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Two iterative decoding algorithms of 3D-product block codes (3D-PBC) based on genetic algorithms (GAs) are presented. The
first algorithm uses the Chase-Pyndiah SISO, and the second one uses the list-based SISO decoding algorithm (LBDA) based on
order-i reprocessing. We applied these algorithms over AWGN channel to symmetric 3D-PBC constructed from BCH codes. The
simulation results show that the first algorithm outperforms the Chase-Pyndiah one and is only 1.38 dB away from the Shannon
capacity limit at BER of 10−5 for BCH (31, 21, 5)3 and 1.4 dB for BCH (16, 11, 4)3. The simulations of the LBDA-based GA on
the BCH (16, 11, 4)3 show that its performances outperform the first algorithm and is about 1.33 dB from the Shannon limit.
Furthermore, these algorithms can be applied to any arbitrary 3D binary product block codes, without the need of a hard-in hard-
out decoder. We show also that the two proposed decoders are less complex than both Chase-Pyndiah algorithm for codes with
large correction capacity and LBDA for large i parameter. Those features make the decoders based on genetic algorithms efficient
and attractive.

1. Introduction

Among the proposed codes in the history of error correcting,
there are those who have performance very close to the
Shannon limit, like Turbo codes [1] and LDPC codes [2].
Nevertheless, the remarkable reduction of BER is performed
at the expense of their decoders complexity. The current
challenge for researchers in this field is to find a compro-
mise between performance and decoding complexity. Thus,
several optimization works of decoding algorithms have
emerged, in particular, those associated to product codes.
These codes were first introduced in 1954 by Elias [3]. In
1981 and 1983, an iterative decoding method hard-in hard-
out (HIHO) of these codes has been described, respectively
by Tanner [4] and Lin and Costello [5]. In 1994, a soft-in
soft-out (SISO) iterative decoding of the product block codes
(PBC) was proposed by Pyndiah et al. [6], using the Chase
algorithm as the elementary decoder [7]. This algorithm does

not work alone, but together with another decoder HIHO
which is not always easy to find for some codes, like quadratic
residue (QR). Later, in 2004, an enhanced SISO iterative
decoding algorithm of PBC, based on order reprocessing
decoding, was developed by Martin et al. [8].

Recently, the researchers in the field of channel cod-
ing were inspired from artificial intelligence techniques to
develop very good decoders for linear block codes. We quote
from the first works in this sense, the decoding of linear block
codes using algorithm A∗ [9], genetic algorithms [10], and
neural networks [11].

We were interested in this work in decoders based on
genetic algorithms (GAD) [10] applied to the 3D-product
block code (3D-PBC). It was shown in [12], that these
decoders applied to BCH codes outperform the Chase-2
algorithm and present a lower complexity for BCH codes
with large block lengths. We note that their performances can
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be improved further by optimizing some parameters such as
the population size and the number of generations.

In this paper, which is the continuation of the work [13],
we introduce and study two iterative decoding algorithms of
an arbitrary 3D binary product block code based on GAD.
The extrinsic information is computed in the first proposed
algorithm according to the Chase-Pyndiah formulas [6] and
is computed in the second one according to the list-based
SISO decoding algorithm (LBDA) [8]. A comparison at the
level of complexity of the proposed algorithms versus Chase-
Pyndiah and LBDA algorithms was made.

This paper is organized as follows. Section 2 defines the
3D-PBC code. Then, we explain in Section 3, the elementary
decoding based on GAD. The presentation and complexity
study of our iterative decoding algorithms using genetic
algorithms IGAD, will be given in Section 4. Section 5
illustrates, through simulations, the IGAD performances
and the effect of some parameters on these performances.
It also presents a comparison of performances between
the two proposed algorithms. Finally, Section 6 presents
the conclusion and indicates how the performances of our
decoders can be improved further.

2. 3D-Product Block Code (3D-PBC )

The product codes (or iterative codes) are a particular case of
serial concatenated codes. They allow to construct codes of
great length by concatenating two or more arbitrary block
codes with short lengths. In our case, we considered two
symmetric 3D-PBC, (16, 11, 4)3 and (31, 21, 5)3, which
consists of three identical codes BCH each one.

Let C(1)(n1, k1,d1), C(2)(n2, k2,d2), and C(3)(n3, k3,d3),
three linear block codes. We encode an information block,
using 3D-PBC = C(1) ⊗ C(2) ⊗ C(3) given in the Figure 1, by

(1) filling a cube of k2 rows, k1 columns and k3 as the
depth by k1 × k2 × k3 information bits;

(2) coding the k2 × k3 rows (the cube contains k3 lateral
plans which are composed from k2 rows each one)
using code C(1). The check bits are placed at the right,
and we obtain a new cube with k2 × k3 × n1 bits;

(3) coding the n1 × k3 columns of the cube obtained in
the previous step using code C(2). This means that the
check bits will be also encoded (the previous cube
contains n1 transverse plans which are composed
from k3 columns each one). The check bits are placed
at the bottom of the cube obtained in step 2, and we
get a new cube with n1 × k3 × n2 bits;

(4) Coding, finally the obtained cube in step 3 from
the front to the behind, that is, coding the n1 × n2

columns, using code C(3) (the previous cube consists
of n2 horizontal plans which contains n1 columns).
The check bits are placed at the behind. So, the last
cube which has n1 × n2 × n3 bits is the codeword.

We can show by similar reasoning in [14] that the
parameters of the 3D-PBC are

n3

n2

n1

k3

k2

k1

Figure 1: The 3D-product block code.

(i) length: n = n1 × n2 × n3;

(ii) dimension: k = k1 × k2 × k3:

(iii) minimum Hamming distance; d = d1 × d2 × d3.

(iv) rate: R = R1 × R2 × R3 = k1/n1 × k2/n2 × k3/n3.

This shows one of the best advantages of product block
codes: building very long block codes with large minimum
Hamming distance by concatenating short codes with small
minimum Hamming distance.

3. Elementary Decoding of Linear Codes

Let R = (R1, . . . ,Rn) be the received sequence at the decoder
input of a binary linear block code C(n, k,d) with a generator
matrix G.

3.1. Hard-Input Soft-Output Decoder

Step 1. Sort the elements of received vector R in descending
order of magnitude. This will put reliable elements in the
first ranks, since using an AWGN channel. Then, the vector
is permuted such that its first k coordinates are linearly
independent. We obtain a vector R′ = π(R) = (R′1, . . . ,R′n)
such that |R′1| ≥ |R′2| ≥ · · · ≥ |R′n|. Let G′ be the
permutation of G by π, that is, G′ = π(G).

Step 2. Quantize the first k bits of R′ to obtain vector r and
randomly generate (Ni−1) information vectors of k bits each
one. This vectors form with vector r the initial population of
Ni individuals (I1, . . . , INi).

Step 3. Encode individuals of the current population, using
G′ to obtain codewords: Ci = G′ · Ii(1 ≤ i ≤ Ni). Then,
compute individuals fitness, defined as Euclidian distance
between Ci and R′. Sort individuals in ascending order of
fitness.

Step 4. Place the first Ne individuals (Ne: elite number ≤ Ni)
to the next population, which will be completed by offsprings
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generated using reproduction operators: selection of two
best individuals as parents (a, b) using the following linear
ranking:

Wi = Wmax − 2(i− 1)(Wmax − 1)
Ni − 1

, ∀i ∈ {1, . . . ,Ni},
(1)

where Wi is the ith individual weight, and Wmax weight is
assigned to the fittest (nearest) individual.

Reproduce the (Ne + 1) remaining individuals of the next
population by crossover and mutation operations. Let pc,
pm and Rand be respectively, probabilities of crossover and
mutation, and a uniformly random value between 0 and 1,
generated at each time.

if Rand < pc, then for all ∈ {Ne + 1, . . . ,Ni}, j ∈
{1, . . . , k}:

Ii j =
⎧
⎪⎨

⎪⎩

aj if Rand <
(

1− aj + ajbj

)

+
aj − bj

1 + e−4R′j /N0

bj else,
(2)

and then,

Ii j = 1− Ii j if Rand < pm, (3)

else

Ii =
{
a if Rand < 0.5

b else,
(4)

end if
Repeat steps 3 and 4 for Ng generations.

Step 5. The first (fittest) individual D′ of the last generation
is the nearest to R′. So, the decided codeword is D = π−1(D′).

3.2. Soft-Input Soft-Output Decoder. In this section, we
present the SO GAD decoders (soft-output GAD) used as the
elementary decoder in our iterative decoding algorithms.

Let D denote the GAD decision of the input sequence R
and w the extrinsic information.

Let H( j) be the competitor codeword of D corresponding
to the jth bit defined by

∥
∥
∥H( j) − R

∥
∥
∥ = min

2≤p≤Ni

{∥
∥
∥Q(p) − R

∥
∥
∥,Q

(p)
j /=Dj

}

, (5)

where Q(p) is the pth codeword of the last generation, Q
(p)
j

and Dj are the jth bits of Q(p), D and, ‖.‖ is the Euclidean
distance.

Algorithm 1. (w,D) = SO GAD(k,n,R, pc, pm,Ni,Ng ,β).
Algorithm SO GAD accepts as input k,n, pc, pm,Ni,Ng ,
the coefficient β. This coefficient is optimized according
to the chosen code and SNR to enhance the algorithm
performance.

For j = 1 to n do
if H( j) exists, then

wj = D̃ j

[∥
∥H( j) − R

∥
∥− ‖D − R‖
4

]

= D̃ j

n∑

p=1,p /= j

H
( j)
p /=Dp

RPD̃p,
(6)

else

wj = βD̃j , (7)

where D̃ j = 2Dj − 1.
end if
End for

Algorithm 2. (w,D) = SO GAD(k,n,R, pc, pm,Ni,Ng ,Ns).
Let Ns be the LBDA parameter (Ns ≤ k) enhancing the
decoding performances [8]. The algorithm SO GAD accepts
as input k,n, pc, pm,Ni,Ng , and Ns. This parameter is usually
chosen to be 
2k/3� or k.

For j = 1 to k −Ns do

wj =
D̃ j

|Γ|
n∑

l=k−Ns+1,l∈Γ
D̃lwl if

n∑

l=k−Ns+1,l∈Γ
D̃lwl ≥ 0,

wj = D̃ j min
l∈Γ

{

D̃lwl > 0
}

otherwise,

(8)

where Γ denotes the set of positions j where H( j) exists.
End for
For j = k −Ns + 1 to n do
if H( j) exists, then

wj =
⎡

⎣
1
2
D̃ j

n∑

l=1

(

D̃l − H̃
( j)
l

)

Rl

⎤

⎦− Rj , (9)

else

wj =
D̃ j

|Γ|
n∑

l=k−Ns+1,l∈Γ
D̃lwl if

n∑

l=k−Ns+1,l∈Γ
D̃lwl ≥ 0,

wj = D̃ j min
l∈Γ

{

D̃lwl > 0
}

otherwise,

(10)

where Γ denotes the set of positions j where H( j) exists.
end if
End for.

3.2.1. Decoding. The SO GAD algorithm uses GAD for
decoding the input sequence R. The decision codeword D is
the top of the Ng th generation sorted in ascending order of
fitness, and the competitor codeword H( j) corresponding to
the jth bit of D, if it exists, is the first member of the last

generation which have the different jth bit H
( j)
j (H

( j)
j /=Dj).

3.2.2. Extrinsic Information. The decision codeword D and
the associated competitor codewords (H( j))1≤ j≤n are used to
calculate the extrinsic information from the formulas (6) and
(7) for the first algorithm and (8) and (9) in the case of the
second one.
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Figure 2: The (�θ/3 + 1)th iteration of IGAD1.

0.5 0.5 0.5

wϑ = 0

R + × +× +×Decoder 1 Decoder 2 Decoder 3

wϑ+1 wϑ+2 wϑ+3

Figure 3: The (�θ/3 + 1)th iteration of IGAD2.

4. Iterative Decoding Algorithm
and Complexity

In this section, we describe the iterative decoding algorithm
of PBC based on GAD (IGAD), then we show that IGAD has
a polynomial time complexity.

Let {C(i)(ni, ki,di)}1≤i≤3 denotes three binary linear block
codes of length ni, dimension ki, minimum Hamming
distance di, and generator matrix G(i).

4.1. Iterative Decoding Algorithm. Let (Rijk)1≤i≤n2,1≤j≤n1,1≤k≤n3

be the received codeword. Figures 2 and 3 show the iterative
decoding schemes of PBC based on GAD for the proposed
algorithms. The following is an outline of IGADs.

Algorithm 3. IGAD(k1, k2, k3,n1, n2, n3,R, pc, pm, Ni, Ng , Nit,
α, {Ns|β}).

Algorithm IGAD accepts as input k1, k2, k3, n1, n2, n3,
R, pc, pm, Ni, Ng , the iterations number Nit, the coefficients
(α(θ))0≤θ<3Nit

. In the case of the first algorithm, we use the
coefficients (β(θ))0≤θ<3Nit

, and in the second, we use the Ns

parameter. The α and β coefficients are optimized by simula-
tion step by step for each code. For the second algorithm, we
choose α to be 0.5.

Step 1. Extrinsic information initialization
θ = 0, Iteration = 1.

Let w(θ)
i jk is the extrinsic information given to θth elemen-

tary decoder by the other decoder:

w(0)
i jk = 0, 1 ≤ i ≤ n2, 1 ≤ j ≤ n1, 1 ≤ k ≤ n3. (11)

Step 2. Row, column, and depth decoding:
While (It ≤ Nit) do

Step 2.1. Decoding with SO GAD the jth column and esti-

mating the extrinsic information w(θ+1)
i jk , using (6) and (7), of

each vector s. j. at the input of the elementary decoder

s(θ)
i jk = Rijk + α(θ)w(θ)

i jk 1 ≤ i ≤ n2, 1 ≤ k ≤ n3. (12)

Step 2.2. and 2.3. Repeat step 2.1 for decoding the rows
and depths and estimating the extrinsic information. Let
D(θ+3) and w(θ+3) be respectively the cubes decision and
extrinsic information at the output of the depth elementary
decoder.

Step 3. Iteration = Iteration + 1; θ = θ + 1.
End While.

Select the decided codeword D(3Nit) at the Nitth iteration.
Stopping Criterion for the Second Algorithm.
Since the GAD decoder decides always a codeword, our

second decoder does not need to use the NCB (nonconver-
gent block) decoder proposed in [8]. So, its complexity will
be reduced.

4.2. Complexity Analysis. In this section, we present and
compare the expressions of time complexities of the studied
decoders.

4.2.1. IGADs Time Complexity. If we do not take into con-
sideration the calculating step of the extrinsic information,
the two algorithms have the same time complexity. The GAD
algorithm for a linear block codeC(n, k) has polynomial time
complexity O( f (k,n,Ni,Ng)), where the function f is given
by [12]

f
(

k,n,Ni,Ng

)

= k2n + NiNg
(
kn + logNi

)
. (13)

Time Complexity of IGAD1

(i) Time complexity of extrinsic information comput-
ing: For each decision (row, column, or depth) at the
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last generation of each iteration, the worst-case time
complexity of competitors search is O([Ni − 1]n).

From (6), the time complexity of extrinsic information
calculating in the worst-case (if the competitor exists) at
the last generation of each iteration is O(n2). So the total
time complexity of extrinsic information computing is
O(comp1(Ni,n)), where

comp1(Ni,n) = Nin + n2, (14)

(ii) total time complexity:

At any iteration of IGAD1, the first elementary decoder has
a time complexity of O(k2k3 f (k1,n1,Ni,Ng)), the second
decoder has a complexity of O(n1k3 f (k2,n2,Ni,Ng)),
and the third decoder has a time complexity of
O(n1n2 f (k3,n3,Ni,Ng)), so the total complexity is
polynomial:

O
(

Nit

[

k2k3g
(

k1,n1,Ni,Ng

)

+n1k3g
(

k2,n2,Ni,Ng

)

+ n1n2g
(

k3,n3,Ni,Ng

)])

,
(15)

where

g
(

k,n,Ni,Ng

)

= f
(

k,n,Ni,Ng

)

+ comp1(Ni,n). (16)

For the symmetric 3D-PBC n1 = n2 = n3 = n and k1 = k2 =
k3 = k, then the IGAD1 time complexity becomes

O
(

Nit
[
k2 + n2 + kn

][

k2n + NiNg
(
kn + logNi

)
+ nNi + n2

])

.

(17)

Time Complexity of IGAD2

(i) Time complexity of extrinsic information comput-
ing: The maximal number of competitors of each
decision is |Γ|max = n. So, at the last generation of
each iteration, the worst-case time complexity of the
first step given by (8) is O((k−Ns) max(2n+ 1, 2(n+
Ns − k) + 3)) = O(n(k −Ns)).

From (9), the worst-case time complexity of competitors
search is is O([Ni − 1](n− k + Ns)).

From (9) and (10), the time complexity in the worst-case
of the second step of extrinsic information calculating is

O((n− k + Ns) max(2n + 3, 2(n + Ns − k)

+3, 2n + 1)) = O(n(n− k + Ns)).
(18)

So the total time complexity of extrinsic information
computing is O(comp2(Ni,n,Ns, k)), where

comp2(Ni,n,Ns, k) = Ni(n− k + Ns) + n2, (19)

(ii) total time complexity:

The total complexity in this case is given from (16):

g
(

k,n,Ni,Ng

)

= f
(

k,n,Ni,Ng

)

+ comp2(Ni,n,Ns, k).

(20)

For the symmetric 3D-PBC n1 = n2 = n3 = n and k1 = k2 =
k3 = k, then the IGAD2 time complexity becomes

O
(
Nit
[
k2 + n2 + kn

]×
[

k2n + NiNg
(
kn + logNi

)
+ Ni(n− k + Ns) + n2

])

.

(21)

It is clear from (17) and (21) that IGAD2 is less complex than
IGAD1, and their complexities are equal if Ns = k.

4.2.2. Chase-Pyndiah and LBDA Algorithms Time Complex-
ities. We show that this algorithm has an exponential time
complexity. Let C(n, k,d) be a BCH code, and let M be
the test patterns number used in both Chase and OSD-i
(ordered statistic decoding) algorithms. The complexity of
each algorithm is O(Mn2log2n).

The Euclidian distance computing of each codeword
has a computational complexity of O(n). So, the total time
complexity of decoding and computing fitness of the M test
patterns is O(Mn2log2n).

At any given decoding iteration of the Chase-Pyndiah
algorithm, the sorting step of the M fitness has a time
complexity of O(Mlog2M) and the the worst-case time
complexity of competitors search is O([M − 1]n). Thus, the
total time complexity of the Chase-Pyndiah algorithm is

O(Nit[k2k3F(n1, k1, t1) + k3n1F(n2, k2, t2)

+n1n2F(n3, k3, t3)]),
(22)

where

F(n, k, t) =M
[

n2log2n + log2M
]

. (23)

Thus, in the case of n1 = n2 = n3 = n, k1 = k2 = k3 = k,
and, the exponential time complexity of the two algorithms
is

O
(

NitM
[
n2 + k2 + kn

][

log2M + n2log2n
])

. (24)

Note that in the case of Chase-2 algorithm, M = 2t ,
where t = �(d − 1)/2.

From (17) and (24), it is shown that IGAD1 and IGAD2
are less complex than the two Chase-Pyndiah and LBDA
algorithms for codes with large correction capacity t or for
large i parameter or also with great length and low rate.

5. Simulation Results

The figures in this section plot the bit error rate (BER) versus
the energy per bit to noise power spectral density ratio Eb/N0

for the symmetric 3D-PBC (16, 11, 4)3 and (31, 21, 5)3. The
simulation parameters used in IGADs are given in Table 1.

5.1. IGAD1 Performances

5.1.1. Scaling Factors Optimization for IGAD1. As the itera-
tions number increases, the extrinsic information gradually
becomes more reliable. To take the effect into account, the
scaling factors α are used to reduce the turbo decoder input
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Table 1: Simulation default parameters.

Ne 1

Nit 12 for (16, 11)3 and 15 for (31, 21)3

Channel AWGN

Modulation BPSK

Min. number of
transmitted frames 100

Min. of erroneous frames 30

Table 2: Optimized values of α and β for IGAD1.

Optimized values α(θ)

(31, 21, 5)3

(0, 1, 2, 3, 5, 7, 9, 10, 11, 15,

16, 17, 19, 19, 19, 15, 15, 15,

19, 19, 19, 17, 17, 17) · 10−2

α(θ) = 0.2, 24 ≤ θ ≤ 44

(16, 11, 4)3

Optimized α

(0, 6, 20, 30, 30, 20, 30, 23,

20, 50, 20, 50, 20, 30, 30, 20,

33, 30, 30, 30, 40, 40, 40, 30,

40, 30, 35, 40, 40, 40, 40,

32, 40, 23, 30, 40) · 10−2

(16, 11, 4)3

Nonoptimized α

0, 0.1, 0.01, 0.1, 0.1, 0.02,

0.1, 0.1, 0.03, 0.1, 0.1, 0.05,

0.1, 0.1, 0.07, 0.1, 0.1, 0.09

α(θ) = 0.1, 18 ≤ θ ≤ 35

Optimized values β(θ)

All codes
(0, 20, 40, 60, 80) · 10−2

β(θ) = 1, for all θ, θ ≥ 5

impact. It has shown that these factors depend on the code
and GAD. So, they are optimized step by step for each code.
The optimized values α and β for our algorithm are shown in
Table 2. However, as the scaling factors α and β are gradually
increased or decreased from the optimal values, the decoding
performance of IGAD1 decoder decreases. Figure 4 shows
the gain with the optimized values of α, for (16, 11, 4)3,
compared to the values taken randomly. The values of genetic
parameters used are Ng = 18, Ni = 35, pc = 0.97 and
pm = 0.03.

5.1.2. Effect of Evaluated Codewords Number. Generally, in-
creasing the number of evaluated codewords NiNg , the
probability to find the codeword closest to the input
sequence becomes high. This makes it possible to improve
the BER performances. The effect of increasing the number
of evaluated codewords on the BER improvement for code
(16, 11, 4)3 at the 12th iteration is presented in Figures 5 and
6. The values Ng = 18 and Ni = 60 can be the optimal values
in a large range Eb/N0. The other genetic parameters for the
first optimization are Ni = 35, pc = 0.97, and pm = 0.03;
Ng = 18, pc = 0.97, and pm = 0.03 for the second.

100

10−1

10−2

10−3

10−4

10−5

1 2 3 4 5 6 7 8

Optimized α

B
E

R

Nonoptimized α

(Eb/N0)

Figure 4: Effect scaling factor of (16, 11, 4)3 for 12th iterations on
IGAD1.

B
E

R

100

10−1

10−2

10−3

10−4

10−5

1.5 2.52

Ng = 15
Ng = 18
Ng = 21

(Eb/N0)

Figure 5: Effect of the generation number for (16, 11, 4)3 at 12th
iteration on IGAD1.

5.1.3. Cross-Over Rate Effect. Since the cross-over rate is one
of the important features of a genetic algorithm, an opti-
mization of this probability is necessary. Figure 7 shows
the optimized value pc = 0.97 for (16, 11, 4)3 3D-PBC
which improves the BER at a rather high SNR and at 12th
iteration. This value closing to 1 means that IGAD1 requires
a broad exploration and efficient exploitation, but increases
somewhat the algorithm complexity. Indeed, when pc is
close to 0, the crossover operation will occur rarely. For this
simulation, we fixed the other parameters as follows: Ng =
18, Ni = 60, and pm = 0.03.
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E
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10−1

10−2

10−3

10−4

10−5

1.5 1.7 1.9 2.1 2.3 2.5

Ni = 10
Ni = 15
Ni = 25

Ni = 35
Ni = 45
Ni = 60

(Eb/N0)

Figure 6: Effect of the population size for (16, 11, 4)3 at 12th
iteration on IGAD1.
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E

R

10−1

10−6

10−2

10−3

10−4

10−5

1.5 1.7 1.9 2.1 2.3 2.5

pc = 0.95
pc = 0.97
pc = 0.99

(Eb/N0)

Figure 7: Effect of the crossover probability for (16, 11, 4)3 at 12th
iteration on IGAD1.

5.1.4. Mutation Rate Effect. The effect of mutation rate on
IGAD1 for BCH (16, 11, 4)3 3D-PBC is depicted in Figure 8.
it is shown that pm = 0.05 is the optimal value for BER at a
high SNR and at 12th iteration. One reason of this value close
to 0 may be the stability of members in vicinity of optima for
low mutation rates. The fixed values are Ng = 18, Ni = 60,
and pc = 0.97.

5.1.5. Code Rate Effect. The Figure 9 shows the improve-
ment/degradation of the BER performance of IGAD1 at
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Figure 8: Effect of the mutation rate for (16, 11, 4)3 3D-PBC at
12th iteration on IGAD1.
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Figure 9: IGAD1 performances for BCH (16, 11, 4)3 and BCH (31,
21, 4)3 3D-PBC PBC at 12th iteration.

the 12th and 15ths, iteration respectively, with decreas-
ing/increasing the code dimension or code rate. The rate 0.31
of (31, 21, 4)3 is less than that of (16, 11, 4)3 which equals to
0.32. This explains the better performances for the first 3D-
PBC code in the range Eb/N0 ≥ 2.5 dB. In this simulation,
we adopted the optimal values previously found: Ng = 18,
Ni = 60, pc = 0.97, and pm = 0.03.

5.1.6. Comparison between IGAD1 and IGAD2. As the iter-
ation number increases, the IGADs performances improve
approximately in this paper in the whole Eb/N0 range for all
3D-PBC studied. The performances of the IGAD decoders
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Figure 10: BER of IGAD1 and IGAD2 of (16, 11, 4)3 for 12 iteration
(Ns = 8).

is depicted in Figure 10 for BCH (16, 11, 4)3 3D-PBC.
These performances can be improved by increasing the total
number of members as shown in Figure 6. The IGAD1
and IGAD2 performances are respectively about 1.4 dB and
1.33 dB away from the Shannon capacity limit, which is
0.97 dB for this code. We used the following optimized
parameters: Ng = 18, Ni = 60, pc = 0.97, and pm = 0.05.

6. Conclusion

In this paper, we have presented two iterative decoding
algorithms which can be applied to any arbitrary 3D-
product block codes based on a genetic algorithm, without
the need of a hard-in hard-out decoder. Our theoretical
results show that these algorithms reduce the decoding
complexity, for codes with a low rate and large correction
capacity t or large i parameter used in LBDA algorithm.
Furthermore, the performances of these algorithms can be
improved by using asymmetric 3D-PBC codes and also,
by tuning some parameters like the selection method, the
crossover/mutation rates, the population size, the number
of generations, and the iterations number. These algorithms
can be applied again on multipath fading channels in
both CDMA systems and systems without spread-spectrum.
Those features open broad prospects for decoders based on
artificial intelligence.

References

[1] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Transactions on
Communications, vol. 44, no. 9, pp. 1261–1271, 1996.

[2] D. J. C. Mackay and R. M. Neal, “Good codes based on very
sparse matrices,” in Proceedings of the 5th IMA Conference on
Cryptography and Coding, Springer, Berlin, Germany, 1995.

[3] P. Elias, “Error-free coding,” IRE Transactions on Information
Theory, vol. PGIT-4, pp. 29–37, 1954.

[4] R. M. Tanner, “A recursive approach to low complexity codes,”
IEEE Transactions on Information Theory, vol. IT-27, no. 5, pp.
533–547, 1981.

[5] S. Lin and D. Costello, Error Control Coding: Fundamentals and
Applications, Prentice-Hall, 1983.

[6] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum
decoding of product codes,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’94), vol. 1–3,
pp. 339–343, San Francisco, Calif, USA, 1994.

[7] D. Chase, “A class of algorithms for decoding block codes
with channel measurement information,” IEEE Transactions
on Information Theory, vol. 18, pp. 170–181, 1972.

[8] P. A. Martin, D. P. Taylor, and M. P. C. Fossorier, “Soft-input
soft-output list-based decoding algorithm,” IEEE Transactions
on Communications, vol. 52, no. 2, pp. 252–262, 2004.

[9] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, “Efficient
maximumlikelihood soft-decision decoding of linear block
codes using algorithm A∗,” Tech. Rep. SU-CIS-91-42, School
of Computer and Information Science, Syracuse University,
Syracuse, NY, USA, 1991.

[10] H. S. Maini, K. G. Mehrotra, C. Mohan, and S. Ranka,
“Genetic algorithms for soft decision decoding of linear block
codes,” Journal of Evolutionary Computation, vol. 2, no. 2, pp.
145–164, 1994.

[11] J. L. Wu, Y. H. Tseng, and Y. M. Huang, “Neural networks
decoders for linear block codes,” International Journal of
Computational Engineering Science, vol. 3, no. 3, pp. 235–255,
2002.

[12] F. El Bouanani, H. Berbia, M. Belkasmi, and H. Ben-azza,
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