\end{equation*}
$$

(iv) We denote by $*_{o}$, the classical convolution product given by

$$
\begin{equation*}
T *_{o} f(z)=\left\langle T_{w}, f(w+z)\right\rangle \quad \forall T \in \mathscr{H}^{\prime}, f \in \mathscr{H}, z \in \mathbb{C} . \tag{2.29}
\end{equation*}
$$

Definition 2.6. The Bessel-Struve transform \mathscr{F}_{α} of $T \in \mathscr{H}^{\prime}$ is given by

$$
\begin{equation*}
\mathscr{F}_{\alpha}(T)(\lambda)=\left\langle T, S_{\alpha}(-i \lambda \cdot)\right\rangle \quad \forall \lambda \in \mathbb{C} . \tag{2.30}
\end{equation*}
$$

Remark 2.7. From Corollary 2.3(i) and Definition 2.4, we obtain

$$
\begin{equation*}
\forall T \in \mathscr{H}^{\prime}, \quad \mathscr{F}_{\alpha}(T)(\lambda)=\mathscr{F}_{\alpha}\left({ }^{t} \chi_{\alpha}(T)\right)(\lambda) . \tag{2.31}
\end{equation*}
$$

Proposition 2.8. The Bessel-Struve transform \mathscr{F}_{α} is a topological isomorphism from \mathscr{H}^{\prime} into $\operatorname{Exp}(\mathbb{C})$.

Proof. According to [8], the classical Fourier transform \mathscr{F} is a topological isomorphism from \mathscr{H}^{\prime} into $\operatorname{Exp}(\mathbb{C})$. Then the result follows from (2.25) and (2.31).

Lemma 2.9. Let $f \in \mathscr{H}$. The Cauchy problem

$$
\begin{gather*}
\ell_{\alpha, z} u(z, w)=\ell_{\alpha, w} u(z, w), \\
u(0, w)=f(w), \quad \frac{\partial}{\partial z} u(0, w)=f^{\prime}(w) \tag{2.32}
\end{gather*}
$$

has a unique solution that is an entire function on $\mathbb{C} \times \mathbb{C}$ given by

$$
\begin{equation*}
u(z, w)=\chi_{\alpha, z} \chi_{\alpha, w}\left[\chi_{\alpha}^{-1}(f)(z+w)\right] \quad \forall z, w \in \mathbb{C} . \tag{2.33}
\end{equation*}
$$

Proof. From Proposition 2.1, (2.32) is equivalent to the Cauchy problem

$$
\begin{gather*}
\frac{\partial^{2}}{\partial z^{2}} v(z, w)=\frac{\partial^{2}}{\partial w^{2}} v(z, w) \\
v(0, w)=\chi_{\alpha}^{-1}(f)(w), \quad \frac{\partial}{\partial z} v(0, w)=\frac{d\left(\chi_{\alpha}^{-1} f\right)}{d z}(w), \tag{2.34}
\end{gather*}
$$

where

$$
\begin{equation*}
v(z, w)=\chi_{\alpha, z}^{-1} \chi_{\alpha, w}^{-1} u(z, w) \tag{2.35}
\end{equation*}
$$

But the solution of (2.34) is given by

$$
\begin{equation*}
v(z, w)=\chi_{\alpha}^{-1}(f)(z+w) \quad \forall z, w \in \mathbb{C} . \tag{2.36}
\end{equation*}
$$

Definition 2.10. The Bessel-Struve translation operators $\boldsymbol{\tau}_{z}, z \in \mathbb{C}$, associated with the operator ℓ_{α}, is defined on \mathscr{H} by

$$
\begin{equation*}
\tau_{z} f(w)=\chi_{\alpha, z} \chi_{\alpha, w}\left[\chi_{\alpha}^{-1}(f)(z+w)\right] \quad \forall w \in \mathbb{C} . \tag{2.37}
\end{equation*}
$$

The operator $\tau_{z}, z \in \mathbb{C}$, satisfies the following properties.
(i) For all $z \in \mathbb{C}$, the operator τ_{z} is linear continuous from \mathscr{H} into itself.
(ii) For all $f \in \mathscr{H}$ and $z, w \in \mathbb{C}$,

$$
\begin{align*}
\tau_{z} f(w) & =\tau_{w} f(z), & \tau_{0} f(w) & =f(w), \\
\tau_{z}\left(\tau_{w} f\right) & =\tau_{w}\left(\tau_{z} f\right), & \ell_{\alpha} \tau_{z} f & =\tau_{z} \ell_{\alpha} f . \tag{2.38}
\end{align*}
$$

(iii) The following product formula holds:

$$
\begin{equation*}
\forall z, w \in \mathbb{C}, \quad \tau_{z}\left(S_{\alpha}(\lambda \cdot)\right)(w)=S_{\alpha}(\lambda w) S_{\alpha}(\lambda z) \tag{2.39}
\end{equation*}
$$

Corollary 2.11. Let $f \in \mathscr{H}$ and $z \in \mathbb{C}$. Then the function $w \rightarrow \tau_{z} f(w)$ can be expanded in the Taylor series:

$$
\begin{equation*}
\forall w \in \mathbb{C}, \quad \tau_{z} f(w)=\sum_{n=0}^{+\infty} \ell_{\alpha}^{n} f(z) \frac{w^{2 n}}{c_{2 n}(\alpha)}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(z) \frac{w^{2 n+1}}{c_{2 n+1}(\alpha)} \tag{2.40}
\end{equation*}
$$

Proof. For $z, w \in \mathbb{C}$, we have

$$
\begin{equation*}
\tau_{z} f(w)=\chi_{\alpha, z} \chi_{\alpha, w}\left[\chi_{\alpha}^{-1}(f)(z+w)\right] . \tag{2.41}
\end{equation*}
$$

Applying Corollary 2.3(ii) to the function $w \rightarrow \tau_{z} f(w)$, we obtain

$$
\begin{align*}
\tau_{z} f(w) & =\sum_{n=0}^{+\infty} \ell_{\alpha}^{n}\left[\tau_{z} f\right](0) \frac{w^{2 n}}{c_{2 n}(\alpha)}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n}\left[\tau_{z} f\right]\right)}{d z}(0) \frac{w^{2 n+1}}{c_{2 n+1}(\alpha)} \tag{2.42}\\
& =\sum_{n=0}^{+\infty} \tau_{z}\left[\ell_{\alpha}^{n} f\right](0) \frac{w^{2 n}}{c_{2 n}(\alpha)}+c_{1}(\alpha) \sum_{n=0}^{+\infty} \tau_{z}\left[\frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}\right](0) \frac{w^{2 n+1}}{c_{2 n+1}(\alpha)}
\end{align*}
$$

which proves the result.
Definition 2.12. (i) The convolution product of two elements T and K in \mathscr{H}^{\prime} is defined by

$$
\begin{equation*}
\langle T * K, f\rangle=\left\langle T_{z},\left\langle K_{w}, T_{z} f(w)\right\rangle\right\rangle \quad \forall f \in \mathscr{H} . \tag{2.43}
\end{equation*}
$$

(ii) Let $T \in \mathscr{H}^{\prime}$ and $f \in \mathscr{H}$. The convolution product of T and f is the function in \mathscr{H} defined by

$$
\begin{equation*}
T * f(z)=\left\langle T_{w}, \tau_{z} f(w)\right\rangle \quad \forall z \in \mathbb{C} \tag{2.44}
\end{equation*}
$$

The convolution $*$ satisfies the following properties.
(i) Let $T, K \in \mathscr{H}^{\prime}$ and let $f \in \mathscr{H}$. Then

$$
\begin{equation*}
T *(K * f)=(T * K) * f \tag{2.45}
\end{equation*}
$$

(ii) Let $T, K \in \mathscr{H}^{\prime}$. Then

$$
\begin{equation*}
\mathscr{F}_{\alpha}(T * K)=\mathscr{F}_{\alpha}(T) \mathscr{F}_{\alpha}(K) . \tag{2.46}
\end{equation*}
$$

Proposition 2.13. Let $T \in \mathscr{H}^{\prime}$ and let $f \in \mathscr{H}$. Then

$$
\left.\begin{array}{rl}
\left({ }^{t} \chi_{\alpha}\right)^{-1}(T) * \chi_{\alpha}(f) & =\chi_{\alpha}\left(T *_{o} f\right) \\
{ }^{t} \chi_{\alpha}(T) & *_{o} \chi_{\alpha}^{-1}(f) \tag{2.47}
\end{array}\right)=\chi_{\alpha}^{-1}(T * f),
$$

where $*_{o}$ is the classical convolution product given by (2.29).
Proof. From Definition 2.12, we have

$$
\begin{align*}
& \forall z \in \mathbb{C}, \quad\left({ }^{t} \chi_{\alpha}\right)^{-1}(T) * \chi_{\alpha}(f)(z) \\
& \quad=\left\langle\left({ }^{t} \chi_{\alpha}\right)^{-1}(T)_{\xi}, \boldsymbol{T}_{z}\left(\chi_{\alpha}(f)\right)(\xi)\right\rangle=\left\langle T_{\xi}, \chi_{\alpha, \xi}^{-1} \tau_{z}\left(\chi_{\alpha}(f)\right)(\xi)\right\rangle . \tag{2.48}
\end{align*}
$$

But from Definition 2.10, we obtain

$$
\begin{equation*}
\forall \xi \in \mathbb{C}, \quad \chi_{\alpha, \xi}^{-1} \boldsymbol{T}_{z}\left(\chi_{\alpha}(f)\right)(\xi)=\chi_{\alpha, z}(f)(\xi-z) \tag{2.49}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \left({ }^{t} \chi_{\alpha}\right)^{-1}(T) * \chi_{\alpha}(f)(z) \tag{2.50}\\
& \quad=\left\langle T_{\xi}, \chi_{\alpha, z}(f)(\xi-z)\right\rangle=\chi_{\alpha, z}\left(\left\langle T_{\xi}, f(\xi-z)\right\rangle\right)=\chi_{\alpha}\left(T *_{o} f\right)(z),
\end{align*}
$$

which proves the first relation.
For the second relation, we have

$$
\begin{align*}
\forall z \in \mathbb{C}, \quad{ }^{t} \chi_{\alpha}(T) & *_{o}\left({ }^{t} \chi_{\alpha}\right)^{-1}(f)(z) \\
& =\left\langle{ }^{t} \chi_{\alpha}(T)_{\xi}, \chi_{\alpha}^{-1}(f)(\xi-z)\right\rangle=\left\langle T_{\xi}, \chi_{\alpha, \xi} \mathcal{X}_{\alpha}^{-1}(f)(\xi-z)\right\rangle . \tag{2.51}
\end{align*}
$$

But

$$
\begin{equation*}
\forall z, \xi \in \mathbb{C}, \quad \chi_{\alpha, \xi} \chi_{\alpha}^{-1}(f)(\xi-z)=\chi_{\alpha, z}^{-1}\left(\tau_{z} f\right)(\xi) . \tag{2.52}
\end{equation*}
$$

So

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad{ }^{t} \chi_{\alpha}(T) *\left(\chi_{\alpha}\right)^{-1}(f)(z)=\chi_{\alpha, z}^{-1}\left\langle T_{\xi}, \tau_{z} f(\xi)\right\rangle=\chi_{\alpha}^{-1}(T * f)(z), \tag{2.53}
\end{equation*}
$$

which finishes the proof.
Now we are in position to derive the main result of this section.

Notations.

(i) We denote $D=d / d z$.
(ii) We denote by $\mathscr{G}_{D^{2}}$, the group of isomorphisms Y from \mathscr{H} into itself such that

$$
\begin{equation*}
Y D^{2}=D^{2} Y . \tag{2.54}
\end{equation*}
$$

Theorem 2.14. Every transmutation operator W of ℓ_{α} into D^{2} from \mathscr{H} into itself is of the form

$$
\begin{equation*}
W f(z)=\left({ }^{t} \chi_{\alpha}\right)^{-1} T_{0} * \chi_{\alpha}(f)(z)+\left({ }^{t} \chi_{\alpha}\right)^{-1} T_{1} * \chi_{\alpha}(f)(-z) \quad \forall z \in \mathbb{C} \tag{2.55}
\end{equation*}
$$

where $T_{0}, T_{1} \in \mathscr{H}^{\prime}$.
Proof. It is clear that every transmutation operator W of ℓ_{α} into D^{2} from \mathscr{H} into itself is of the form $W=\chi_{\alpha} Y$, where $Y \in \mathscr{C}_{D^{2}}$. Then according to [3], every element Y of $\mathscr{G}_{D^{2}}$ has the form

$$
\begin{equation*}
Y f(z)=T_{0} *_{o} f(z)+T_{1} *_{o} f(-z) \tag{2.56}
\end{equation*}
$$

where $T_{0}, T_{1} \in \mathscr{H}^{\prime}$. Thus, we can write

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad W f(z)=\chi_{\alpha}\left(T_{0} *_{o} f\right)(z)+\chi_{\alpha}\left(T_{1} *_{o} f\right)(-z) \tag{2.57}
\end{equation*}
$$

Hence the result follows from Proposition 2.13.
3. Mean-periodic functions and commutators of ℓ_{α}

3.1. Mean-periodic functions

DEFINITION 3.1. A function f in \mathscr{H} is said to be mean periodic if the closed subspace $\Omega(f)$ generated by $\tau_{z} f, z \in \mathbb{C}$, satisfies

$$
\begin{equation*}
\Omega(f) \neq \mathscr{H} . \tag{3.1}
\end{equation*}
$$

From Hahn-Banach theorem, this definition is equivalent to the following.
Definition 3.2. A function f in \mathscr{H} is said to be mean periodic if there exists $T \in$ $\mathscr{H}^{\prime} \backslash\{0\}$ such that

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad T * f(z)=0 \tag{3.2}
\end{equation*}
$$

Definition 3.3. Let $\lambda \in \mathbb{C}$ and $\ell \in \mathbb{N}$. The function $S_{\alpha, \ell}(\lambda, \cdot)$ is defined by

$$
\begin{equation*}
S_{\alpha, \ell}(\lambda, z)=\left.\frac{d^{\ell}}{d \mu^{\ell}} S_{\alpha}(\mu z)\right|_{\mu=-i \lambda} \quad \forall z \in \mathbb{C} \tag{3.3}
\end{equation*}
$$

Lemma 3.4. Let $\lambda \in \mathbb{C}$ and $\ell \in \mathbb{N}$. Then the function $S_{\alpha, \ell}(\lambda, \cdot)$ is mean periodic and

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad S_{\alpha, \ell}(\lambda, z)=\chi_{\alpha}\left(\xi^{\ell} \exp (-i \lambda \xi)\right)(z) . \tag{3.4}
\end{equation*}
$$

Proof. Let $\lambda \in \mathbb{C}$ and $\ell \in \mathbb{N}$. According to Proposition 2.8, there exists $T \in \mathscr{H}^{\prime} \backslash\{0\}$ such that

$$
\begin{equation*}
\forall j=0, \ldots, \ell,\left.\quad \frac{d^{j}}{d \mu^{j}}\left(\mathscr{F}_{\alpha}(T)\right)(\mu)\right|_{\mu=\lambda}=0 . \tag{3.5}
\end{equation*}
$$

Then from the properties of the Bessel-Struve translation for every $z \in \mathbb{C}$, we can write

$$
\begin{align*}
\left(T * S_{\alpha, \ell}(\lambda \cdot)\right)(z) & =\left\langle T(w),\left.\frac{d^{\ell}}{d \mu^{\ell}}\left(\tau_{w}\left(S_{\alpha}(\mu \cdot)\right)(z)\right)\right|_{\mu=-i \lambda}\right\rangle \\
& =\left\langle T(w),\left.\frac{d^{\ell}}{d \mu^{\ell}}\left(S_{\alpha}(\mu z) S_{\alpha}(\mu w)\right)\right|_{\mu=-i \lambda}\right\rangle \tag{3.6}\\
& =\left.\left.\sum_{j=0}^{\ell}\binom{\ell}{j} \frac{d^{\ell-j}}{d \mu^{\ell-j}}\left(S_{\alpha}(\mu z)\right)\right|_{\mu=-i \lambda} \frac{d^{j}}{d \mu^{j}} \mathscr{F}_{\alpha}(T)(\mu)\right|_{\mu=\lambda} \\
& =0 .
\end{align*}
$$

Thus we prove that $S_{\alpha, \ell}(\lambda, \cdot)$ is a mean-periodic function. The result follows from (1.3) and (2.10).

Let $f \in \mathscr{H}$. The following proposition characterizes the functions which belong to $\Omega(f)$.

Proposition 3.5. Let $f \in \mathscr{H}, \ell \in \mathbb{N}$, and $\lambda \in \mathbb{C}$. The function $S_{\alpha, j}(\lambda, \cdot), 0 \leq j \leq \ell$, belongs to $\Omega(f)$ if and only if for all T in \mathscr{H}^{\prime} satisfying

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad T * f(z)=0 \tag{3.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.\frac{d^{j}}{d \mu^{j}}\left(\mathscr{F}_{\alpha}(T)\right)(\mu)\right|_{\mu=\lambda}=0, \quad 0 \leq j \leq \ell \tag{3.8}
\end{equation*}
$$

Proof. If $S_{\alpha, j}(\lambda, \cdot), 0 \leq j \leq \ell$, belongs to $\Omega(f)$, then for all $T \in \mathscr{H}^{\prime}$ satisfying (3.7) we have

$$
\begin{equation*}
\left\langle T, S_{\alpha, j}(\lambda, \cdot)\right\rangle=0 \tag{3.9}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\langle T, S_{\alpha, j}(\lambda, \cdot)\right\rangle & =\frac{d^{j}}{d \mu^{j}}\left\langle T,\left.S_{\alpha}(\mu \cdot)\right|_{\mu=-i \lambda}\right\rangle \tag{3.10}\\
& =\left.\frac{d^{j}}{d \mu^{j}} \mathscr{F}_{\alpha}(T)(\mu)\right|_{\mu=\lambda}=0 .
\end{align*}
$$

The converse follows from the Hahn-Banach theorem.
Definition 3.6. Let $f \in \mathscr{H}$ be a mean-periodic function. The spectrum $\operatorname{Sp}(f)$ of f is the set

$$
\begin{equation*}
\operatorname{Sp}(f)=\left\{(\lambda, \ell), \lambda \in \mathbb{C}, \ell \in \mathbb{N}, S_{\alpha, j}(\lambda \cdot) \in \Omega(f), 0 \leq j \leq \ell\right\} . \tag{3.11}
\end{equation*}
$$

Remarks 3.7. (i) From Proposition 3.5, we have

$$
\begin{equation*}
\operatorname{Sp}(f)=\left\{(\lambda, \ell), \lambda \in \mathbb{C}, \ell \in \mathbb{N},\left.\frac{d^{j}}{d \mu^{j}} \mathscr{F}_{\alpha}(T)(\mu)\right|_{\mu=\lambda}=0, j=0,1, \ldots, \ell, T \in(\Omega(f))^{\perp}\right\} . \tag{3.12}
\end{equation*}
$$

(ii) If $\operatorname{Sp}(f) \neq \varnothing$, we say that $\Omega(f)$ admits a spectral analysis associated with ℓ_{α}.

Proposition 3.8. Let $f \in \mathscr{H}$. Denote by $\$(f)$ the closed subspace of \mathscr{H} generated by $\left\{D^{k} \ell_{\alpha}^{n} f\right\}_{n \in \mathbb{N} ; k=0,1}$. Then $\Omega(f)=\$(f)$.
Proof. According to Corollary 2.11, we have, for every $g \in \mathscr{H}$,

$$
\begin{gather*}
D g=\lim _{w \rightarrow 0} \frac{1}{w}\left[\tau_{w} g-g\right], \tag{3.13}\\
\ell_{\alpha} g=\lim _{w \rightarrow 0} \frac{c_{2}(\alpha)}{w^{2}}\left[\tau_{w} g-g-w D g\right], \tag{3.14}\\
D \ell_{\alpha} g=\lim _{w \rightarrow 0} \frac{c_{3}(\alpha)}{c_{1}(\alpha) w^{2}}\left[\tau_{w} g-g-w g-\frac{w^{2}}{c_{2}(\alpha)} \ell_{\alpha} g\right] \tag{3.15}
\end{gather*}
$$

in the sense of the convergence in \mathscr{H}.

Suppose that $g \in \Omega(f)$. Then, for every $w \in \mathbb{C}, \tau_{w} g \in \Omega(f)$. Hence we conclude that for $k=0,1, D^{k} \ell_{\alpha} g \in \Omega(f)$. By induction, we can prove that, for every $n \in \mathbb{N}$ and $k=0,1, D^{k} \ell_{\alpha}^{n} g \in \Omega(f)$. In particular, for every $n \in \mathbb{N}$ and $k=0,1, D^{k} \ell_{\alpha}^{n} f \in \Omega(f)$. Thus we conclude that $\$(f) \subset \Omega(f)$.

Let now $g \in \$(f)$. Using once more Corollary 2.11, we prove that, for every $w \in \mathbb{C}$, $\tau_{w} g \in \$(f)$. In particular, for every $w \in \mathbb{C}, \tau_{w} f \in \(f). Hence, $\Omega(f)=\$(f)$.

Corollary 3.9. Let $f \in \mathscr{H}$. Then f is a mean periodic if and only if $\$(f) \neq \mathscr{H}$.
Corollary 3.10. Let $f \in \mathscr{H}$. Then f is a mean-periodic function if and only if $\chi_{\alpha}^{-1}(f)$ is a classical mean-periodic function.

THEOREM 3.11. Let $f \in \mathscr{H}$. Then f is a mean-periodic function if and only if f is a limit of finite linear combination of the functions $S_{\alpha, j}(\lambda, \cdot), 0 \leq j \leq \ell$, such that $(\lambda, \ell) \in \operatorname{Sp}(f)$.

Proof. To see this property, we can use Lemma 3.4 and a celebrated result about classical mean-periodic functions established in [11, page 926].

Corollary 3.12. Every mean-periodic function such that $\operatorname{Sp}(f)=\varnothing$ is zero.

3.2. The commutator of ℓ_{α}

Notations.

(i) We denote by \mathscr{G}_{α}, the group of isomorphisms Y of \mathscr{H} into itself such that

$$
\begin{equation*}
Y \ell_{\alpha}=\ell_{\alpha} Y \tag{3.16}
\end{equation*}
$$

(ii) We denote by $\vartheta_{\alpha}(f)$ (resp., $\mathscr{V}_{D^{2}}(f)$), the closed subspaces of \mathscr{H} generated by $Y f$, $Y \in \mathscr{G}_{\alpha},\left(\right.$ resp., $\left.\mathscr{G}_{D^{2}}\right)$.

Proposition 3.13. (i) The group φ_{α} is isomorphic to $\varphi_{D^{2}}$.
(ii)

$$
\begin{equation*}
\forall f \in \mathscr{H}, \quad \vartheta_{\alpha}(f)=\chi_{\alpha} \vartheta_{D^{2}}\left(\chi_{\alpha}^{-1}(f)\right) . \tag{3.17}
\end{equation*}
$$

Proposition 3.14. The set of functions f in \mathscr{H} satisfying

$$
\begin{equation*}
\vartheta_{\alpha}(f) \neq \mathscr{H} \tag{3.18}
\end{equation*}
$$

with the set of mean-periodic functions is identified.
Proof. From Proposition 3.13, $f \in \mathscr{H}$ satisfies (3.18) if and only if $\chi_{\alpha}^{-1}(f)$ satisfies

$$
\begin{equation*}
\vartheta_{D^{2}} \chi_{\alpha}^{-1}(f) \neq \mathscr{H} . \tag{3.19}
\end{equation*}
$$

But these functions are classical mean-periodic functions. The result follows from Proposition 3.13.

Now we are able to state the main result of this paper.

THEOREM 3.15. Let L be a continuous linear mapping from \mathcal{H} into itself. The following statements are equivalent.
(i) L commutes with Bessel-Struve translation operators $\boldsymbol{T}_{z}, z \in \mathbb{C}$, on \mathscr{H}, that is, $\boldsymbol{\tau}_{z} L=$ $L \tau_{z}, z \in \mathbb{C}$, on \mathcal{H}.
(ii) L commutes with the Bessel-Struve operator ℓ_{α} on \mathscr{H}, that is, $\ell_{\alpha} L=L \ell_{\alpha}$ on \mathcal{H}.
(iii) There exists a unique element T in \mathscr{H}^{\prime} such that $L f=T * f, f \in \mathscr{H}$.
(iv) There exists a complex Borel regular measure γ having compact support on \mathbb{C}, for which for all $f \in \mathscr{H}$,

$$
\begin{equation*}
L(f)(z)=\int_{\mathbb{C}}\left(\tau_{z} f\right)(w) d y(w) \quad \forall z \in \mathbb{C} \tag{3.20}
\end{equation*}
$$

(v) There exists $\Psi, \Phi \in \operatorname{Exp}(\mathbb{C})$ such that for all $f \in \mathscr{H}, L f=\Psi\left(\ell_{\alpha}\right) f+D \Phi\left(\ell_{\alpha}\right) f$, where $\Psi\left(\ell_{\alpha}\right) f$ and $D \Phi\left(\ell_{\alpha}\right) f$ are given by

$$
\begin{align*}
& {\left[\Psi\left(\ell_{\alpha}\right) f\right](z)=\sum_{n=0}^{+\infty} a_{2 n} \ell_{\alpha}^{n} f(z), \quad \forall z \in \mathbb{C}} \\
& {\left[D \Phi\left(\ell_{\alpha}\right) f\right](z)=c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(z), \quad \forall z \in \mathbb{C},} \tag{3.21}
\end{align*}
$$

where $\Psi(z)=\sum_{n=0}^{+\infty} a_{2 n} z^{n}$ and $\Phi(z)=c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} z^{n}$.
Proof. (i) \Rightarrow (ii). From (3.13) and (3.14), we have

$$
\begin{gather*}
D(L g)=\lim _{w \rightarrow 0} \frac{1}{w}\left[\tau_{w} L g-L g-w D L g\right]=L\left(\lim _{w \rightarrow 0} \frac{1}{w}\left[\tau_{w} g-g\right]\right)=L(D g), \\
\ell_{\alpha}(L g)=\lim _{w \rightarrow 0} \frac{c_{2}(\alpha)}{w^{2}}\left[\tau_{w} L g-g-w D L g\right]=L\left(\lim _{w \rightarrow 0} \frac{c_{2}(\alpha)}{w^{2}}\left[\tau_{w} g-g-w D g\right]\right)=L\left(\ell_{\alpha} g\right) . \tag{3.22}
\end{gather*}
$$

Hence (i) implies (ii).
(ii) \Rightarrow (i). We decide the results from Corollary 2.11.
(i) \Rightarrow (iii). Assume that (i) holds. We define the functional T on \mathscr{H} as follows:

$$
\begin{equation*}
\langle T, f\rangle=L(f)(0), \quad f \in \mathscr{H} \tag{3.23}
\end{equation*}
$$

It is clear that T is in \mathscr{H}^{\prime} and $L f=T * f, f \in \mathscr{H}$.
(iii) \Rightarrow (iv). It follows immediately from Hahn-Banach and Riesz representation theorems.
(iv) \Rightarrow (v). Suppose that for all $f \in \mathscr{H}$, we have

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad L(f)(z)=\int_{\mathbb{C}}\left(\tau_{z} f\right)(w) d y(w) \tag{3.24}
\end{equation*}
$$

where γ is a complex Borel regular measure with compact support.
According to Corollary 2.11, we obtain for all $z \in \mathbb{C}$,

$$
\begin{equation*}
L(f)(z)=\sum_{n=0}^{+\infty} \ell_{\alpha}^{n} f(z) \int_{\mathbb{C}} \frac{w^{2 n}}{c_{2 n}(\alpha)} d \gamma(w)+c_{1}(\alpha) \sum_{n=0}^{+\infty} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(z) \int_{\mathbb{C}} \frac{w^{2 n+1}}{c_{2 n+1}(\alpha)} d \gamma(w) \tag{3.25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
L f=\Psi\left(\ell_{\alpha}\right) f+D \Phi\left(\ell_{\alpha}\right) f, \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(z)=\sum_{n=0}^{+\infty} a_{2 n} z^{n}, \quad \Phi(z)=c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} z^{n} \tag{3.27}
\end{equation*}
$$

with, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
a_{n}=\int_{\mathbb{C}} \frac{w^{n}}{c_{n}(\alpha)} d \gamma(w) \tag{3.28}
\end{equation*}
$$

Since γ has compact support on \mathbb{C}, for certain a and C, we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left|a_{n}\right| \leq C \frac{a^{n}}{c_{n}(\alpha)} \tag{3.29}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad|\Psi(z)| \leq C \sum_{n=0}^{+\infty} \frac{(|z| a)^{n}}{c_{n}(\alpha)}=C S_{\alpha}(|z| a) \leq C e^{|z| a} . \tag{3.30}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad|\Phi(z)| \leq c_{1}(\alpha) C e^{|z| a} \tag{3.31}
\end{equation*}
$$

Thus we have proved that (v) is true.
(v) \Rightarrow (i). Suppose now that, for every $f \in \mathscr{H}$ and $z \in \mathbb{C}$,

$$
\begin{equation*}
(L f)(z)=\sum_{n=0}^{+\infty} a_{2 n}\left(\ell_{\alpha}^{n} f\right)(z)+c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} \frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}(z), \tag{3.32}
\end{equation*}
$$

for a certain $a_{k} \in \mathbb{C}, k \in \mathbb{N}$, where the series converges in \mathscr{H}.

Hence, if $f \in \mathscr{H}$, since $\tau_{z} \ell_{\alpha} f=\ell_{\alpha} \tau_{z} f, z \in \mathbb{C}$, using (2.38) and the fact that τ_{z} is a continuous linear mapping from \mathscr{H} into itself, we obtain for every $z, w \in \mathbb{C}$,

$$
\begin{align*}
\tau_{w}(L f)(z) & =\sum_{n=0}^{+\infty} a_{2 n} \boldsymbol{\tau}_{w}\left(\ell_{\alpha}^{n} f\right)(z)+c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} \boldsymbol{\tau}_{w}\left(\frac{d\left(\ell_{\alpha}^{n} f\right)}{d z}\right)(z) \\
& =\sum_{n=0}^{+\infty} a_{2 n} \ell_{\alpha}^{n}\left(\tau_{w} f\right)(z)+c_{1}(\alpha) \sum_{n=0}^{+\infty} a_{2 n+1} \frac{d\left(\ell_{\alpha}^{n}\left(\tau_{w} f\right)\right)}{d z}(z) \tag{3.33}\\
& =L\left(\tau_{w} f\right)(z)
\end{align*}
$$

Hence (v) implies (i).

References

[1] N. Ben Salem and S. Kallel, Mean-periodic functions associated with the Dunkl operators, Integral Transforms Spec. Funct. 15 (2004), no. 2, 155-179.
[2] J. Delsarte, Sur certaines transformations fonctionelles relative aux equations lineaires aux derives partielles du second ordre, C. R. Acad. Sci. Paris 206 (1938), 178-182 (French).
[3] J. Delsarte and J. L. Lions, Transmutations d'opérateurs différentiels dans le domaine complexe, Comment. Math. Helv. 32 (1957), no. 2, 113-128 (French).
[4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vols. I, II, McGraw-Hill Book Company, New York, 1953.
[5] A. Jouini, Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual, Int. J. Math. Math. Sci. 2004 (2004), no. 5-8, 285-293.
[6] A. Jouini and K. Trimèche, Generalized wavelet packets and application to the inversion of the J. L. Lions transmutation operator, Fract. Calc. Appl. Anal. 5 (2002), no. 1, 1-26.
[7] B. M. Levitan, Generalized Translation Operators and Some of Their Applications, Israel Program for Scientific Translations, Jerusalem, 1964.
[8] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), no. 4, 857-929 (French).
[9] F. Trèves, Linear Partial Differential Equations with Constant Coefficients: Existence, Approximation and Regularity of Solutions, Mathematics and Its Applications, vol. 6, Gordon and Breach Science Publishers, New York, 1966.
[10] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0, \infty)$ [Weyl integral transform and Paley-Wiener theorem associated with a singular differential operator on $(0, \infty)]$, J. Math. Pures Appl. (9) 60 (1981), no. 1, 51-98 (French).
[11] ___, Fonctions moyenne-périodiques associées à un opérateur différentiel dans le domaine complexe [Mean-periodic functions associated with a differential operator in the complex plane], Mathematical Analysis and Its Applications (Kuwait, 1985), KFAS Proc. Ser., vol. 3, Pergamon, Oxford, 1988, pp. 385-402 (French).
[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.
A. Gasmi: Department of Mathematics, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia

E-mail address: Abdessalem.Gasmi@fst.rnu.tn
M. Sifi: Department of Mathematics, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia

E-mail address: mohamed.sifi@fst.rnu.tn

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

