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ON f-DERIVATIONS OF BCI-ALGEBRAS

JIANMING ZHAN AND YONG LIN LIU

Received 14 December 2004 and in revised form 16 May 2005

The notion of left-right (resp., right-left) f-derivation of a BClI-algebra is introduced,
and some related properties are investigated. Using the idea of regular f-derivation, we
give characterizations of a p-semisimple BCI-algerba.

1. Introduction and preliminaries

In the theory of rings and near-rings, the properties of derivations are an important topic
to study, see [2, 3, 7, 10]. In [6], Jun and Xin applied the notions in rings and near-
rings theory to BCl-algebras, and obtained some related properties. In this paper, the
notion of left-right (resp., right-left) f-derivation of a BCI-algebra is introduced, and
some related properties are investigated. Using the idea of regular f-derivation, we give
characterizations of a p-semisimple BCI-algebra.

By a BCI-algebra we mean an algebra (X;*,0) of type (2,0) satisfying the following
conditions:

(D ((x*ky)* (x*2))* (z*y)=0s
(II) (x* (x % y)) *x y =0;
(III) x * x = 0;
(IV) x * y =0and y * x = 0 imply that x = y;
forall x,y,z € X.

In any BCI-algebra X, one can define a partial order “<” by putting x < y if and only
ifx*xy=0.

A subset S of a BCI-algebra X is called subalgebra of X if x x y € Sforall x,y € S. A
subset I of a BCI-algebra X is called an ideal of X if it satisfies (i) 0 € I; (ii) x % y € I and
yelimplythatx el forallx,y € X.

A mapping f of a BCl-algebra X into itself is called an endomorphism of X if f(x *
y) = f(x) * f(y) for all x,y € X. Note that f(0) = 0. Especially, f is monic if for any
xy €X, f(x) = f(y) implies that x = y.

A BCl-algebra X has the following properties:

(1) xx0=x;
(2) (xxy)kz=(x*xz2)%y;
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(3) x < yimpliesthat x k z < ykzand z * y < z % x;
(4) x* (xk (xky) =x%y;
(5) (xxz)* (y*z)<x*y;
(6) 0 (x* y) = (03 x)* (0% y);
(7) x % 0 = 0 implies that x = 0.
For a BCI-algebra X, denote by X, (resp., G(X)) the BCK-part (resp., the BCI-G part)
of X, thatis, X, ={x € X | 0 < x} (resp., G(X) = {x € X | 0% x=x}). Note that G(X) N
X =1{0}. If X, = {0}, then X is called a p-semisimple BCI-algebra.
In a p-semisimple BCI-algebra X, the following hold:
(8) (x % 2) % (y % 2) = x % 5
(9) 0% (0 x) = x;

(10) x * (0% y) = y * (0 % x);

(11) x * y = 0 implies that x = y;
(12) x * a = x * b implies that a = b;
(13) a * x = b * x implies that a = b;

(14) ax (a* x) = x.

Let X be a p-semisimple BCI-algebra. We define addition “+” as x + y = x * (0 * y)
for all x,y € X. Then (X, +) is an abelian group with identity 0 and x — y = x * y. Con-
versely, let (X,+) be an abelian group with identity 0 and let x x y = x — y. Then X is a
p-semisimple BCI-algebra and x + y = x % (0 % y) for all x, y € X (see [5]).

For a BCI-algebra X, we denote x A y = y % (y * x), in particular, 0 * (0 * x) = a,, and
Ly(X)={a€ X |x*xa=0=x=aforanyx € X}. We call the elements of L,(X) the p-
atoms of X. Foranya € X,let V(a) = {x € X | a * x = 0}, which is called the branch of X
with respect to a. It follows that x x y € V(a * b) whenever x € V(a) and y € V(b) for all
x,y € Xand a,b € L,(X). Note that L,(X) = {x € X | a, = x}, which is the p-semisimple
part of X, and X is a p-semisimple BCl-algebra if and only if L,(X) = X (see [6]). Note
also that a, € L,(X), that is, 0 * (0 * ay) = a,, which implies that a, * y € L,(X) for all
y € X. Itis clear that G(X) € L,(X), x * (x *a) =a,and a * x € L,(X) forall a € L,(X)
and x € X. For more detalils, refer to [1, 8, 11].

Definition 1.1 [9]. A BCI-algebra X is said to be commutative if x = x A y whenever x < y
forallx,y € X.

Definition 1.2 [4]. A BCl-algebra X is said to be branchwise commutativeif x A y = y A x
forallx,y € V(a) and alla € L,(X).

LemMa 1.3 [6]. A BCI-algebra X is commutative if and only if it is branchwise commutative.

Definition 1.4 [6]. Let X be a BCl-algebra. By a left-right derivation (briefly, (I,r)-
derivation) of X, a self-map d of X satisfying the identity d(x x y) = (d(x) * y) A (x *
d(y)) forall x, y € X is meant. If d satisfies the identity d(x * y) = (x x d(y)) A (d(x) * y)
for all x, y € X, then it is said that d is a right-left derivation (briefly, (r,1)-derivation) of
X. Moreover, if d is both an (r,])- and an (I,7)-derivation, it is said that d is a derivation.

2. f-derivations

In what follows, let f be an endomorphism of X unless otherwise specified.
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Definition 2.1. Let X be a BCl-algebra. By a left-right f-derivation (briefly, (I,r)-f-
derivation) of X, a self-map dy of X satisfying the identity dy(x * y) = (df(x) * f(y)) A
(f(x) *xds(y)) forall x, y € X is meant, where f is an endomorphism of X. If ds satisfies
the identity dy(x * y) = (f(x) * ds(y)) A (df(x) * f(y)) for all x,y € X, then it is said
that dy is a right-left f -derivation (briefly, (r,1)- f -derivation) of X. Moreover, if dy is both
an (r,1)- and an (I, r)- f-derivation, it is said that dy is an f-derivation.

Example 2.2. Let X = {0,1,2,3,4,5} be a BClI-algebra with the following Cayley table:

*10 1 2 3 4 5
0j0 0 2 2 2 2
11 0 2 2 2 2
212 2 0 0 0 O
313 21 0 0 0
414 2 1 1 0 1
5/52 1110
Define amap dy : X — X by
dr(x) 2 ifx=0,1, (2.1)
x) = .
/ 0 otherwise,
and define an endomorphism f of X by
0 ifx=0,1,
) = 2.2
) ({2 otherwise. 22)

Then it is easily checked that dy is both derivation and f-derivation of X.

Example 2.3. Let X be a BCI-algebra as in Example 2.2. Define a map dy : X — X by

4y() = {2 ifx = 0,1, 23

0 otherwise.

Then it is easily checked that d is a derivation of X.
Define an endomorphism f of X by

fx)=0, VxeX (2.4)
Then d; is not an f-derivation of X since
d(2%3) =d(0) =2, (2.5)
but
(dr(2) % f(3)) A (f(2) % ds(3)) = (0%0) A (0% 0)=0A0=0, (2.6)
and thus d;(2 % 3) # (d;(2) % £(3)) A (f(2) % df(3)).
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Remark 2.4. From Example 2.3, we know that there is a derivation of X which is not an
f-derivation of X.

Example 2.5. Let X = {0,1,2,3,4,5} be a BCI-algebra with the following Cayley table:

10 1 2 3 4 5

0410 0 3 2 3 2

111 0 5 4 3 2

212 2 0 3 0 3

313 3.2 0 2 0

414 2 1 5 0 3

5153 41 2 0

Define amap dy : X — X by

0 ifx=0,1,

de(x) =42 ifx=2,4, (2.7)
3 ifx=3,5,

and define an endomorphism f of X by

0 ifx=0,1,

fx)=42 ifx=2,4, (2.8)
3 ifx=3,5.

Then it is easily checked that d is both derivation and f-derivation of X.
Example 2.6. Let X be a BCI-algebra as in Example 2.5. Define a map dy: X — X by

0 ifx=0,1,
dp(x) =42 ifx=2,4, (2.9)
3 ifx=3,5.

Then it is easily checked that dy is a derivation of X.
Define an endomorphism f of X by

fO) =0, f()=1, f(2)=3, fB)=2, f(4)=5 [f(5)=4 (2.10)
Then d; is not an f-derivation of X since
dr(2%3)=ds(3) =3, (2.11)
but
(dr(2) % f3)) A(f(2)%xdf(3)) =(2%x2)A(3%3)=0A0=0, (2.12)

and thus d¢(2 % 3) # (df(2) * f(3)) A (f(2) x df(3)).
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Example 2.7. Let X be a BCI-algebra as in Example 2.5. Define a map dy : X — X by
dp(0)=0, df(1)=1, ds(2)=3, df(3)=2, ds(4)=5 ds(5) =4  (213)
Then dy is not a derivation of X since
dr(2%x3)=ds(3) =2, (2.14)
but
(dr(2) % 3) A (2% df(3)) = (3%3) A(2%2) =0A0=0, (2.15)

and thus dy(2 % 3) # (ds(2) * 3) A (2 % df(3)).
Define an endomorphism f of X by

fO)=0, fM=1, f2)=3 fB)=2, f(4)=5 [f05)=4 (2.16)
Then it is easily checked that dy is an f-derivation of X.

Remark 2.8. From Example 2.7, we know that there is an f-derivation of X which is not
a derivation of X.

For convenience, we denote f, = 0 * (0 % f(x)) for all x € X. Note that f, € L,(X).

THEOREM 2.9. Let dy be a self-map of a BCI-algebra X defined by ds(x) = f, forall x € X.
Then dy is an (L,r)- f-derivation of X. Moreover, if X is commutative, then dy is an (r,1)-
f-derivation of X.

Proof. Letx,y € X.

Since
0% (0 (fek f())) = 0% (0% ((0% (0% f(x))) * f(y)))
=0 (0 ((0% f(y) * (0% f(x))))
=0 (0 (0% f(y*xx))) =0 f(y*x) (2.17)
=0 (f(y) % f(x)) = (0% f(y)) * (0% f(x))

= (0% (0% f(x)) x f(y) = fu x f(p),
we have f, x f(y) € Lp(X), and thus

Fex f() = (fG) * f,) % ((f(x) * f,) * (fe x f())). (2.18)
It follows that
d(x* y) = frsy = 0% (0% f(x* y)) = 0% (0% (f(x) x f(»)))
= (0% (0% f(x))) * (0% (0% f(y))) = fi % f,
= (0% (0 fx)) * (0% (0% f(y))) =0 (0 (fux f(1))) (2.19)
= fix f(y) = (f(x) * f,) % ((f(0) % £,) % (fe x £(»)))
= (fix fO) A(f(x)* f,) = (dr(x) % f(9) A (f(x) % df(p)),
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and so dy is an (I,r)-f-derivation of X. Now, assume that X is commutative. Using

Lemma 1.3, it is sufficient to show that dy(x) * f(y) and f(x) * ds(y) belong to the
same branch for all x, y € X, we have

dp(x) % f(y) = fix f(y) =0 (0% (fe x f(y)))

= (0% (0 £x)) * (0 (0 f(»))) (2.20)
= fix fy € VI(fx fy)
andso f, * f,=(0% (0% f(x))) * (0% (0% £,)) =0% (0% (f(x) * f,)) =0% (0% (f(x)*

dr(y))) < f(x)*ds(y), Wthh 1mphes that f(x) * ds(y) € V(f. x f,). Hence, df(x) *
f(y)and f(x) * ds(y) belong to the same branch, and so

dp(xk y) = (ds(x) * f(y)) A (f(x) % df(p))

2.21
_ () % dr() A [drx) 5 FO)). (221

This completes the proof. O

ProposITION 2.10. Let dy be a self-map of a BCI-algebra X. Then the following hold.
(i) If dy is an (I,r)- f -derivation of X, then ds(x) = ds(x) A f(x) forall x € X.
(ii) If dy is an (r,1)- f -derivation of X, then dy(x) = f(x) A df(x) for all x € X if and
only if ds(0) =

Proof. (i) Let dy be an (,r)- f-derivation of X. Then,

dp(x) =ds(x*0) = (ds(x) * £(0)) A (f(x) * df(0))
= (dr(x) % 0) A (f(x) % df(0)) = ds(x) A (f(x) * df(0))
= (f(x) *xds(0)) * ((f(x)*ds(0)) * dy(x)) (2.22)
= (f(x) % ds(0)) * ((f(x) * dy(x)) * dy(0))
< flx)* (f(x) xds(x)) =dp(x) A f(x).

Butds(x) A f(x) < df x) is trivial and so (i) holds.
(ii) Let df be an (r,I)- f-derivation of X. If df(x) = f(x) A df(x) for all x € X, then
forx =0,ds(0) = f(0) Adf(0) =0Ads(0) =ds(0) x (df(O) *0) =
Conversely, if d(0) = 0, then dy(x) = df(x * 0) = (f(x) * ds(0)) /\(df ) * f(0)) =
(f(x) % 0) A(df(x) *0) = f(x) Ads(x), ending the proof.

I:l

ProrosiTION 2.11. Let dy be an (,r)- f-derivation of a BCI-algebra X. Then,
(1) df(O) € LP(X), that is, df(O) = 0 * (0% ds(0));

(i) dy(a) = * (0% f(a) 0)+ f(a) foralla € Ly(X);

(iii) df(a) € LP X) foralla e LP(X)

(iv) df(a+b) =ds(a)+ds(b) —ds(0) for all a,b € L,(X).
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Proof. (i) The proof follows from Proposition 2.10(i).

(ii) Let a € L,(X), then a = 0 % (0 * a), and so f(a) = 0 * (0 x f(a)), thatis, f(a) €
L,(X). Hence

dr(a)=ds (0% (0*a))

= (ds(0)* f(0xa)) A (f(0)*ds(0xa))
= (ds(0) * f(0xa)) A (0*xdf(0*a))
=(0xdp(0xa)) * ((0%ds(0%a))* (dr(0)* f(0*a)))
— (0% ds (0% a)) % (0% (dy(0) % F(0%a))) % ds (0% a) (223)
=05 (0% (dr(0) * (f(0) * f(a))))
= 0% (0% (df(0) * (O*f(a))))
=dg(0) * (0 f(a)) = ds(0)+ f(a)
(iii) The proof follows directly from (ii).
(iv) Let a,b € L,(X). Note that a+ b € L,(X), so from (ii), we note that
df(a+b) = ds(0)+ f(a+b)
= dp(0)+ f(@) +dp(0)+ £(b) — dp(0) = dy(a) +ds(b) — dy(0). 2P
O

ProposITION 2.12. Let dy be a (r,1)- f-derivation of a BCI-algebra X. Then,
(i) df(a) € G(X) for all a € G(X);
(i) d ( ) € L,(X) foralla € G(X);
(iii) d = f(a) xds(0) = f(a)+ds(0) forall a € Ly(X);
(iv) df(a+ b) =ds(a) +ds(b) —ds(0) foralla,b € Ly(X).

Proof. (i) Foranya € G(X), wehaveds(a) = ds(0 % a) = (f(0) *ds(a)) A (df(0)* f(a))
= (ds(0) * f(a)) * ((df(0) * f(a)) x (0% df(a))) =0xds(a),and so df(a) € G(X).
(i) For any a € L,(X), we get

de(a) =ds(0% (0% a)) = (0xds(0xa)) A (df(0) * f(0*a))

= (df(0) * f(0Oxa)) * ((df(0) * f(Oxa)) * (0xdf(0*a))) (2.25)
=0*ds(0*a) € Ly(X).

(iii) For any a € L,(X), we get

dr(a) =ds(ax0) = (f(a) *ds(0)) A (ds(a) * £(0))
=dy(a) x (ds(a) * (f(a) * ds(0))) = f(a) * dy(0) (2.26)
= f(a) * (0% d(0)) = f(a) +ds(0).

(iv) The proof follows from (iii). This completes the proof. a
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Using Proposition 2.12, we know there is an (/,7)- f-derivation which is not an (r,[)-
f-derivation as shown in the following example.

Example 2.13. Let Z be the set of all integers and “—” the minus operation on Z. Then
(Z,-,0) is a BCI-algebra. Let dy : X — X be defined by ds(x) = f(x) — 1 for all x € Z.
Then,

(dr(x) = fO) A (f(x)=ds(p) = (fF() =1~ fF() A (f(x) = (f(»)—1))
=(flx=p) =D A(flx=y)+1)
=(flx=y)+1)-2=flx-y) -1
=ds(x—y).

(2.27)

Hence, dy is an (I,r)- f-derivation of X. But ds(0)= f(0)—1=~1+# 1= f(0)-ds(0) =
0—d;(0), thatis, df(0) ¢ G(X). Therefore, dy is not an (r,1)- f -derivation of X by Propo-
sition 2.12(i).

3. Regular f-derivations

Definition 3.1. An f-derivation ds of a BClI-algebra X is said to be regular if d;(0) =
Remark 3.2. 'We know that the f-derivations dy in Examples 2.5 and 2.7 are regular.

ProrosiTION 3.3. Let X be a commutative BCl-algebra and let dy be a regular (r,1)-f-
derivation of X. Then the following hold.

(i) Both f(x) and dy(x) belong to the same branch for all x € X.

(ii) dy is an (L,r)- f -derivation of X.

Proof. (i) Let x € X. Then,

0=ds(0)= df(ax * Xx)

= (f(ax) * df(x)) A (d(ax) * f(x))
= (d(ax) * f(x)) * ((d(a) * f(x)) * (f(ar) * dy(x))) (3.1)
= (d(ay) * f(x)) * ((d(ax) * f(x)) * (fe * d(x)))

= fe*ds(x) since f, * df(x) € Lp(X),

and so f, < ). This shows that df € V(fy). Clearly, f(x) € V(f).

(ii) By (1) we have fx) *xds(y) € V(fx * f,) and df(x * f(y) € V(fe *x fy). Thus
d(xxy) = (f(x) % de(y)) Adf(x) x f(y) = (df(x) * f(y) A (f(x) * df(y)), which
implies that dy is an (I,7)- f-derivation of X. |

Remark 3.4. The f-derivations dy in Examples 2.5 and 2.7 are regular f-derivations but
we know that the (I,)- f-derivation d s in Example 2.2 is not regular. In the following, we
give some properties of regular f-derivations.

Definition 3.5. Let X be a BCI-algebra. Then define kerd; = {x € X | df(x) = 0 for all
f-derivations dy}.
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PROPOSITION 3.6. Let dy be an f-derivation of a BCI-algebra X. Then the following hold:
(i) df(x ) flx foralleX
(i) df(x) * f(y) < f(x) x df(y) forall x,y € X;
(iii) df(x * y) =ds(x) * f(y) <ds(x) x ds(y) forall x,y € X;
(iv) kerdy is a subalgebra of X. Especially, if f is monic, then kerdy < X;.

Proof. (i) The proof follows by Proposition 2. 10(ii)
(i) Since dy(x) < f(x) forallx € X, thends(x) * f(y) < f(x) * f(y) < f(x) x ds(y).
(iii) For any x, y € X, we have

dp(xx y) = (f(x)*dr(y)) A (df(x) * f(y)
= (dr(x) % f(p) * ((df(x) * f() * (f(x) xdf(p))) (3.2)
= (df(x)* f(y)) 0= df )k f(y) <ds(x) xdf(y),

which proves (iii).

(iv) Let x,y €kerdy, then dy(x) =0=d;(y), and so dy(x * y) < ds(x) * ds(y) =0 *
0 = 0 by (iii), and thus dy (x * y) = 0, that is, x x y € kerd. Hence, kerdy is a subalgebra
of X. Especially, if f is monic, and letting x € kerdy, then 0 = d¢(x) < f(x) by (i), and so
f(x) € X, thatis, 0% f(x) =0, and thus f(0 * x) = f(x), which implies that 0 * x = x,
and so x € X, that is, kerdy < X;. O

THEOREM 3.7. Let f be monic of a commutative BCI-algebra X. Then X is p-semisimple if
and only if kerdy = {0} for every regular f-derivation dy of X.

Proof. Assume that X is p-semisimple BCI-algebra and let d; be a regular f-derivation
of X. Then X; = {0}, and so kerdy = {0} by using Proposition 3.6(iv). Conversely, let
kerd; = {0} for every regular f-derivation dy of X. Define a self-map ds of X by d? (x) =

fx for all x € X. Using Theorem 2.9, df is an f-derivation of X. Clearly, df(0) = fo =
0 (0 £(0)) =0, and so d is a regular f -derivation of X. It follows from the hy-
pothesis that kerd* {0}. In addition, df =f,=0% (0% f(x)) = f(0O* (0%x)) =
f(0) =0 for all x E X4, and thus x € kerd which shows that X, < kerd}‘. Hence, by
Proposition 3.6(iv), X = kerd}" = {0}. Therefore X is p-semisimple. O

Definition 3.8. An ideal A of a BCl-algebra X is said to be an f-ideal if f(A) < A.

Definition 3.9. Let dy be a self-map of a BCI-algebra X. An f-ideal A of X is said to be
dg-invariant if ds(A) < A.

Tueorem 3.10. Let dy be a regular (r,1)- f-derivation of a BCI-algebra X, then every f-
ideal A of X is dg-invariant.

Proof. By Proposition 2.10(ii), we have ds(x) = f(x) A df(x) < f(x) for all x € X. Let
y €ds(A). Then y = dy(x) for some x € A. It follows that y * f(x) =ds(x) x f(x) =0 €
A. Since x € A, then f(x) € f(A) € A as Aisan f-ideal. It follows that y € A since A is
an ideal of X. Hence df(A) € A, and thus A is d¢-invariant. O

TuEOREM 3.11. Let dy be an f-derivation of a BCI-algebra X. Then dy is regular if and
only if every f-ideal of X is dg-invariant.
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Proof. Let dy be a derivation of a BCI-algebra X and assume that every f-ideal of X is
dg-invariant. Then since the zero ideal {0} is f-ideal and d-invariant, we have d;({0}) <
{0}, which implies that d(0) = 0. Thus dy is regular. Combining this and Theorem 3.10,
we complete the proof. O
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