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The multiterm fractional differential equation has a wide application in engineering problems. Therefore, we propose a method to
solvemultiterm variable order fractional differential equation based on the second kind of Chebyshev Polynomial.Themain idea of
this method is that we derive a kind of operational matrix of variable order fractional derivative for the second kind of Chebyshev
Polynomial. With the operational matrices, the equation is transformed into the products of several dependent matrices, which
can also be viewed as an algebraic system by making use of the collocation points. By solving the algebraic system, the numerical
solution of original equation is acquired. Numerical examples show that only a small number of the second kinds of Chebyshev
Polynomials are needed to obtain a satisfactory result, which demonstrates the validity of this method.

1. Introduction

The concept of fractional order derivative goes back to the
17th century [1, 2]. It is only a few decades ago that it
was realized that the arbitrary order derivative provides an
excellent framework formodeling the real-world problems in
a variety of disciplines from physics, chemistry, biology, and
engineering, such as viscoelasticity and damping, diffusion
and wave propagation, and chaos [3–6].

Orthogonal functions have received noticeable consid-
eration for solving fractional differential equation (FDE).
By using orthogonal functions, the FDE can be reduced to
solve an algebraic system, and then original problems are
simplified. Ahmadian et al. [7] proposed a computational
method based on Jacobi Polynomials for solving fuzzy linear
FDE on interval [0, 1]. Kazem et al. [8] constructed a general
formulation for the fractional order Legendre functions.
Yüzbaşı [9] gave the numerical solutions of fractional Riccati
type differential equations by means of the Bernstein Polyno-
mials. Kazem [10] constructed a general formulation for the
Jacobi operational matrix for fractional integral equations.

Taumethod and collocationmethod arewidely used tools
for the solution of FDE. Operational approach of the tau
method was employed for solving fractional problems [11].
A numerical approach was provided for the FDE based on
a spectral tau method [12]. An efficient method based on
the shifted Chebyshev-tau idea was presented for solving
the space fractional diffusion equations [13]. Tau method is
very effective for constant coefficient nonlinear problems,
but the method is not generally adopted for nonlinear FDE.
In practice, since collocation method has the advantages of
less computation and easy implementation, it is more widely
applied for solving variable coefficient nonlinear problems.
The collocation method was used for solving the nonlinear
fractional integrodifferential equations [14]. The third kind
of Chebyshev wavelets collocation method was introduced
for solving the time fractional convection diffusion equations
with variable coefficients [15].

From the literatures above, we conclude that many
authors employed tau and collocation method for solving
different kinds of FDE based on different kinds of orthogonal
functions or their variants. However, for the aforementioned
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FDE, the derivative order is a fixed constant, which does not
change spatially and temporally; variable order multiterm
FDE is not mentioned and solved. Therefore, our main moti-
vation is to give a numerical technology for solving variable
order linear and nonlinear multiterm FDE based on the
second kind of Chebyshev Polynomial. With further devel-
opment of science research, it is found that variable order
fractional calculus can provide an effective mathematical
framework for the complex dynamical problems.Themodel-
ing and application of variable order differential equation has
been a front subject. In addition, the FDE is a special case of
variable order ones, so it can also be solved by our proposed
technology.

Variable order derivative is proposed by Samko and Ross
[16] in 1993, and then Lorenzo and Hartley [17, 18] studied
variable order calculus in theory more deeply. Coimbra
and Diaz [19, 20] used variable order derivative to research
nonlinear dynamics and control problems of viscoelasticity
oscillator. Pedro et al. [21] researched diffusive-convective
effects on the oscillatory flow past a sphere by variable order
modeling.The development of numerical algorithms to solve
variable order FDE is necessary.

Since the kernel of the variable order operators is very
complex for having a variable exponent, it is difficult to gain
the solution of variable order differential equation. Only a
few authors studied numerical methods of variable order
fractional differential equations. Coimbra [19] employed a
consistent approximationwith first-order accurate for solving
variable order differential equations. Sun et al. [22] proposed
a second-order Runge-Kuttamethod to numerically integrate
the variable order differential equation. Lin et al. [23] stud-
ied the stability and the convergence of an explicit finite-
difference approximation for the variable order fractional
diffusion equation with a nonlinear source term. Chen et al.
[24, 25] paid their attention to Bernstein Polynomials to solve
variable order linear cable equation and variable order time
fractional diffusion equation. A numerical method based on
the Legendre Polynomials is presented for a class of variable
order FDE [26]. Chen et al. [27] introduced the numerical
solution for a class of nonlinear variable order FDE with
Legendre wavelets.

To the best of our knowledge, it is not seen that opera-
tional matrix of variable order derivative based on the second
kind of Chebyshev Polynomial is used to solve multiterm
variable order FDE. In addition, for most literatures, they
solved variable order FDE defined on the interval [0, 1].
Accordingly, based on the second kind of Chebyshev Polyno-
mial, we propose a new efficient technique for solving mul-
titerm variable order FDE defined on the interval [0, 𝑅].

The multiterm variable order FDE is given as follows:

𝐷
𝛼(𝑡)

𝑓 (𝑡)

= 𝐹 (𝑡, 𝑓 (𝑡) , 𝐷
𝛽
1
(𝑡)

𝑓 (𝑡) , 𝐷
𝛽
2
(𝑡)

𝑓 (𝑡) , . . . , 𝐷
𝛽
𝑘
(𝑡)

𝑓 (𝑡)) ,

0 < 𝑡 < 𝑅,

(1)

where 𝐷
𝛼(𝑡)

𝑓(𝑡) and 𝐷
𝛽
𝑖
(𝑡)

𝑓(𝑡) are fractional derivative in
Caputo sense. When 𝛼(𝑡) and 𝛽

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑘 are all

constants, (1) becomes (2); namely,

𝐷
𝛼

𝑓 (𝑡)

= 𝐹 (𝑡, 𝑓 (𝑡) , 𝐷
𝛽
1𝑓 (𝑡) , 𝐷

𝛽
2𝑓 (𝑡) , . . . , 𝐷

𝛽
𝑘𝑓 (𝑡)) ,

0 < 𝑡 < 𝑅.

(2)

Thus, (2) is a special case of (1). Our proposed method
can solve both (1) and (2). They often appear in oscillatory
equations, such as vibration equation, fractional Van Der Pol
equation, the Rayleigh equationwith fractional damping, and
fractional Riccati differential equation.

The basic idea of this method is that we derive differential
operational matrices based on the second kind of Chebyshev
Polynomial. With the operational matrices, the equation is
transformed into the products of several dependent matrices,
which can also be viewed as an algebraic system by making
use of the collocation points. By solving the algebraic system,
the numerical solution is acquired. Since the second kinds
of Chebyshev Polynomials are orthogonal to each other,
the operational matrices based on Chebyshev Polynomials
greatly reduce the size of computational work while accu-
rately providing the series solution. From some numerical
examples, we can see that our results are in good agreement
with the analytical solution, which demonstrates the validity
of this method.Therefore, it has the potential to utilize wider
applicability.

The paper is organized as follows. In Section 2, some
necessary definitions and properties of the variable order
fractional derivatives are introduced. The basic definitions
of the second kind of Chebyshev Polynomial and function
approximation are given in Sections 3 and 4, respectively. In
Section 5, a kind of operational matrix of the second kind
of Chebyshev Polynomial is derived, and then we applied
the operational matrices to solve the equation as given at
beginning. In Section 6, we present some numerical examples
to demonstrate the efficiency of the method. We end the
paper with a few concluding remarks in Section 7.

2. Basic Definition of Caputo Variable Order
Fractional Derivatives

Definition 1. Caputo variable fractional derivative with order
𝛼(𝑡) is defined by

𝐷
𝛼(𝑡)

𝑢 (𝑡) =
1

Γ (1 − 𝛼 (𝑡))
∫
𝑡

0+

(𝑡 − 𝜏)
−𝛼(𝑡)

𝑢


(𝜏) 𝑑𝜏

+
(𝑢 (0+) − 𝑢 (0−)) 𝑡

−𝛼(𝑡)

Γ (1 − 𝛼 (𝑡))
.

(3)

If we assume the starting time in a perfect situation, we
can get Definition 2 as follows.
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Definition 2. Consider

𝐷
𝛼(𝑡)

𝑢 (𝑡) =
1

Γ (1 − 𝛼 (𝑡))
∫
𝑡

0

(𝑡 − 𝜏)
−𝛼(𝑡)

𝑢


(𝜏) 𝑑𝜏

(0 < 𝛼 (𝑡) < 1) .

(4)

By Definition 2, we can get the following formula [25]:

𝐷
𝛼(𝑡)

𝑡
(𝑡
𝑛

) =

{{{

{{{

{

Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛼 (𝑡))
𝑡
𝑛−𝛼(𝑡)

, 𝑛 = 1, 2, . . . ,

0, 𝑛 = 0.

(5)

3. Shifted Second Kind of
Chebyshev Polynomial

The second kind of Chebyshev Polynomial defined on the
interval 𝐼 = [−1, 1] is orthogonal based on the weight func-
tion 𝜔(𝑥) = √1 − 𝑥2. They satisfy the following formulas:

𝑈
0
(𝑥) = 1,

𝑈
1
(𝑥) = 2𝑥,

𝑈
𝑛+1

(𝑥) = 2𝑥𝑈
𝑛
(𝑥) − 𝑈

𝑛−1
(𝑥) ,

𝑛 = 1, 2, . . . ,

∫
1

−1

√1 − 𝑥2𝑈
𝑛
(𝑥)𝑈
𝑚
(𝑥) 𝑑𝑥 =

{{

{{

{

0, 𝑚 ̸= 𝑛,

𝜋

2
, 𝑚 = 𝑛.

(6)

When 𝑡 ∈ [0, 𝑅], let 𝑥 = 2𝑡/𝑅 − 1; we can get shifted second
kind of Chebyshev Polynomial �̃�

𝑛
(𝑡) = 𝑈

𝑛
(2𝑡/𝑅 − 1), whose

weight function is 𝜔(𝑡) = √𝑡𝑅 − 𝑡2 with 𝑡 ∈ [0, 𝑅]. They sat-
isfy the following formulas:

�̃�
0
(𝑡) = 1,

�̃�
1
(𝑡) = 2 (

2𝑡

𝑅
− 1) =

4𝑡

𝑅
− 2,

�̃�
𝑛+1

(𝑡) = 2 (
2𝑡

𝑅
− 1) �̃�

𝑛
(𝑡) − �̃�

𝑛−1
(𝑡) ,

𝑛 = 1, 2, 3, . . . ,

∫
𝑅

0

√𝑡𝑅 − 𝑡2�̃�
𝑛
(𝑡) �̃�
𝑚
(𝑡) 𝑑𝑡 =

{{

{{

{

0, 𝑚 ̸= 𝑛,

𝜋

8
𝑅
2

, 𝑚 = 𝑛.

(7)

The shifted second kind of Chebyshev Polynomial �̃�
𝑛
(𝑡)

can also be expressed as

�̃�
𝑛
(𝑡)

=

{{{{

{{{{

{

1, 𝑛 = 0,

[𝑛/2]

∑
𝑘=0

(−1)
𝑘

(𝑛 − 𝑘)!

𝑘! (𝑛 − 2𝑘)!
(
4𝑡

𝑅
− 2)
𝑛−2𝑘

, 𝑛 ≥ 1,

(8)

where [𝑛/2] denotes the maximum integer which is no more
than 𝑛/2.

Let

Ψ (𝑡) = [�̃�
0
(𝑡) , �̃�

1
(𝑡) , . . . , �̃�

𝑛
(𝑡)]
𝑇

,

𝑇 (𝑡) = [1, 𝑡, . . . , 𝑡
𝑛

]
𝑇

;

(9)

then

Ψ (𝑡) = 𝐴𝑇 (𝑡) . (10)

Let

𝐴 = 𝐵𝐶. (11)

If 𝑛 is an even number, then

𝐵

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 (−1)
0

(1 − 0)!

0! (1 − 0)!
(
4

𝑅
)
1−0

0 ⋅ ⋅ ⋅ 0

(−1)
1

(2 − 1)!

1! (2 − 2)!
(
4

𝑅
)
2−2

0 (−1)
0

(2 − 0)!

0! (2 − 0)!
(
4

𝑅
)
2−0

⋅ ⋅ ⋅ 0

...
...

...
...

...

(−1)
𝑛/2

(𝑛 − 𝑛/2)!

(𝑛/2)! (𝑛 − 2 ⋅ 𝑛/2)!
(
4

𝑅
)
𝑛−2⋅𝑛/2

⋅ ⋅ ⋅ (−1)
𝑛/2−1

(𝑛 − 𝑛/2 + 1)!

(𝑛/2 − 1)! [𝑛 − 2 (𝑛/2 − 1)]!
(
4

𝑅
)
𝑛−2(𝑛/2−1)

⋅ ⋅ ⋅ (−1)
0

(𝑛 − 0)!

0! (𝑛 − 0)!
(
4

𝑅
)
𝑛−0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(12)



4 Mathematical Problems in Engineering

If 𝑛 is an odd number, then

𝐵

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 (−1)
0

(1 − 0)!

0! (1 − 0)!
(
4

𝑅
)
1−0

0 ⋅ ⋅ ⋅ 0

(−1)
1

(2 − 1)!

1! (2 − 2)!
(
4

𝑅
)
2−2

0 (−1)
0

(2 − 0)!

0! (2 − 0)!
(
4

𝑅
)
2−0

⋅ ⋅ ⋅ 0

...
...

...
...

...

0 (−1)
(𝑛−1)/2

(𝑛 − (𝑛 − 1) /2)!

((𝑛 − 1) /2)! (𝑛 − 2 ⋅ (𝑛 − 1) /2)!
(
4

𝑅
)
𝑛−2⋅(𝑛−1)/2

0 ⋅ ⋅ ⋅ (−1)
0

(𝑛 − 0)!

0! (𝑛 − 0)!
(
4

𝑅
)
𝑛−0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐶 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

(
1

0
)(−

𝑅

2
)
1−0

(
1

1
)(−

𝑅

2
)
1−1

0 ⋅ ⋅ ⋅ 0

(
2

0
)(−

𝑅

2
)
2−0

(
2

1
)(−

𝑅

2
)
2−1

(
2

2
)(−

𝑅

2
)
2−2

⋅ ⋅ ⋅ 0

...
...

...
...

...

(
𝑛

0
)(−

𝑅

2
)
𝑛−0

(
𝑛

1
)(−

𝑅

2
)
𝑛−1

(
𝑛

2
)(−

𝑅

2
)
𝑛−2 ... (

𝑛

𝑛
)(−

𝑅

2
)
𝑛−𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(13)

Therefore, we can easily gain

𝑇
𝑛
(𝑡) = 𝐴

−1

Ψ (𝑡) . (14)

4. Function Approximation

Theorem 3. Assume a function 𝑓(𝑡) ∈ [0, 𝑅] be 𝑛 times con-
tinuously differentiable. Let 𝑢

𝑛
(𝑡) = ∑

𝑛

𝑖=0
𝜆
𝑖
�̃�
𝑖
(𝑡) = Λ

𝑇

Ψ
𝑛
(𝑡)

be the best square approximation function of 𝑓(𝑡), where Λ =

[𝜆
0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇 and Ψ

𝑛
(𝑡) = [�̃�

0
(𝑡), �̃�
1
(𝑡), . . . , �̃�

𝑛
(𝑡)]
𝑇; then

𝑓 (𝑡) − 𝑢
𝑛
(𝑡)

 ≤
𝑀𝑆
𝑛+1

𝑅

(𝑛 + 1)!
√
𝜋

8
, (15)

where𝑀 = max
𝑡∈[0,𝑅]

𝑓
(𝑛+1)

(𝑡) and 𝑆 = max{𝑅 − 𝑡
0
, 𝑡
0
}.

Proof. We consider the Taylor Polynomial:

𝑓 (𝑡) = 𝑓 (𝑡
0
) + 𝑓


(𝑡
0
) (𝑡 − 𝑡

0
) + ⋅ ⋅ ⋅

+ 𝑓
(𝑛)

(𝑡
0
)
(𝑡 − 𝑡
0
)
𝑛

𝑛!
+ 𝑓
(𝑛+1)

(𝜂)
(𝑡 − 𝑡
0
)
𝑛+1

(𝑛 + 1)!
,

𝑡
0
∈ [0, 𝑅] ,

(16)

where 𝜂 is between 𝑡 and 𝑡
0
.

Let
𝑝
𝑛
(𝑡) = 𝑓 (𝑡

0
) + 𝑓


(𝑡
0
) (𝑡 − 𝑡

0
) + ⋅ ⋅ ⋅

+ 𝑓
(𝑛)

(𝑡
0
)
(𝑡 − 𝑡
0
)
𝑛

𝑛!
;

(17)

then

𝑓 (𝑥) − 𝑝
𝑛
(𝑥)

 =



𝑓
(𝑛+1)

(𝜂)
(𝑡 − 𝑡
0
)
𝑛+1

(𝑛 + 1)!



. (18)

Since 𝑢
𝑛
(𝑡) = ∑

𝑛

𝑖=0
𝜆
𝑖
�̃�
𝑖
(𝑡) = Λ

𝑇

Ψ
𝑛
(𝑡) is the best square

approximation function of 𝑓(𝑡), we can gain
𝑓 (𝑡) − 𝑢

𝑛
(𝑡)


2

≤
𝑓 (𝑡) − 𝑝

𝑛
(𝑡)


2

= ∫
𝑅

0

𝜔 (𝑡) [𝑓 (𝑡) − 𝑝
𝑛
(𝑡)]
2

𝑑𝑡

= ∫
𝑅

0

𝜔 (𝑡) [𝑓
(𝑛+1)

(𝜂)
(𝑡 − 𝑡
0
)
𝑛+1

(𝑛 + 1)!
]

2

𝑑𝑡

≤
𝑀
2

[(𝑛 + 1)!]
2
∫
𝑅

0

(𝑡 − 𝑡
0
)
2𝑛+2

𝜔 (𝑡) 𝑑𝑡

=
𝑀
2

[(𝑛 + 1)!]
2
∫
𝑅

0

(𝑡 − 𝑡
0
)
2𝑛+2√𝑡𝑅 − 𝑡2𝑑𝑡.

(19)

Let 𝑆 = max{𝑅 − 𝑡
0
, 𝑡
0
}; therefore

𝑓 (𝑡) − 𝑢
𝑛
(𝑡)


2

≤
𝑀
2

𝑆
2𝑛+2

[(𝑛 + 1)!]
2
∫
𝑅

0

√𝑡𝑅 − 𝑡2𝑑𝑡

=
𝑀
2

𝑆
2𝑛+2

[(𝑛 + 1)!]
2

𝜋𝑅
2

8
.

(20)

Andby taking the square roots,Theorem3 can be proved.

5. Operational Matrices of 𝐷𝛼(𝑡)Ψ
𝑛
(𝑡) and

𝐷
𝛽
𝑖
(𝑡)

Ψ
𝑛
(𝑡) 𝑖 = 1, 2, . . . , 𝑘 Based on Shifted

Second Kind of Chebyshev Polynomial

Consider

𝐷
𝛼(𝑡)

Ψ
𝑛
(𝑡) = 𝐷

𝛼(𝑡)

[𝐴𝑇
𝑛
(𝑡)] = 𝐴𝐷

𝛼(𝑡)

[1 𝑡 ⋅ ⋅ ⋅ 𝑡
𝑛

]
𝑇

. (21)
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According to (5), we can get

𝐷
𝛼(𝑡)

Ψ
𝑛
(𝑡)

= 𝐴[0
Γ (2)

Γ (2 − 𝛼 (𝑡))
𝑡
1−𝛼(𝑡)

⋅ ⋅ ⋅
Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛼 (𝑡))
𝑡
𝑛−𝛼(𝑡)

]

𝑇

= 𝐴

[
[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

0
Γ (2)

Γ (2 − 𝛼 (𝑡))
𝑡
−𝛼(𝑡)

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅
Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛼 (𝑡))
𝑡
−𝛼(𝑡)

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[

[

1

𝑡

...

𝑡
𝑛

]
]
]
]
]
]

]

= 𝐴𝑀𝐴
−1

Ψ
𝑛
(𝑡) ,

(22)

where

𝑀

=

[
[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

0
Γ (2)

Γ (2 − 𝛼 (𝑡))
𝑡
−𝛼(𝑡)

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅
Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛼 (𝑡))
𝑡
−𝛼(𝑡)

]
]
]
]
]
]
]
]
]

]

.
(23)

𝐴𝑀𝐴
−1 is called the operational matrix of𝐷𝛼(𝑡)Ψ

𝑛
(𝑡). There-

fore,

𝐷
𝛼(𝑡)

𝑓 (𝑡) ≈ 𝐷
𝛼(𝑡)

(Λ
𝑇

Ψ
𝑛
(𝑡)) = Λ

𝑇

𝐷
𝛼(𝑡)

Ψ
𝑛
(𝑡)

= Λ
𝑇

𝐴𝑀𝐴
−1

Ψ
𝑛
(𝑡) .

(24)

Similarly, we can get

𝐷
𝛽
𝑖
(𝑡)

Ψ
𝑛
(𝑡) = 𝐴𝑁

𝑖
𝐴
−1

Ψ
𝑛
(𝑡) , 𝑖 = 1, 2, . . . , 𝑘, (25)

where
𝑁
𝑖

=

[
[
[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

0
Γ (2)

Γ (2 − 𝛽
𝑖
(𝑡))

𝑡
−𝛽
𝑖
(𝑡)

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅
Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛽
𝑖
(𝑡))

𝑡
−𝛽
𝑖
(𝑡)

]
]
]
]
]
]
]
]
]
]

]

.
(26)

𝐴𝑁
𝑖
𝐴
−1 is called the operational matrix of𝐷𝛽𝑖(𝑡)Ψ

𝑛
(𝑡). Thus,

𝐷
𝛽
𝑖
(𝑡)

𝑓 (𝑡) ≈ 𝐷
𝛽
𝑖
(𝑡)

(Λ
𝑇

Ψ
𝑛
(𝑡)) = Λ

𝑇

𝐷
𝛽
𝑖
(𝑡)

Ψ
𝑛
(𝑡)

= Λ
𝑇

𝐴𝑁
𝑖
𝐴
−1

Ψ
𝑛
(𝑡) .

(27)

The original equation (1) is transformed into the form as
follows:

Λ
𝑇

𝐴𝑀𝐴
−1

Ψ
𝑛
(𝑡) = 𝐹 [𝑡, Λ

𝑇

Ψ
𝑛
(𝑡) , Λ

𝑇

𝐴𝑁
1
𝐴
−1

Ψ
𝑛
(𝑡) ,

. . . , Λ
𝑇

𝐴𝑁
𝑘
𝐴
−1

Ψ
𝑛
(𝑡)] , 𝑡 ∈ [0, 𝑅] .

(28)

In this paper, we use collocation method to solve the coef-
ficientΛ = [𝜆

0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇. By taking the collocation points,

(28) will become an algebraic system. We can gain the
solution Λ = [𝜆

0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇 by Newton method. Finally,

the numerical solution 𝑢
𝑛
(𝑡) = Λ

𝑇

Ψ
𝑛
(𝑡) is gained.

6. Numerical Examples and Results Analysis

In this section, we verify the efficiency of proposedmethod to
support the above theoretical discussion. For this purpose, we
consider linear and nonlinear multiterm variable order FDE
and corresponding multiterm FDE. For multiterm variable
order FDE, we compare our approach with the analytical
solution. For multiterm FDE, we compare our computational
results with the analytical solution and solutions in [28] by
using other methods. The results indicate that our method
is a powerful tool for solving multiterm variable order FDE
and multiterm FDE. Numerical examples show that only a
small number of the second kinds of Chebyshev Polynomials
are needed to obtain a satisfactory result. Furthermore, our
method has higher precision than [28]. In this section, the
notation

𝜀 = max
𝑖=0,1,...,𝑛

𝑓 (𝑡
𝑖
) − 𝑢
𝑛
(𝑡
𝑖
)
 ,

𝑡
𝑖
= 𝑅

(2𝑖 + 1)

2 (𝑛 + 1)
, 𝑖 = 0, 1, . . . , 𝑛,

(29)

is used to show the accuracy of our proposed method.

Example 1. (a) Consider the linear FDE with variable order
as follows:

𝑎𝐷
𝛼(𝑡)

𝑓 (𝑡) + 𝑏 (𝑡)𝐷
𝛽
1
(𝑡)

𝑓 (𝑡) + 𝑐 (𝑡)𝐷
𝛽
2
(𝑡)

𝑓 (𝑡)

+ 𝑒 (𝑡)𝐷
𝛽
3
(𝑡)

𝑓 (𝑡) + 𝑘 (𝑡) 𝑓 (𝑡) = 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝑅] ,

𝑦 (0) = 2,

𝑦


(0) = 0,

(30)

where

𝑓 (𝑡) = −𝑎
𝑡
2−𝛼(𝑡)

Γ (3 − 𝛼 (𝑡))
− 𝑏 (𝑡)

𝑡
2−𝛽
1
(𝑡)

Γ (3 − 𝛽
1
(𝑡))

− 𝑐 (𝑡)
𝑡
2−𝛽
2
(𝑡)

Γ (3 − 𝛽
2
(𝑡))

− 𝑒 (𝑡)
𝑡
2−𝛽
3
(𝑡)

Γ (3 − 𝛽
3
(𝑡))

+ 𝑘 (𝑡) (2 −
𝑡
2

2
) .

(31)

The analytical solution is𝑓(𝑡) = 2−𝑡
2

/2.We use our proposed
technology to solve it.
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Figure 1: Analytical solution and numerical solution of Example 1(a) for different 𝑅.

Let𝑓(𝑡) ≈ 𝑢
𝑛
(𝑡) = Λ

𝑇

Ψ
𝑛
(𝑡),𝛼(𝑡) = 2𝑡,𝛽

1
(𝑡) = 𝑡/3,𝛽

2
(𝑡) =

𝑡/4, and 𝛽
3
(𝑡) = 𝑡/5; according to (28), we have

𝑎Λ
𝑇

𝐴𝑀𝐴
−1

Ψ
𝑛
(𝑡) + 𝑏 (𝑡) Λ

𝑇

𝐴𝑁
1
𝐴
−1

Ψ
𝑛
(𝑡)

+ 𝑐 (𝑡) Λ
𝑇

𝐴𝑁
2
𝐴
−1

Ψ
𝑛
(𝑡)

+ 𝑒 (𝑡) Λ
𝑇

𝐴𝑁
3
𝐴
−1

Ψ
𝑛
(𝑡) + 𝑘 (𝑡) Λ

𝑇

Ψ
𝑛
(𝑡)

= 𝑔 (𝑡) .

(32)

Take the collocation points 𝑡
𝑖
= 𝑅((2𝑖 + 1)/2(𝑛 + 1)), 𝑖 = 0, 1,

. . . , 𝑛, to process (32), and then get

𝑎Λ
𝑇

𝐴𝑀𝐴
−1

Ψ
𝑛
(𝑡
𝑖
) + 𝑏 (𝑡

𝑖
) Λ
𝑇

𝐴𝑁
1
𝐴
−1

Ψ
𝑛
(𝑡
𝑖
)

+ 𝑐 (𝑡
𝑖
) Λ
𝑇

𝐴𝑁
2
𝐴
−1

Ψ
𝑛
(𝑡
𝑖
)

+ 𝑒 (𝑡
𝑖
) Λ
𝑇

𝐴𝑁
3
𝐴
−1

Ψ
𝑛
(𝑡
𝑖
) + 𝑘 (𝑡

𝑖
) Λ
𝑇

Ψ
𝑛
(𝑡
𝑖
)

= 𝑔 (𝑡
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛.

(33)

By solving the algebraic system (33), we can gain the vec-
tor Λ = [𝜆

0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇. Subsequently, numerical solution

𝑢
𝑛
(𝑡) = Λ

𝑇

Ψ
𝑛
(𝑡) is obtained. Likely [28], we present numer-

ical solution by our method for

𝑎 = 1,

𝑏 (𝑡) = √𝑡,

𝑐 (𝑡) = 𝑡
1/3

,

𝑒 (𝑡) = 𝑡
1/4

,

𝑘 (𝑡) = 𝑡
1/5

.

(34)

Table 1: Values of 𝜀 of Example 1(a) for different 𝑅.

𝑅 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

𝑅 = 1 0 2.2204𝑒 − 16 2.2204𝑒 − 16 3.3529𝑒 − 14

𝑅 = 2 0 4.4409𝑒 − 16 1.3323𝑒 − 15 9.5812𝑒 − 14

𝑅 = 4 2.2204𝑒 − 16 3.5527𝑒 − 15 3.1974𝑒 − 14 6.1018𝑒 − 13

In Table 1, we list the values of 𝜀 at the collocation
points. From Table 1, we could find that a small number of
Chebyshev Polynomials are needed to reach perfect solution
for different 𝑅. Figure 1 shows the analytical solution and
numerical solution for different 𝑅 at collocation points. We
can conclude that the numerical solution is very close to
the analytical solution. The same trend is observed for other
values of 𝛼(𝑡) and 𝛽

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑘. All the values of 𝜀 are

small enough to meet the practical engineering application.
Let 𝛼(𝑡) = 2, 𝛽

1
(𝑡) = 1.234, 𝛽

2
(𝑡) = 1, 𝛽

3
(𝑡) = 0.333, and

𝑅 = 1 as [28]; Example 1(a) becomes a multiterm order FDE,
namely, Example 1(b). This problem has been solved in [28].

(b) See [28]:

𝑎𝐷
2

𝑓 (𝑡) + 𝑏 (𝑡)𝐷
𝛽
1𝑓 (𝑡) + 𝑐 (𝑡)𝐷𝑓 (𝑡)

+ 𝑒 (𝑡)𝐷
𝛽
3𝑓 (𝑡) + 𝑘 (𝑡) 𝑓 (𝑡) = 𝑔 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 2,

𝑦


(0) = 0,

(35)

where

𝑓 (𝑡) = −𝑎 − 𝑏 (𝑡)
𝑡
2−𝛽
1

Γ (3 − 𝛽
1
)
− 𝑐 (𝑡) 𝑡

− 𝑒 (𝑡)
𝑡
2−𝛽
3

Γ (3 − 𝛽
3
)
+ 𝑘 (𝑡) (2 −

𝑡
2

2
) .

(36)
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Table 2: Computational results of Example 1(b) for 𝑅 = 1.

𝑡 Λ 𝜀

𝑛 = 3 [1.8438, −0.1250, −0.0313, −0.0000]𝑇 4.4409𝑒 − 16

𝑛 = 4 [1.8438, −0.1250, −0.0312, 0.0000, −0.0000]𝑇 1.4633𝑒 − 13

𝑛 = 5 [1.8437, −0.1250, −0.0313, 0.0000, −0.0000, 0.0000]𝑇 3.2743𝑒 − 12

𝑛 = 6 [1.8438, −0.1250, −0.0312, 0.0000, 0.0000, 0.0000, −0.0000]𝑇 1.0725𝑒 − 13

Table 3: Values of 𝜀 of Example 2(b) for 𝑅 = 2, 4.

𝑅 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

𝑅 = 2 8.8818𝑒 − 16 9.1038𝑒 − 15 2.2959𝑒 − 13 9.4480𝑒 − 14

𝑅 = 4 8.8818𝑒 − 16 1.0214𝑒 − 14 7.3275𝑒 − 15 3.8369𝑒 − 13

The analytical solution is 𝑓(𝑡) = 2 − 𝑡
2

/2. Example 1(b) is
a special case of Example 1(a), so we still obtain the solution
by ourmethod as Example 1(a).The computational results are
seen in Table 2. We list the vector Λ = [𝜆

0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇 and

the values of 𝜀 at the collocation points.

As seen from Table 2, the vector Λ = [𝜆
0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇

obtained is mainly composed of three terms, namely, 𝜆
0
, 𝜆
1
,

𝜆
2
, which is in agreement with the analytical solution 𝑓(𝑡) =

2−𝑡
2

/2.The values of 𝜀 are smaller than [28]with the same size
of Chebyshev Polynomials (in [28], the value of 𝜀 is 6.88384𝑒−
5 for 𝑛 = 5). In addition, we extend the interval from [0, 1] to
[0, 2] and [0, 4]. Similarly, we also get the perfect results as
shown in Table 3, which is not solved in [28].

Example 2. (a) As the second example, the nonlinear multi-
term variable order FDE

𝐷
𝛼(𝑡)

𝑓 (𝑡) + 𝐷
𝛽
1
(𝑡)

𝑓 (𝑡)𝐷
𝛽
2
(𝑡)

𝑓 (𝑡) + 𝑓
2

(𝑡) = 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝑅] ,
(37)

with

𝑔 (𝑡) = 𝑡
6

+
6

Γ (4 − 𝛼 (𝑡))
𝑡
3−𝛼(𝑡)

+
36

Γ (4 − 𝛽
1
(𝑡)) Γ (4 − 𝛽

2
(𝑡))

𝑡
6−𝛽
1
(𝑡)−𝛽
2
(𝑡)

,

(38)

subject to the initial conditions 𝑓(0) = 𝑓


(0) = 𝑓


(0) = 0 is
considered. The analytical solution is 𝑓(𝑡) = 𝑡

3.
Let 𝑓(𝑡) = Λ

𝑇

Ψ(𝑡); according to (28), we have

𝑎Λ
𝑇

𝐴𝑀𝐴
−1

Ψ
𝑛
+ (Λ
𝑇

𝐴𝑁
1
𝐴
−1

Ψ
𝑛
) (Λ
𝑇

𝐴𝑁
2
𝐴
−1

Ψ
𝑛
)

+ (Λ
𝑇

Ψ
𝑛
)
2

= 𝑔 (𝑡) .

(39)

Let 𝛼(𝑡) = 𝑡
2, 𝛽
1
(𝑡) = sin 𝑡, and 𝛽

2
(𝑡) = 𝑡/4; by taking

the collocation points, the solution of Example 2(a) could
be gained. The values of 𝜀 are displayed in Table 4 for dif-
ferent 𝑅. From the result analysis, our method could gain
satisfactory solution. Figure 2 obviously shows that the num-
erical solution converges to the analytical solution.

Table 4: Values of 𝜀 of Example 2(a) with 𝛼(𝑡) = 𝑡
2, 𝛽
1
(𝑡) = sin 𝑡,

and 𝛽
2
(𝑡) = 𝑡/4.

𝑅 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

𝑅 = 1 5.1560𝑒 − 15 2.2690𝑒 − 14 5.4114𝑒 − 14 1.0227𝑒 − 13

𝑅 = 2 1.8874𝑒 − 15 1.4660𝑒 − 14 6.6386𝑒 − 14 7.4174𝑒 − 13

𝑅 = 4 4.3512𝑒 − 15 3.1200𝑒 − 14 5.1616𝑒 − 08 1.0565𝑒 − 11

If 𝛼(𝑡), 𝛽
1
(𝑡), 𝛽
2
(𝑡) are constants, Example 2(a) becomes a

multiterm order FDE in [28].This problem for 𝑅 = 1 has also
been solved in [28].

(b) See [28]:

𝐷
𝛼

𝑓 (𝑡) + 𝐷
𝛽
1𝑓 (𝑡)𝐷

𝛽
2𝑓 (𝑡) + 𝑓

2

(𝑡) = 𝑔 (𝑡) ,

2 < 𝛼 < 3, 1 < 𝛽
1
< 2, 0 < 𝛽

2
< 1, 𝑡 ∈ [0, 1] ,

(40)

with

𝑔 (𝑡) = 𝑡
6

+
6

Γ (4 − 𝛼)
𝑡
3−𝛼

+
36

Γ (4 − 𝛽
1
) Γ (4 − 𝛽

2
)
𝑡
6−𝛽
1
−𝛽
2 .

(41)

The same as [28], we let 𝛼 = 2.5, 𝛽
1
= 1.5, and 𝛽

2
=

0.9 and 𝛼 = 2.75, 𝛽
1
= 1.75, and 𝛽

2
= 0.75 for 𝑅 = 1 and

then use ourmethod to solve them.The computational results
are shown in Tables 5 and 6. As seen from Tables 5 and 6,
the vectorΛ = [𝜆

0
, 𝜆
1
, . . . , 𝜆

𝑛
]
𝑇obtained is mainly composed

of four terms, namely, 𝜆
0
, 𝜆
1
, 𝜆
2
, 𝜆
3
, which is in agreement

with the analytical solution 𝑓(𝑡) = 𝑡
3. It is evident that the

numerical solution obtained converges to the analytical solu-
tion for 𝛼 = 2.5, 𝛽

1
= 1.5, and 𝛽

2
= 0.9 and 𝛼 = 2.75, 𝛽

1
=

1.75, and 𝛽
2
= 0.75. The values of 𝜀 are smaller than [28] with

the same 𝑛 size.
In addition, we extend the interval from [0, 1] to [0, 2] and

[0, 3]. Similarly, we also get the perfect results in Tables 7 and
8, but the problems are not solved in [28].

At last, the proposed method is used to solve the multi-
term initial value problem with nonsmooth solution.

Example 3. Let us consider the FDE as follows:


𝑡 +

1

3


𝐷
𝛼

𝑦 +

𝑡 −

1

3


𝐷
𝛽

𝑦 + 𝑦 =

𝑡
2

−
1

9


{(𝑡
2

−
1

9
)
2

+ (6𝑡
3

−
2𝑡

3
)

𝑡 −

1

3


+ (30𝑡

2

−
2

3
)

𝑡 +

1

3


} ,

1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 𝑦 (0) =
1

729
, 𝑦


(0) = 0, 𝑡 ∈ [0, 3] ,

(42)
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Figure 2: Analytical solution and numerical solution of Example 2(a) with 𝛼(𝑡) = 𝑡
2, 𝛽
1
(𝑡) = sin 𝑡, and 𝛽

2
(𝑡) = 𝑡/4 for different 𝑅.

Table 5: Computational results of Example 2(b) for 𝑅 = 1 with 𝛼 = 2.5, 𝛽
1
= 1.5, and 𝛽

2
= 0.9.

𝑡 Λ 𝜀

𝑛 = 3 [0.2188, 0.2187, 0.0937, 0.0156]𝑇 1.2628𝑒 − 15

𝑛 = 4 [0.2188, 0.2187, 0.0938, 0.0156, 0.0000]𝑇 1.5910𝑒 − 14

𝑛 = 5 [0.2188, 0.2187, 0.0937, 0.0156, 0.0000, −0.0000]𝑇 4.7362𝑒 − 13

𝑛 = 6 [0.2188, 0.2187, 0.0937, 0.0156, −0.0000, −0.0000, 0.0000]𝑇 1.2801𝑒 − 11

Table 6: Computational results of Example 2(b) for 𝑅 = 1 with 𝛼 = 2.75, 𝛽
1
= 1.75, and 𝛽

2
= 0.75.

𝑡 Λ 𝜀

𝑛 = 3 [0.2187, 0.2188, 0.0938, 0.0156]𝑇 1.3983𝑒 − 15

𝑛 = 4 [0.2187, 0.2187, 0.0938, 0.0156, 0.0000]𝑇 7.6964𝑒 − 14

𝑛 = 5 [0.2188, 0.2187, 0.0937, 0.0156, −0.0000, −0.0000]𝑇 1.4200𝑒 − 12

𝑛 = 6 [0.2188, 0.2188, 0.0938, 0.0156, −0.0000, −0.0000, 0.0000]𝑇 1.8479𝑒 − 11

Table 7: Values of 𝜀 of Example 2(b) for 𝑅 = 2, 3 with 𝛼 = 2.5,
𝛽
1
= 1.5, and 𝛽

2
= 0.9.

𝑅 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

𝑅 = 2 1.0474𝑒 − 15 3.1058𝑒 − 14 1.2829𝑒 − 13 6.3259𝑒 − 13

𝑅 = 3 9.8203𝑒 − 15 6.3154𝑒 − 14 4.4387𝑒 − 13 4.1653𝑒 − 12

Table 8: Values of 𝜀 of Example 2(b) for 𝑅 = 2, 3 with 𝛼 = 2.75,
𝛽
1
= 1.75, and 𝛽

2
= 0.75.

𝑅 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6

𝑅 = 2 2.9790𝑒 − 15 1.2483𝑒 − 14 6.2233𝑒 − 13 8.4933𝑒 − 13

𝑅 = 3 1.1374𝑒 − 14 1.0100𝑒 − 14 1.5589𝑒 − 14 1.3921𝑒 − 11

in which only for 𝛼 = 2 and 𝛽 = 1, the analytical solution is
known and given by 𝑦 = |(𝑡

2

− 1/9)
3

|.

By applying the proposed method to solve the equation,
we can obtain that the value of 𝜀 is 1.5853𝑒 − 3 for 𝑛 = 9. The
computational results are shown as Figures 3 and 4.

As seen from Figure 3, it is evident that the numerical
solution obtained converges to the analytical solution. We
also plot the absolute error between the analytical solution
and numerical solution in Figure 4. It shows that the absolute
error is small, which couldmeet the needs of general projects.
In a word, the proposed method possesses simple form,
satisfactory accuracy, and wide field of application.

7. Conclusion

In this paper, we present an operational matrix technology
based on the second kind of Chebyshev Polynomial to solve
multiterm FDE andmultiterm variable order FDE.This tech-
nology reduces the original equation to a system of algebraic
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Figure 3: Analytical solution and numerical solution of Example 3.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

 A
bs

ol
ut

e e
rr

or

×10
−3

n = 9

t

Figure 4: Absolute error of the proposed method of Example 3.

equations, which greatly simplifies the problem. In order to
confirm the efficiency of the proposed techniques, several
numerical examples are implemented, including linear and
nonlinear terms. By comparing the numerical solution with
the analytical solution and that of other methods in the
literature, we demonstrate the high accuracy and efficiency
of the proposed techniques.

In addition, the proposed method can be applied by
developing for the other related fractional problem, such as
variable fractional order integrodifferential equation, variable
order time fractional diffusion equation, and variable frac-
tional order linear cable equation. This is one possible area
of our future work.
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