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This paper shows a theoretical vibration analysis regarding the controller’s parameters and the gyroscopic effect, based on a
simplified rotordynamic model. Combined with 600Wh energy storage flywheel rotor system mathematical model, the Campbell
diagram of the rotor system was obtained by the calculation of the whirl frequency under different parameters of the controller in
MATLAB to analyze the effect of the controller parameter on the whirl frequency and to limit the operating speed and acceleration
or deceleration of the rotor. The result of the analysis can be used to set the support position of the rotor system, limit the ratio
of transverse moment of inertia and the polar moment of inertia, and direct the flywheel prototype future design. The presented
simplified rotordynamic model can also be applied to rotating machines.

1. Introduction

Later in the 1970s, flywheel energy storage was proposed as a
primary objective for electric vehicles and stationary power
backup [1]. With the improvements in materials, magnetic
bearing technology, and power electronics, flywheel energy
storage technology has large developments. Compared with
traditional battery energy storage system, flywheel energy
storage system has many advantages such as higher energy
storage density, higher specific power and power density,
lower risk of overcharge or overdischarge, wide range of oper-
ation temperature, very long life cycle, and environmental
friendliness [2].

Many problems appear as the development of flywheel
energy storage, and one of them is the bearing. Besides,
the active magnetic bearing (AMB) implies that bearing
forces are actively controlled by means of electromagnets,
a well-designed closed control loop, and other components
such as position sensors and power amplifiers [3]. Therefore,
the rotor of the AMB can be suspended to the predefined
positions by the controlled electromagnetic forces without
mechanical contact and friction between the magnetic bear-
ing and the rotor [4]. Based on the noncontact and friction-
less characteristics, the magnetic suspension of AMB offers

many practical and promising advantages over conventional
bearings such as longer life, lower rotating frictional losses,
higher rotational speed, and elimination of the lubrication
[5]. Hence, AMBs have been successfully and widely imple-
mented in various high-performance applications including
the rotating devices such as turbine engines [6], flywheel
energy and storage devices [7], bearingless motor [8], and
vacuum pump [9] and the nonrotating devices such as
motion control stage [10], biomedical applications [11], and
manufacturing equipment [12]. Furthermore, the adjustable
stiffness and damping characteristics make the AMB suitable
for elimination of vibration [13].

Many different kinds of excitations exist in rotor system—
for example, mechanical unbalance and misalignment of the
coupling—which may cause vibrations [14–18]. Besides these
typical excitations, also specific excitations associated with
the type of the rotating machine occur.This paper focuses on
vibrations of rotor system supported by active electromagnet
bearing; therefore, also electromagnetic forces have to be
considered, which may cause vibrations by an eccentricity.
The eccentricity can be divided into static eccentricity and
dynamic eccentricity. Static eccentricity is, for example,
caused by production tolerances regarding concentricity and
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Figure 1: Basic layout of a flywheel energy storage system.

fitting tolerance between stator housing, bearing housing,
and so on. Dynamic eccentricity is caused if the rotor is bent
or if the rotor core is eccentrically positioned on the rotor
shaft and so on.

The aim of this paper is to show a theoretical vibration
analysis of the rotor system of 600Wh flywheel energy
storage system, based on a simplified rotordynamic model.
The result of the analysis can be used to set the support
position of the rotor system, limit the ratio of transverse
moment of inertia and the polarmoment of inertia, and direct
the flywheel prototype future design.

2. System Modeling

2.1. System Structure. The basic layout of a flywheel energy
storage system is depicted in Figure 1, that is, the 600Wh
prototype system, a rigid vertical rotor shaft with a rigid
motor and flywheel connected to shaft. Flywheel energy
storage system is a complex construction where energy is
storedmechanically and transferred to and from the flywheel
by an integrated motor/generator.

Two radial active electromagnetic bearings (RAMBs)
including upper and lower RAMBs (RAMB1 and RAMB2
in Figure 1) and one thrust magnetic bearing (TAMB) are
fixed on the platform to suspend and regulate the rotor in
the radial and axial DOF, respectively. The positions of the
rotor in five axes are defined as the displacements deviated
from the nominal air gaps.Therefore, two pairs of the perpen-
dicular eddy-current position sensors are installed closely to

respective RAMBs to measure the respective radial positions
in 𝑥- and 𝑦-axes which are denoted as 𝑥

1
and 𝑦

1
of the upper

RAMB and 𝑥
2
and 𝑦

2
of the lower RAMB. Moreover, one

eddy-current position sensor is installed closely to TAMB to
measure the axial position in the 𝑧-axis which is denoted as
𝑧. After the rotor positions in five axes are all measured and
sent to the control core through the position signals line, the
required electromagnet currents are generated from the drive
system and they circulate the coils through the power line.
Therefore, the rotor can be regulated and stabilized in the
centers of the apertures of the two RAMBs and the thrust disc
can be centered in the middle of the air gap of the TAMB,
respectively.

One 70 kg flywheel is mounted on the rotor whose posi-
tion can be adjusted to modify the rotational characteristics.
Furthermore, one motor/generator is equipped between the
lower RAMB and flywheel and is responsible for the torque
generation or electricity generation based on the rotational
speed requirement. However, in the rotor system, the rolling-
element auxiliary bearings (auxiliary bearing 1 and auxiliary
bearing 2 in Figure 1) are necessary to protect AMB stators
and stationary components along shaft in the even 𝑡 of AMB
failure or high transient loads. Under normal operation of
AMBs, the rotor maintains a positive clearance with auxiliary
bearings, which is less than a clearance with AMBs.

2.2. AMB Modeling

2.2.1. Electromagnetic ForceModel. Considering the diameter
of the shaft and the loading capacity, the RAMB with 8-
pole legs was designed in the 600Wh prototype system. The
structural configuration of theRAMB is shown in Figure 2(a),
including electromagnetic coils. And the basic magnetic
bearing control loop is shown in Figure 2(b).

Taking the two pairs of poles in the 𝑦-axes of one
RAMB, for example, the electromagnetic force model will be
established [19]. As shown in Figure 2(b), the basic magnetic
bearing control loop includes differential driving, position
sensor, controller, and power amplifier. The included differ-
ential driving is adopted in this study to obtain maximum
range of the force dynamic and good linearity of the control
dynamic. 𝛼 is the half of the angle between the two-pole legs,
𝑦
0
is the nominal air gaps of the RAMB in 𝑦-axes, and 𝑦

1

is the deviation in 𝑦-axes. So the upper available air gap is
calculated as (𝑦

0
+ 𝑦
1
cos𝛼) and the lower one is calculated

as (𝑦
0
− 𝑦
1
cos𝛼). 𝑖

0
is the base current and the 𝑖

𝑦1
is the

control current. 𝑖
0
+𝑖
𝑦1
and 𝑖
0
−𝑖
𝑦1
circulate the upper and the

lower coils in the 𝑦-axis, respectively. 𝑓
1
and 𝑓

2
are the total

attractive electromagnetic forces in the 𝑦-axis, which is given
as follows:

𝑓
1
=

𝜇
0
𝐴
0
𝑁
2

4

(𝑖
0
+ 𝑖
𝑦1
)

2

(𝑦
0
+ 𝑦
1
)
2
cos𝛼 (1)

𝑓
2
=

𝜇
0
𝐴
0
𝑁
2

4

(𝑖
0
+ 𝑖
𝑦1
)

2

(𝑦
0
− 𝑦
1
)
2
cos𝛼, (2)
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Figure 2: Structural configurations and the basic magnetic bearing control loop of the RAMB.

where 𝜇
0
is the permeability 𝜇

0
= 4𝜋 × 10

−7H/m,𝐴
0
is the

effective cross-sectional area of one electromagnet, and 𝑁 is
the number of coils around the core.

Additionally, the total nonlinear attractive electromag-
netic forces for the 𝑦-axis can be modeled as follows:

𝑓
𝑦
= 𝑓
1
− 𝑓
2

=

𝑢
0
𝐴
0
𝑁
2

4

[(

𝑖
0
+ 𝑖
𝑦1

𝑦
0
+ 𝑦
1

)

2

− (

𝑖
0
− 𝑖
𝑦1

𝑦
0
− 𝑦
1

)

2

] cos𝛼.
(3)

Moreover, by taking the Taylor’s expansions of (1) with
respect to its nominal operating position (𝑦

1
= 0, 𝑖

𝑦1
=

0), the nonlinear electromagnetic forces can be represented
by the following simplified linearized electromagnetic force
models:

𝑓
𝑦1
≅ 𝑘
𝑖
𝑖
1
+ 𝑘
𝑦
𝑦
1
, (4)

where 𝑘
𝑦
and 𝑘

𝑖
are the displacement and current stiffness

parameters of the RAMB, respectively, and can be obtained
from the 𝑦-axis as follows:

𝑘
𝑦
≡

𝜕𝑓
𝑦1
(𝑦
1
, 𝑖
𝑦1
)
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2
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.

(5)

It is noted that since the coils in the 𝑥-axis and the 𝑦-axis are
circulated by the same bias currents 𝑖

0
and the nominal air

gaps in the 𝑥-axis and the 𝑦-axis are also the same, that is the
displacement and current stiffness parameters 𝑘

𝑥1
and 𝑘

𝑖1

obtained from the 𝑦-axis are the same as the ones obtained
from the 𝑥-axis (where, the bearing has been assumed to be
isotropic).

2.2.2. The Controller of the AMB. The development of PID
control has been around for 90 years and is still popu-
lar for industries and academies nowadays [20]. Due to
the complexity of the rotor vibration problem, most engi-
neers have turned to primitive control technologies such as
the proportional-integral-derivative (PID) controller, which
presently accounts for over 95% of all industrial control
applications. This is not because practicing engineers are
unaware of recently developed control methods, but because
they find the advanced controllers difficult to tune and that
it requires years of training. The overwhelming advantage in
selecting PID over more advanced controllers is its ease of
use, with only three tuning parameters and applicability to a
vast range of plant models. It is very important to reduce the
controller complexity whenever possible and thus the overall
complexity of the closed loop system.

The block diagram of the total control system of the AMB
is shown in Figure 3, which consists of electromagnet, rotor,
displacement sensor, PID controller, D/A digital to analog
converter, and A/D analog to digital converter.

The transfer function of the PID controller can be written
as

𝐺 (𝑠) =

𝑈 (𝑠)

𝐸 (𝑠)

= 𝐾
𝑝
+

𝐾
𝑖

𝑠

+

𝐾
𝑑
𝑠

1 + 𝑇
𝑑
𝑠

, (6)

where 𝐾
𝑝
, 𝐾
𝑖
, 𝐾
𝑑
, and 𝑇

𝑑
are the proportional parameter,

the integral parameter, the derivative parameter, and the time
constant of the PID controller, respectively.

Combined with the gains of the power amplifier and
the sensor, the characteristic equation of the system can be
obtained as follows:

𝑏
5
𝑠
5
+ 𝑏
4
𝑠
4
+ 𝑏
3
𝑠
3
+ 𝑏
2
𝑠
2
+ 𝑏
1
𝑠
1
= 0, (7)
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where
𝑏
1
= 𝐴
𝑎
𝐴
𝑠
𝐾
𝑝
𝑘
𝑖
− 𝑘
𝑥

𝑏
2
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𝑎
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𝐾
𝑑
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𝑝
𝑇
𝑑
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𝑥
(𝑇
𝑎
+ 𝑇
𝑑
)

𝑏
3
= 𝑚 − 𝑘

𝑥
𝑇
𝑑
𝑇
𝑎

𝑏
4
= 𝑚 (𝑇

𝑎
+ 𝑇
𝑑
)

𝑏
5
= 𝑚𝑇
𝑎
𝑇
𝑑
,

(8)

where 𝑘
𝑥
and 𝑘

𝑖
are the displacement and current stiffness

parameters of the RAMB, respectively; 𝐴
𝑎
and 𝑇

𝑎
are the

amplifiable parameter and the time constant of the power
amplifier, respectively;𝐴

𝑠
and 𝑇

𝑠
are the amplifiable parame-

ter and the time constant of the sensor, respectively.
The parameters 𝐾

𝑝
, 𝐾
𝑑
, and 𝑇

𝑑
, of the controller can be

determined by the Routh stability criterion, and the results
are shown as follows (the detailed derivation is not listed in
this section):
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𝐾
𝑝
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𝐴
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𝑥𝑥

+
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𝑇
𝑎
𝑇
𝑑
)

4𝑚𝑘
𝑖𝑥
𝐴
𝑎
𝐴
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𝑇
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𝐾
𝑝
>

𝑘
𝑥𝑥

𝐴
𝑎
𝐴
𝑠
𝑘
𝑖𝑥

. (14)

By the above determination, the derivative time parameter
𝑇
𝑑
can be determined firstly, and then the appropriate value

can be selected; similarly, the ranges of the proportional
parameter 𝐾

𝑝
and the differential parameter 𝐾

𝑑
can also

be gained. According to the effect of the actual control, the
integral parameter𝐾

𝑖
can be added to eliminate the lag error.

The parameters of the bearing structure are set as 𝜇
0
=

4𝜋×10
−7 (H/m), and the initial bias current is selected as 𝐼

0
=

0.15A. Because of the air gap of the magnetic bearing 𝑆
0
=

3 × 10
−4m, the scope of the actual changes of the rotor is in

the range of 0 to 0.6mm, the change of the A/D is in the range
of 0 to 6,000 unit, and the equivalent gain𝐴

𝑠
of the sensor can

be obtained as 1 × 107 unit/m.
The range of the differential time parameter 𝐾

𝑝
deter-

mined by (9) is

0 < 𝑇
𝑑
< 0.8323. (15)

With 𝑇
𝑑
= 0.0001, the range of the proportional parameter

determined by (13), (14), and (9) can be carried out as

0.154 < 𝐾
𝑝
< 4.578. (16)

According to the optimal linear results, the proportional
parameter𝐾

𝑝
should be selected as𝐾

𝑝
= 1. And the range of

the differential parameter𝐾
𝑑
determined by (11) and (12) can

be given as

5.009 × 10
−5
< 𝐾
𝑑
< 1.921 × 10

−1
. (17)

Therefore, combined with (9), the controller’s parameters are
finally selected as follows:

𝐾
𝑝
= 1, 𝐾

𝑑
= 2 × 10

−3
, 𝑇

𝑑
= 1 × 10

−4
. (18)

2.3. Rotor SystemModeling. In this study, the rotor is assumed
to be a rigid and symmetric body. It is assumed that all
magnets have identical structure. For simplicity, we neglect
the magnetic flux leakage, the fringe magnetic flux, the eddy-
current loss, the saturation and hysteresis of the magnetic
core material, and the coupling effects between the electro-
magnets. The relationship between the center of mass (𝑂) of
the rotor and the five-DOF AMB is shown in Figure 4.

𝑜
󸀠
𝑥
󸀠
𝑦
󸀠
𝑧
󸀠 is the body fixed coordinate system with the 𝑧󸀠-

axes overlapping the geometric center axis of the electronic
bearing stator; 𝑂𝑥𝑦𝑧 is space fixed coordinate system with
the 𝑧-axes overlapping the geometric center axis of the rotor;
𝑂 is the center of mass. 𝑓

𝑥1
and 𝑓

𝑦1
are the upper RAMB

(RAMB1 in Figure 4) electromagnetic force of the rotor
corresponding to the 𝑥- and 𝑦-axes;𝑓

𝑥2
and𝑓
𝑦2
are the lower

RAMB (RAMB2 in Figure 4) electromagnetic force of the
rotor corresponding to the 𝑥- and 𝑦-axes; 𝑓

𝑧
is the TAMB

electromagnetic force of the rotor corresponding to the 𝑧-
axes; 𝑓

𝑏
is the centrifugal force due to the static imbalance;

𝑙
𝑧1

and 𝑙
𝑧2

represent the distances from the 𝑂 to the upper
RAMB (RAMB1 in Figure 4) and lower RAMB (RAMB2 in
the Figure 4), respectively; 𝑙

𝑐1
and 𝑙
𝑐2
represent the distances
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from the 𝑂 to the upper position sensor and lower position
sensor, respectively; 𝑙

3
represents the distances from the 𝑂 to

the eccentric mass point; 𝑥
1
and 𝑦

1
denote the displacement

output of the upper position sensor; 𝑥
2
and 𝑦

2
denote the

displacement output of the lower position sensor; 𝛼, 𝛽, and 𝜑
denote the pitch, yaw, and spin angles displacements around
the 𝑥-, 𝑦-, and 𝑧-axes of the rotor; 𝜃 is the initial phase of the
centrifugal force due to the static imbalance; the rotational
speed of the rotor can be denoted by 𝜔.

𝑥, 𝑦, 𝑧 is the displacement of the rotor mass center
referring to the absolute coordinate system. The relationship
between the angular and translational motions of the mass
center and rotation, stress, and bearing is given as follows:

𝑥
1
= 𝑥 + 𝑙

𝑐1
𝛼

𝑦
1
= 𝑦 − 𝑙

𝑐1
𝛽

𝑥
2
= 𝑥 − 𝑙

𝑐2
𝛼

𝑦
2
= 𝑦 + 𝑙

𝑐2
𝛽

𝑧 = 𝑧

𝜔𝑡 = 𝜑

(19)

𝑓
𝑥
= 𝑓
𝑥1
+ 𝑓
𝑥2

𝑓
𝑦
= 𝑓
𝑦1
+ 𝑓
𝑦2

𝑓
𝑧
= 𝑓
𝑧

𝑇
𝛼
= 𝑓
𝑥1
𝑙
𝑧1
− 𝑓
𝑥2
𝑙
𝑧2

𝑇
𝛽
= 𝑓
𝑦1
𝑙
𝑧2
− 𝑓
𝑦1
𝑙
𝑧1

𝑇
𝜑
= 𝑇
𝑑
.

(20)

Equations (19) are written in a matrix form for simple
description as follows:

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑥
1

𝑦
1

𝑥
2

𝑦
2

𝑧

𝜔𝑡

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

=

[

[

[

[

[

[

[

[

1 𝑙
𝑐1

0 0 0 0

0 0 1 −𝑙
𝑐1

0 0

1 −𝑙
𝑐2

0 0 0 0

0 0 1 𝑙
𝑐2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

]

]

]

]

]

]

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑥

𝛼

𝑦

𝛽

𝑧

𝜑

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

. (21)

Equation (21) is written as𝑌 = 𝐴𝑋,𝑌 is the sensor output
signal matrix, and𝑋 is displacement of the rotor mass center.

Equations (20) are also written in a matrix form for the
simple description as follows:

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑓
𝑥

𝑇
𝛼

𝑓
𝑦

𝑇
𝛽

𝑓
𝑧

𝑇
𝜑

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

=

[

[

[

[

[

[

[

[

1 0 1 0 0 0

𝑙
𝑧1

0 −𝑙
𝑧2

0 0 0

0 1 0 1 0 0

0 −𝑙
𝑧1

0 𝑙
𝑧2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

]

]

]

]

]

]

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑓
𝑥1

𝑓
𝑦1

𝑓
𝑥2

𝑓
𝑦2

𝑓
𝑧

𝑇
𝑑

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

. (22)

Equation (22) is directly translated as {𝐺} = [𝐵]{𝐹}, where
{𝐺} denotes the forces vector of the mass center of the rotor
as

{𝐺} = [𝑓𝑥
𝑇
𝑎
𝑓
𝑦
𝑇
𝛽
𝑓
𝑧
𝑇
𝜑]

𝑇

. (23)

{𝐹} denotes the electromagnetic forces vector produced by
the AMBs as

{𝐹} = [𝑓𝑥1
𝑓
𝑦1

𝑓
𝑥2

𝑓
𝑦2

𝑓
𝑧
𝑇
𝑑]

𝑇

. (24)

It is noted that when the rotor is regulated perfectly
(𝑥
1
= 𝑦
1
= 𝑥
2
= 𝑦
2
= 𝑧 = 0), the rotational speed

of the rotor can be denoted by 𝜔. As shown in Figure 3,
the control characteristics of the five-DOF AMB system are
highly nonlinear and time varying because of the system
parameter variations, external disturbances, and inherent
nonlinearity such as the coupling effects among five axes and
gyroscopic effects of rotation. Therefore, the dynamic states
that is, the rotor positions 𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, and 𝑧 of the five-

DOF AMB system, are coupled and affected by more than
one force. But, observing from (22), the couple of the radial
and axial motion of the system studied in this paper is so
small that the dynamic model of the five-DOF AMB system
is decoupled as five independent subsystems including four
radial subsystems according to 𝑥

1
, 𝑥
2
, 𝑦
1
, and 𝑦

2
axes and

one axial subsystem according to the 𝑧-axis to achieve the
decentralized control. So this study emphasizes the dynamics
behavior analysis of the four radial subsystems.

When the rotor is suspended steadily, the relative coordi-
nate system of the flywheel rotor coincides with the absolute
coordinate system of the AMB’s stator. The potential energy
of the stator in the origin𝑂 is zero;𝑚 is the mass of the rotor;
𝑔 is the gravity constant; 𝑧 are the coordinates of the 𝑂. The
potential energy of the rotor is given as 𝑈 = 𝑚𝑔𝑧.

The total kinetic energy of the system 𝑇 consists of the
translational kinetic energy 𝑇

𝑝
, rotational kinetic energy 𝑇

𝑧
,

and kinetic energy of eccentric mass 𝑇
𝑏
.
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Figure 5: Flywheel rotor with the eccentric mass.

The expression for the translational kinetic energy 𝑇
𝑝
is

𝑇
𝑝
=

𝑚

2

[(

𝑑𝑥

𝑑𝑡

)

2

+ (

𝑑𝑦

𝑑𝑡

)

2

] =

𝑚

2

(𝑥̇
2
+ ̇𝑦
2
) . (25)

The expression for the rotational kinetic energy 𝑇
𝑧
is

𝑇
𝑧
=

1

2

𝐽
𝑑
(𝛼̇
2
+

̇
𝛽
2
) +

1

2

𝐽
𝑝
𝜔 (𝛼

̇
𝛽 − 𝛼̇𝛽) , (26)

where 𝐽
𝑑
is transverse mass moments of inertia of the rotor,

and 𝐽
𝑝
is the polar moment of inertia of the rotor. Due to the

actual machining error and the assembly error, the rotor has
the eccentric mass. If the rotor has a residual static unbalance
following the ISO quality grade G6.3, it will produce the
kinetic energy when the rotor is spinning. As shown in
Figure 5, 𝑚

𝑏
is the eccentric mass and 𝑟

𝑏
is the eccentricity,

so the expression for the kinetic energy of eccentric mass 𝑇
𝑏

is

𝑇
𝑏
=

1

2

𝑚
𝑏
(
̇
𝑏
2

𝑥
+
̇
𝑏
2

𝑦
+ 𝜔
2
𝑟
2

𝑏
)

+ 𝑚
𝑏
(
̇
𝑏
𝑥
𝜔𝑟
𝑏
cos𝜔𝑡 − ̇

𝑏
𝑦
𝜔𝑟
𝑏
sin𝜔𝑡) .

(27)

There is the displacement from the geometric center of the
rotor to the one of the stator. 𝑏

𝑥
, 𝑏
𝑦
represent the displacement

corresponding to the 𝑥- and 𝑦-axes, respectively, as

𝑏
𝑥
= 𝑥 + 𝑙

3
𝛼

𝑏
𝑦
= 𝑦 − 𝑙

3
𝛽.

(28)

Equation (28) is substituted to (27) as

𝑇
𝑏
=

1

2

𝑚
𝑏
[(𝑥̇ + 𝑙

3
𝛼̇)
2

+ ( ̇𝑦 − 𝑙
3
̇
𝛽)

2

+ 𝜔
2
𝑟
2

𝑏
]

+ 𝑚
𝑏
( ̇𝑦 − 𝑙

3
̇
𝛽) 𝜔𝑟
𝑏
cos𝜔𝑡 − 𝑚

𝑏
(𝑥̇ + 𝑙
3
𝛼̇) 𝜔𝑟
𝑏
sin𝜔𝑡.

(29)

So the total kinetic energy of the rotor is

𝑇 = 𝑇
𝑝
+ 𝑇
𝑧
+ 𝑇
𝑏

=

1

2

𝑚 (𝑥̇
2
+ ̇𝑦
2
) +

1

2

𝐽
𝑑
(𝛼̇
2
+

̇
𝛽
2
) +

1

2

𝐽
𝑝
𝜔 (𝛼

̇
𝛽 − 𝛼̇𝛽)

+

1

2

𝑚
𝑏
[(𝑥̇ + 𝑙

3
𝛼̇)
2

+ ( ̇𝑦 − 𝑙
3
̇
𝛽)

2

+ 𝜔
2
𝑟
2

𝑏
]

+ 𝑚
𝑏
( ̇𝑦 − 𝑙

3
̇
𝛽) 𝜔𝑟
𝑏
cos𝜔𝑡 − 𝑚

𝑏
(𝑥̇ + 𝑙
3
𝛼̇) 𝜔𝑟
𝑏
sin𝜔𝑡.

(30)

According to the above analysis, the axial motion and the
radial one are approximately orthogonal, and the influence
of the radial bearing on the rotor only is analyzed as follows.

𝑞 = [𝑥 𝑎 𝑦 𝛽]

𝑇 denotes the displacement vector in the
mass center of the rotor corresponding to the 𝑥- and 𝑦-axes.

𝑞
𝑧
= [𝑥𝑧1

𝑦
𝑧1

𝑥
𝑧2

𝑦
𝑧2]

𝑇 denotes the displacement vec-
tor in the position of the RAMB corresponding to the 𝑥- and
𝑦-axes.

By means of Lagrange equations, which state

𝑑

𝑑𝑡

(

𝜕𝑇

𝜕 ̇𝑞
𝑖

) −

𝜕𝑇

𝜕𝑞
𝑖

+

𝜕𝑈

𝜕𝑞
𝑖

= 𝑄
𝑖
, (31)

where 𝑇 is the total kinetic energy, 𝑈 is the total potential
energy, and 𝑄

𝑖
is the generalized force for the coordinate 𝑞

𝑖
,

a system of four equations describing the dynamics of the
model is obtained, which can be written as

(𝑚 + 𝑚
𝑏
) 𝑥̈ + 𝑚

𝑏
𝑙
3
𝛼̈ = 𝑓
𝑥1
+ 𝑓
𝑥2
+ 𝜔
2
𝑟
𝑏
sin𝜔𝑡

𝑚
𝑏
𝑙
3
𝑥̈ + (𝐽

𝑑
+ 𝑚
𝑏
𝑙
2

3
) 𝛼̈ − 𝐽

𝑝
̇
𝛽𝜔

= 𝑓
𝑥1
𝑙
𝑧1
− 𝑓
𝑥2
𝑙
𝑧2
+ 𝜔
2
𝑟
𝑏
𝑙
3
sin𝜔𝑡

(𝑚 + 𝑚
𝑏
) ̈𝑦 − 𝑚

𝑏
𝑙
3
̈
𝛽 = 𝑓

𝑦1
+ 𝑓
𝑦2
+ 𝜔
2
𝑟
𝑏
cos𝜔𝑡

− 𝑚
𝑏
𝑙
3
̈𝑦 + (𝐽
𝑑
+ 𝑚
𝑏
𝑙
2

3
)
̈
𝛽 + 𝐽
𝑝
𝛼̇𝜔

= 𝑓
𝑦2
𝑙
𝑧2
− 𝑓
𝑦1
𝑙
𝑧1
+ 𝜔
2
𝑟
𝑏
𝑙
𝑏
sin𝜔𝑡,

(32)

where 𝑓
𝑥1

and 𝑓
𝑦1

are the upper RAMB electromagnetic
force of the rotor corresponding to the 𝑥- and 𝑦-axes; 𝑓

𝑥2

and 𝑓
𝑦2

are the lower RAMB electromagnetic force of the
rotor corresponding to the 𝑥- and 𝑦-axes.The function of the
electromagnetic force is given as follows:

𝑓
𝑥1
= 𝑘
𝑖1
𝑖
1
+ 𝑘
𝑥1
𝑥
1

𝑓
𝑦1
= 𝑘
𝑖1
𝑖
1
+ 𝑘
𝑥1
𝑦
1

𝑓
𝑥2
= 𝑘
𝑖2
𝑖
2
+ 𝑘
𝑥2
𝑥
2

𝑓
𝑦2
= 𝑘
𝑖2
𝑖
2
+ 𝑘
𝑥2
𝑦
2
,

(33)

where 𝑘
𝑖1
, 𝑘
𝑖2
are the up and down current stiffness of the

active magnetic bearing, respectively. 𝑘
𝑥1
, 𝑘
𝑥2

are the up and
down displacement stiffness of the active magnetic bearing,
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respectively. The equation is translated as matrix operations
for observation as follows

[𝑀] { ̈𝑞} + 𝜔 [𝐺] { ̇𝑞} = [𝐵𝑧
] {𝐹
𝑧
} + {𝐹

𝑏
} , (34)

where [𝑀] is the mass matrix. Because of the small value, the
unbalance mass is neglected to make the simple calculation

𝑀 =

[

[

[

[

𝑚 + 𝑚
𝑏

𝑚
𝑏
𝑙
𝑏

0 0

𝑚
𝑏
𝑙
𝑏

𝐽
𝑑
+ 𝑚
𝑏
𝑙
2

𝑏
0 0

0 0 𝑚 + 𝑚
𝑏

−𝑚
𝑏
𝑙
𝑏

0 0 −𝑚
𝑏
𝑙
𝑏

𝐽
𝑑
+ 𝑚
𝑏
𝑙
2

𝑏

]

]

]

]

≈

[

[

[

[

𝑚 0 0 0

0 𝐽
𝑑
0 0

0 0 𝑚 0

0 0 0 𝐽
𝑑

]

]

]

]

,

(35)

where [𝐺] is the inertia matrix, and {𝐵
𝑧
} is the length matrix

as

𝐺 =

[

[

[

[

0 0 0 0

0 0 0 −𝐽
𝑝

0 0 0 0

0 𝐽
𝑝
0 0

]

]

]

]

, 𝐵
𝑧
=

[

[

[

[

1 0 1 0

𝑙
𝑧1

0 −𝑙
𝑧2

0

0 1 0 1

0 −𝑙
𝑧1

0 𝑙
𝑧2

]

]

]

]

,

(36)

where {𝐹
𝑧
} is unbalanced force vector and {𝐹

𝑏
} is the force

vector in bearing place as

𝐹
𝑍
= (

𝑓
𝑥1

𝑓
𝑦1

𝑓
𝑥2

𝑓
𝑦2

) =(

𝑘
𝑖1
𝑖
1
+ 𝑘
𝑥1
𝑥
1

𝑘
𝑖1
𝑖
1
+ 𝑘
𝑥1
𝑦
1

𝑘
𝑖2
𝑖
2
+ 𝑘
𝑥2
𝑥
2

𝑘
𝑖2
𝑖
2
+ 𝑘
𝑥2
𝑦
2

),

𝐹
𝑏
= (

𝜔
2
𝑟
𝑏
sin𝜔𝑡

𝜔
2
𝑟
𝑏
𝑙
3
sin𝜔𝑡

𝜔
2
𝑟
𝑏
cos𝜔𝑡

−𝜔
2
𝑟
𝑏
𝑙
3
cos𝜔𝑡

) .

(37)

The transfer function block diagram of the PID controller is
shown in Figure 6.

In Figure 6, the current output depends on the input of
the referenced displacement, which states

𝐼 (𝑠) = 𝐾
𝑝
(1 + 𝑇

𝑑
𝑠) [−𝑌 (𝑠) + 𝑌

𝑏
(𝑠)] , (38)

where 𝑖 = 𝐾
𝑝
𝑦
𝑧
+ 𝐾
𝑝
𝑇
𝑑
̇𝑦
𝑧
− 𝐾
𝑝
𝑦 − 𝐾

𝑝
𝑇
𝑑
̇𝑦, 𝑦 =

[𝑥1
𝑦
1
𝑥
2
𝑦
2]

𝑇

𝐵
𝑧
𝐹
𝑧
= 𝐵
𝑧
𝑘
𝑖
𝐾
𝑝
[(−𝐶
𝑧
𝑞 + 𝑦
𝑧
) + 𝑇
𝑑
(−𝐶
𝑧
̇𝑞 + ̇𝑦
𝑧
)] + 𝐵

𝑧
𝑘
𝛿
𝑞
𝑏
,

(39)

where 𝐶
𝑧
= (

1 𝑙
𝑐1
0 0

0 0 1 −𝑙
𝑐1

1 −𝑙
𝑐1
0 0

0 0 1 𝑙
𝑐1

) , 𝑞
𝑏
= 𝐵
𝑇

𝑧
𝑞.

The differential equation of the system can be given as

𝑀 ̈𝑞 + (𝜔𝐺 + 𝐷) ̈𝑞 + 𝐾 ̇𝑞 + 𝑇𝑞 = 𝐹̇
𝑏
+ 𝐹
1
, (40)

Rotor 
𝐼(𝑠) 𝑌(𝑠)

+

+

++

−

𝑌𝑟(𝑠)

P

I

D

Figure 6: Transfer function block diagram of the PID controller.

where 𝐷 = 𝑘
𝑖
𝐾
𝑝
𝑇
𝑑
𝐵
𝑧
𝐶
𝑧
, 𝐾 = 𝑘

𝑖
𝐾
𝑝
𝐵
𝑧
𝐶
𝑧
− 𝑘
𝛿
𝐵
𝑧
𝐵
𝑇

𝑧
, 𝑇 =

𝐾
𝑝
𝑘
𝑖
𝐵
𝑧
𝐶
𝑧
/𝑇
𝑖
, and 𝐹

1
= 𝑘
𝑖
𝐾
𝑝
𝐵
𝑧
̇𝑦
𝑧
+ 𝑘
𝑖
𝐾
𝑝
𝑇
𝑑
𝐵
𝑧
̇𝑦
𝑧
.

When 𝑦
𝑧
= 0, that means that the rotor is running

steadily, and the differential equation can be written as

𝑀 ̈𝑞 + (𝜔𝐺 + 𝐷) ̈𝑞 + 𝐾 ̇𝑞 + 𝑇𝑞 = 𝐹̇
𝑏
, (41)

where 𝑇
𝑖
is the differential coefficient of the PID controller

and 𝐹̇
𝑏
is the force as

𝐹̇
𝑏
= (

𝑟
𝑏
𝜔
3 cos𝜔𝑡

𝑟
𝑏
𝑙
𝑏
𝜔
3 cos𝜔𝑡

−𝑟
𝑏
𝜔
3 sin𝜔𝑡

𝑟
𝑏
𝑙
𝑏
𝜔
3 sin𝜔𝑡

) . (42)

Then, in order to express this system in the state space form,

𝑥̇ = 𝐴𝑥

𝑥 = [𝑞 ̇𝑞 ̈𝑞]

𝑇

,

𝐴 =
[

[

0 𝐼 0

0 0 𝐼

−𝑀
−1
𝑍 −𝑀

−1
𝐾 −𝑀

−1
(𝜔𝐺 + 𝐷)

]

]

(43)

are defined.
From the above analysis,𝐷,𝐾, and𝑇 are directly involved

with the controller’s parameters. The model will be variant
according to the variation of the controller’s parameters. The
dynamics characteristic of the system is given as follows.

3. Simulation Result Analysis

3.1. Systems Parameters. Suitable values for the parameters
involved in themodel of (41) were determined. Some of these
parameters will be varied, with the goal of obtaining useful
information for the optimization of designs. The parameters
are shown in Table 1. However, if not otherwise stated, the
following values will be the ones used for analysis.

3.2. Simulation Result Analysis. A planer motion of a rotor is
called awhirlingmotion or awhirl. And a circularwhirl in the
same direction as the shaft rotation is called a forward whirl,
and that in the opposite direction is termed a backward whirl.
Plot of these natural angular frequencies versus the rotational
speed is called a natural angular frequency diagrams (or
shortly natural frequency diagram) or a 𝑝 = Ω diagram [21].
Positive and negative values of 𝑝 correspond to forward and
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Table 1: Model parameters.

Parameter Description Value Unit
𝑚 Mass of rotor 70 kg
𝐿 Length of rotor 0.505 m
𝐿
𝑧1

Distance between 𝑂 and upper RAMB 0.3047 m
𝐿
𝑧2

Distance between 𝑂 and lower RAMB 0.2463 m
𝐿
𝑐1

Distance between 𝑂 and upper position sensor 0.3112 m
𝐿
𝑐2

Distance between 𝑂 and lower position sensor 0.2518 m
𝐽
𝑑

Transverse mass moments of inertia of rotor about the x- and y-axes 1.6426 Kg ⋅m2

𝐽
𝑝

Polar mass moment of inertia of rotor about the 𝑧-axis 1.9235 Kg ⋅m2

𝑟
𝑏

Distance between CG and external disturbances 0.263 m
𝑆
0

Nominal air gaps in the x- and y-axes of RAMB 0.3 mm
𝜇
0

Electromagnet parameter 4𝜋 × 10
−7 H/m

𝑖
0

Bias currents 0.15 A
𝑧
0

Nominal air gap in the 𝑧-axis of TAMB 0.3 mm
𝜔max Design maximum speed 20000 rpm
𝜔 Rated speed 5000∼16000 rpm

backwardwhirls, respectively.Diagramof natural frequencies
versus the rotational speed is also used. Its natural frequency
diagram is illustrated in Figure 6 where natural angular
frequencies become horizontal straight lines in the diagram.
Resonance mentioned later occurs at the angular frequency
given by the cross-point of this straight line and the line 𝑝 =
Ω. A forced oscillation becomes large in the neighborhood of
this resonance frequency. Sometimes, radii of these whirling
motions are represented by relative sizes of circles in the
diagram as shown in Figure 6. These diagrams are called
Campbell diagram, which is used to analyze the transient
dynamics characteristic of the rotor system.

According to Table 1, the differential coefficient of the
AMB’s controller is set as 0.002, and the proportional coef-
ficient is set as 1. Extracting the eigenvalues of 𝐴 for the
parameters given above with the running speed, 𝜔, varying
from 0 to 20,000 RPM, the Campbell diagram of the rotor is
obtained.

Examination of the results of the simulation using the
model of the rotor allows us to argument that rotational
modes of vibration have natural frequencies that are consid-
erably larger than those of translational modes. The forward
whirlingmodes that represent critical speeds, that is, the ones
that intersect with the line describing the frequencies equal
to the running speeds in Figure 7, are all translational. The
rotational modes do not intersect with that line but with
their backward directions (negative slopes). These natural
frequencies increase rapidly with the running speed and do
not represent critical speeds, and thus stability problems are
not expected to occur in these modes.

In Figure 7, we can know that the critical speed of the
rotor is about 2800 RPM, the backward whirling frequency is
about 48Hz, and the translational mode is kept as a constant
value 42Hz. So the stability problems are not expected to
occur in working running speeds. It is needed to accelerate or
decelerate quickly over 2800 RPM, so as to keep the system in
stability state.
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Figure 7: Campbell diagram of the system.

In Figure 8, the integral parameter 𝐾
𝑑
is kept at 0.002,

and the proportional parameter 𝐾
𝑝
is set as 0.5, 1, 1.5, and 2,

respectively. With the increase of the proportional parameter
𝐾
𝑝
, the forward whirling mode curve is away from the curve

𝑃 = Ω, the cross-point between the backward whirling curve
and the curve 𝑃 = Ω gradually rises, and the critical speed
increases as well. And the translational mode also increases,
which distinctly showed that proportional parameter affects
the stiffness of the rotor system; that is, the proportional
parameter plays a very important role in the stiffness of the
rotor system.

In Figure 9, the proportional parameter 𝐾
𝑝
is kept at 1,

and the differential parameter𝐾
𝑑
is set at 0.001, 0.002, 0.003,

and 0.004, respectively. With the increase of the differential
parameter𝐾

𝑑
, the forward whirlingmode curve is away from

the curve 𝑃 = Ω, the cross-point between the backward
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Figure 8: Campbell diagram of the system with the change of the
proportional parameter.
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Figure 9: Campbell diagram of the system with the change of the
differential parameter.

whirling curve and the curve 𝑃 = Ω gradually declined, and
the critical speed decreases as well.

The backward whirling modes change distinctly,
3200 RPM in the 𝐾

𝑑
= 0.001 and 2000RPM in the 𝐾

𝑑
=

0.004.
The effect of differential parameters on the whirlingmode

is distinct in running speed 0 ∼ 6000RPM, but as the run-
ning speed rises, the effect of the differential parameter 𝐾

𝑑

becomesmore andmore smaller. And the translational mode
also increases, which showed that the differential parameter
also affects the stiffness of the rotor system, but the influence
is not very distinctly compared with the influence of the
proportional parameter.

The following analysis shows how the dynamics of the
systemwould change if the distance between the two RAMBs
changed in the axial direction.The controller parameter𝐾

𝑝
is

selected as 1 and 𝐾
𝑑
is set to 0.002; the Campbell diagram of
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Figure 10: Campbell diagram of the system with the change of the
RAMB positions.

the systemwith the change of theRAMBpositions is shown in
Figure 10. Curve 1 shows that the positions of RAMBs are set
close to the center 50mm, respectively. Curve 2 shows that the
positions of RAMBs are not be changed. Curve 3 shows that
the positions of RAMBs are set far away from the center of
the system 50mm, respectively. Compared to the controller’s
parameters, the change of the RAMB positions does not
change the system’s translational mode but just changes the
whirlingmode of the system,which can verify that the change
of the RAMB positions does not change the overall stiffness
of the system.With the positions of RAMBs far away from the
center of the rotor, the critical speed of the backward whirling
mode increases from 2400 rpm to 3800 rpm.The result of the
analysis, which indicates that the shorter distance between
the locations of the twoRAMBs bearing can effectively reduce
the whirling frequency of the rotor, can be used to direct the
design of the rotor system.

The purpose of the flywheel storage machinery is to store
energy asmuch as possible.The polarmassmoment of inertia
of rotor determines the energy storage of the flywheel storage
machinery. So the effect of the whirling modes of the system
is gained as follows. The polar mass moment and transverse
mass moments of inertia of rotor depend on the geometry
of the rotor. Figure 10 is the Campbell diagram of the system
with the inertia ratio of the polar moment and the transverse
mass moment.

In Figure 11, the 𝐽
𝑝
/𝐽
𝑑
of the curve 1 is 1/3, that of curve 2

is 1/2, that of curve 3 is 1.17 (the designed one of the rotor
system), and that of curve 4 is 2. What we can see from
this figure is that with the ratio of the moments of inertia
increasing,𝐽

𝑝
/𝐽
𝑑
from almost 1/3 to about 2, and the forward

rotationalmode has increased; at the same time the backward
rotational mode has become smaller. The main consequence
of this occurrence is that this mode now intersects (the
curve 1) with the line describing the frequencies equal to the
running speeds and thus becomes a critical speed, with the
potential of becoming an unstablemode for a certain running
speed. Compared to the controller’s parameters, the change
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Figure 11: Campbell diagram of the system with the inertia ratio of
the polar moment and the transverse mass moment.

of the ratio of the moments of inertia also does not change
the system’s translational mode but just changes the whirling
mode of the system, which can verify that the change of the
RAMB positions does not change the overall stiffness of the
system.

With a constantmagnetic force and a constant polar mass
moment of inertia of rotor, the transverse mass moments
of inertia of rotor can be changed just by the change of the
distance between the local center to the overall center of the
rotor to avoid the work speed in the strong whirling mode,
which can greatly improve the stability of the system.

4. Conclusions

Variation studies were conducted to assess the influence of
controller and the rotor geometry, with running speed on
rotor dynamic stability. Each point on the lines (or surface)
represents the threshold running speed above which the
rotor becomes unstable for a certain parameter configuration.
This means that there is a distinctive operating speed below
which the system is always stable for a given parametric
configuration.

Considering the influence of controller, the dynamic
model of the rigidity flywheel rotor supporting by AMBs was
established to analyze the dynamics characteristic. The influ-
ence analysis of the controller’s parameters to the dynamics
characteristic was obtained.

(1)The rotational mode and critical speed will reduce as
the proportional parameter increases. And the translational
mode also increases, which distinctly showed that propor-
tional parameter affects the stiffness of the rotor system; that
is, the proportional parameter plays a very important role to
the stiffness of the rotor system.

The rotational mode will increase as the differen-
tial parameter increases. And the translational mode also
increases, which showed that the differential parameter also
affects the stiffness of the rotor system, but the influence is

not very distinctly compared with the influence of the pro-
portional parameter.

(2) The change of the distance between the mass center
of the rotor to the position of the RAMB will change the
cross-point of this straight line and the line 𝑃 = Ω but will
not change the trend of the total whirling frequency curve.
Compared to the controller’s parameters, the change of the
RAMB positions does not change the system’s translational
mode but just changes the whirling mode of the system,
which can verify that the change of the RAMB positions does
not change the overall stiffness of the system.

(3) The ratio 𝐽
𝑝
/𝐽
𝑑
is 1.17 and is close to critical value

1. There is not any cross-point of the curve of the forward
whirling mode and the line 𝑃 = Ω. These natural frequencies
increase rapidly with the running speed and do not represent
critical speeds, and thus stability problems are not expected
to occur in these modes. Compared to the controller’s
parameters, the change of the ratio of the moments of inertia
also does not change the system’s translational mode but just
changes the whirling mode of the system, which can verify
that the change of the RAMB positions does not change the
overall stiffness of the system.

The result of the analysis can be used to set the support
position of the rotor system, limit the ratio of transverse
moment of inertia and the polar moment of inertia, and
direct the flywheel prototype future design. The presented
simplified rotordynamicmodel can also be applied to rotating
machines.
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