
Research Article
A New Approach for Delivering Customized Security
Everywhere: Security Service Chain

Yi Liu, Hong-qi Zhang, Jiang Liu, and Ying-jie Yang

Information Science Technology Institute, Zhengzhou, Henan 450000, China

Correspondence should be addressed to Yi Liu; liuyi9582@126.com

Received 28 July 2017; Revised 22 October 2017; Accepted 8 November 2017; Published 12 December 2017

Academic Editor: Guangjie Han

Copyright © 2017 Yi Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Security functions are usually deployed on proprietary hardware, which makes the delivery of security service inflexible and of
high cost. Emerging technologies such as software-defined networking and network function virtualization go in the direction of
executing functions as software components in virtual machines or containers provisioned in standard hardware resources. They
enable network to provide customized security service by deploying Security Service Chain (SSC), which refers to steering flow
through multiple security functions in a particular order specified by individual user or application. However, SSC Deployment
Problem (SSC-DP) needs to be solved. It is a challenging problem for various reasons, such as the heterogeneity of instances in
terms of service capacity and resource demand. In this paper, we propose an SSC-based approach to deliver security service to
users without worrying about physical locations of security functions. For SSC-DP, we present a three-phase method to solve it
while optimizing network and security resource allocation.The presented method allows network to serve a large number of flows
and minimizes the latency seen by flows. Comparative experiments on the fat-tree and Waxman topologies show that our method
performs better than other heuristics under a wide range of network conditions.

1. Introduction

Today’s security service delivery approach is limited in
dynamics, flexibility, scalability, and efficient resource uti-
lization. Firstly, security services are configured in static and
inflexible ways, such as deploying hardware firewall and IDS
in the key position of network. They are coupled with the
underlying physical topology [1], making it difficult to deliver
customized security services according to user requirements
and network constraints. Secondly, reconfiguring existing
security service requires time-intensive manual operations,
making the approach often inflexible and hard to cope with
changeable requirements. Thirdly, there is a serious waste of
security resources. It is inefficient for flows from multiusers
or multibusinesses to share hardware-based security devices
since their positions are fixed.What is worse, security devices
need to work at full capacity so as to serve incoming flows,
especially burst flows in time.

Recent research efforts on promising network technolo-
gies, such as software-defined networking (SDN) [2] and

network function virtualization (NFV) [3], promise to revo-
lutionize security service delivery approach. SDN decouples
network control from forwarding and makes the former
directly programmable [4], realizing the centralized network
management. NFV moves network functions off proprietary
hardware onto standard servers (e.g., ×86 based systems)
in the form of virtual network function (VNF). This way
of separating and abstracting functionalities from locations
facilitates flexible orchestration of network functions [5].
Moreover, in the state of the art, VNFs can achieve approxi-
mate performance of hardware devices [6–8]. Together, SDN
and NFV make networks and network devices agile [9].

As a consequence, the concept of Security Service Chain
(SSC) [10] has been proposed, which refers to an ordered set
of security functions composing a logical security service that
must be applied to packets or flows. With the help of fine-
grained flow management originated from SDN and flexible
function orchestration originated from NFV, deploying SSC
becomes a promising way to deliver security service. By
placing security functions in a topology independent way,

Hindawi
Security and Communication Networks
Volume 2017, Article ID 9534754, 17 pages
https://doi.org/10.1155/2017/9534754

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194217368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/9534754

2 Security and Communication Networks

it dynamically and flexibly adds or removes functions along
the routing path of flow, thereby catering to changeable
user demands and network conditions. The key problem
is automatically converting abstract SSCs to the specific
placement of security function instances or simply instances
and routing paths of flows.We refer to this problem as the SSC
Deployment Problem (SSC-DP). Generally, an SSC is derived
from the security request of individual user or application.
An instance is an operational software or hardware instance
capable of delivering the treatment specified by the associated
security function to packets or flows [11]. We only consider
software instances, namely, virtualized security functions
(e.g., virtual firewall, IPS, Web filter, and virus scanner). The
server running them is called service node, which not only
provides a runtime environment but also comprises facilities
for attaching instances to the network.

However, several issues should be considered before solv-
ing SSC-DP due to limited network resources. First, instances
belonging to the same security function may differ in service
capacity. For example, the throughput of a single instancemay
be far less than the volume of flow which generates security
request. So instances providing the same functionality should
be combined to serve a big flow. However, instances may
also differ in resource demand. Thus, in order to minimize
resource consumption of service nodes, we need to select the
optimal combination of instances and assign more flows to
the instancewith high service capacity. Second, instancesmay
have different demands for various resources. For example,
an instance needs two CPU cores and 4MB memory while
another consumes one CPU core and 6MB memory. So
resources on a server may have different occupancy ratios,
which leads to resource fragmentation problem [12]. Specif-
ically, as far as a single service node is concerned, if the
occupancy ratio of certain resource reaches the threshold, the
node cannot run new instances anymore.Third, flows should
be routed in such a way to follow the sequence specified
by SSC while optimizing the latency of security service,
since latency is an important factor in measuring network
performance [13–15]. Hence, an optimal solution of SSC-DP is
needed to satisfy service demand of security request while min-
imizing resource consumption of service nodes and reducing
resource fragmentation as well as forwarding flow through the
best available path with the minimal security service latency.

In this paper, we propose an approach that adopts the
idea of SSC in the design of a solution for dynamically
delivering customized security services. Since the key to
effective operation of the proposed approach is to solve SSC-
DP, we propose TPSSC, a three-phase method of finding
near-optimal solutions of SSC-DP. Our main contributions
are summarized as follows:

(i) We design an architecture to realize the idea of SSC
by integrating the concepts of SDN and NFV, which
facilitates security service delivery and management.

(ii) Taking into account the heterogeneity of service
capacity and resource demand of miscellaneous
instances, we propose the design operation before
deploying SSCs to physical network. It contributes to
reducing the total resource consumption of service

nodes while allowing us to place instances in ser-
vice nodes flexibly without worrying about service
demands of security requests.

(iii) Based on considering both resource fragmentation
and security service latency throughout the node
mapping phase and the link mapping phase, we pro-
pose heuristic algorithms to select service nodes for
instances and establish routing paths for flows. They
contribute to optimizing network resource allocation
and improving acceptance ratio of security requests.

The rest of this paper is organized as follows.We study the
related work in Section 2. Section 3 describes the architecture
of SSC-based security service delivery approach followed by
illustrating the integrated ETSI NFV MANO architecture
including the proposed architecture. In Section 4, we intro-
duce some important definitions and formally define the SSC
Deployment Problem. We present and evaluate the method
TPSSC in Sections 5 and 6, respectively. Lastly, we conclude
this paper with some future directions in Section 7.

2. Related Work

SSC-DP is similar to Virtual Network Embedding (VNE) [16]
problem in some aspects, such as placing virtual network
nodes (instances in our case) in physical infrastructure
and chaining them while optimizing resource utilization
or other objectives. However, solutions of VNE cannot be
applied to solving SSC-DP directly, since the latter imposes
additional constraints such as the service capacity of function
specified by user’s request. In other words, VNEdirectlymaps
virtual network to physical network, while SSC-DPmaps SSC
requests of flows to virtual network composed of instances
and then maps the latter to physical network. Moreover,
VNE only considers routers in physical network while SSC-
DP needs to deal with a much wider number of different
functions which have strict order.

Generally, SSC-DP can be regarded as a combination of
VNF placement and traffic routing. A number of researches
have been done in this field. Broadlywe classify them into two
domains as follows.

In the case that instances have been running on service
nodes, researches focus on the optimal selection of instances
and routing of flows. The method proposed by Dwaraki and
Wolf [17] transforms the network topology to a layered graph
and selects instances and routes for each flow by running
the Dijkstra algorithm. But it needs to find the shortest
path in large space and the storage of layered graph costs
high. Worse still, big flows may be accepted early, preventing
network from holding more subsequent flows. To conquer
this problem, Cao et al. [18] propose an online routing
algorithm which can enable network to accept flows as many
as possible over time. But it does not take into account
the service capacity of instance. Thus, the work by Xiong
et al. [19] selects instances and routes based on the service
capacities of instances and the bandwidths of physical links,
respectively. But the end-to-end latency of a flowmay be large
resulting from long distance between two instances belonging
to the same flow. In [20], Ghaznavi et al. compare different

Security and Communication Networks 3

operations of VNFs or flows. But they assume one VNF-
instance type.

In the opposite case, researches focus on determining the
required number of instances, deploying them to available
service nodes and routing flows. Various models have been
built using MIQCP [21], MILP [22–24], and ILP [12, 25–
27], which optimize different parameters such as end-to-
end latency and resource utilization. We analyze them from
the aspect of their solving methods. Mehraghdam et al. [21]
use Gurobi optimizer, which is slow and cannot reconcile
multiple objectives. To speed up the solving process,Moham-
madkhan et al. [22] propose limiting the scale of problem
through diving flows into groups. But they also use an off-
the-shelf solver to solve the problem of each group. Allybokus
et al. [27] present a heuristic algorithm based on a linear
relaxation. In the case that two objectives are in competition,
the method presented by Addis et al. [23] prioritizes them
and uses CPLEX to find solutions for only one objective
in a phase. However, it needs to limit the execution time
of CPLEX in each phase. Improper time setting may affect
quality of solutions. Similarly, based on introducing binary
search, the method in [25] limits the execution time of
CPLEX in each iteration. Bari et al. [12] use Viterbi algorithm
to find a near-optimal placement of instances frommultistage
directed graph. But the graph needs to be updated frequently.
Reference [26] compares the effects of different deployment
strategies of VNFs on network resource consumption. But it
does not illustrate how to solve the developed model. D’Oro
et al. [28] propose a distributed solution by exploiting nonco-
operative game theory. But it assumes that source-destination
flow is not split amongmultiple paths. On the basis of decom-
posing network functions intomore elementary components,
Sahhaf et al. [29] propose an algorithmbased on backtracking
mechanism. Reference [24] also adopts decomposition strat-
egy but decomposes functions to multiple instances based on
their performance demands. However, with respect to our
work no consideration is made on instance sharing explicitly.
Beyondoffline problems, Lukovszki and Schmid [30] propose
deterministic online algorithms for deploying service chains.

From the above analysis, we can draw a conclusion that
most researches do not clear up the relationship among flow,
function, instance, and service node. Specifically, the function
required by multiple flows can probably be mapped to an
instance, or in other words those flows share an instance.
Multiple instances providing the same functionality may be
combined to serve a big flow, or in other words that flow
is split among multiple paths. Meanwhile, multiple instances
can run on a service node. Thus, in order to reduce the com-
plexity of SSC-DP, it is necessary to determine the required
instances for each SSC before placing them in the physical
network. In addition, existing researches are insufficient in
designing multipath routing of flows and improving solution
quality of optimization model.

3. Architecture Description

Wepropose an SSC-based security service delivery approach.
As shown in Figure 1, its architecture consists of the Security
ServiceManagement Platform (SSMP), the Security Function

Orchestrating Engine (SFOE), and the Flow Steering Engine
(FSE). SSMP is responsible for receiving and analyzing
security requests from users or network attack detection
tools. It extracts and organizes information about SSC from
those requests, such as the required number and types of
instances as well as their connections, which will be handed
over to SFOE.Then SFOE places instances on suitable service
nodes and gives the placement view to FSE. Meanwhile, it
sends commands to those nodes, creating and starting the
corresponding instances. Additionally, the instances should
register with SSMP after being started and SSMP will issue
security defense polices to them. Finally, according to SSC
information and the placement view, FSE computes routing
pathswhich are used to steer flows through instances in order.
And those paths are realized by flow table rules issued by SDN
controller. By this approach, instances of security functions
can be placed anywhere in the network and dynamically
composed to meet specific user or application demands.
Once demands or network conditions change, instances can
be automatically started or terminated and routing paths of
flows can also be adjusted accordingly.

The proposed architecture can be integrated with ETSI
NFV Architecture [31]. Figure 2 shows the integrated archi-
tecture. The Network Function Virtualization Orchestrator
(NFVO) component is in charge of network services lifecycle
management, such as instantiating, configuring, updating,
and terminating. The Virtual Network Function Manager
(VNFM) component is responsible formanaging the lifecycle
of VNF instances constituting specific network services. The
Virtualized Infrastructure Manager (VIM) takes charge of
managing NFV Infrastructure resources including comput-
ing, storage, and networking resources. The SDN controller
component, which is logically placed with the VIM, is used
for managing virtual networks through deploying flow table
rules to the switches. Our proposed architecture can be
regarded as the SSC Orchestrator component. Based on
security requests, it constructs the placement view of VNF
instances instantiated by the NFVO and creates routing paths
of flows. There are two main interfaces exposed by the
SSC Orchestrator. One is used by the SFOE to deliver the
placement view to NFVO so as to instantiate the related
VNFs. Another is used by the FSE to send routing paths of
flows to the SDN controller so as to apply the flow table rules
needed on the switches.

4. Definitions and Problem Statement

We first present a mathematical representation of a physical
network, security request, and security function instance.
Then we formally define the SSC-DP.

4.1. Definitions

Physical Network. We represent the physical network as an
undirected graph 𝐺𝑠 = (𝑁, 𝐸), where 𝑁 and 𝐸 denote the
set of physical nodes and links, respectively. We classify those
nodes into three groups as forwarding node 𝑛tr, which only
forwards packets to other nodes, such as switches; service
node 𝑛sr, which provides virtualized platform for running

4 Security and Communication Networks

Security Service Management
Platform (SSMP)

Security Function
Orchestrating Engine (SFOE)

① Security request

vFW

vWeb
Filter

vIPS

⑧ Flow-table rule

④ Command

Flow

PC

Web server

OpenFlow
Switch

Service node

Flow Steering Engine
(FSE)

SDN controller

Control information

② Preprocessing
information about SSC

③ Placement view
of security functions

⑥ Security defense polices

⑤ Registration

⑦ Routing path

② Preprocessing
information about SSC

Figure 1: Architecture and component interactions.

OSS/BSS

ETSI NFV
Architecture

VNF

NFV infrastructure

NFV Orchestrator

VNF manager

SDN controller

Virtualized
Infrastructure

Manager (VIM)

SSC Orchestrator

SSMP

FSE

SFOE

Vn-Nf

Os-Ma

NFV MANO

Service, VNF, and
infrastructure description

Se-Ma

Ve-Vnfm

Nf-Vi

Or-Vnfm

Vi-Vnfm

Execution reference point
Other reference point Main NFV reference point
SSCO reference point

Or-Vi

Ssco-Sc

Ssco-Or Smp-So

Smp-Fs

So-Fs

Figure 2: Integrated architecture.

instances; end node 𝑛end, which is the source or destination
of flow. Additionally, let 𝑅 be the set of available resources on
the service node. For each 𝑟 ∈ 𝑅, 𝑐(𝑟) denotes the amount of𝑟. Bandwidth and latency of physical link 𝑒 ∈ 𝐸 are denoted
as 𝑏𝑤𝑒 and 𝑙𝑎𝑡𝑒, respectively.

Security Request. It is identified by 4-tuple, 𝑟𝑞 fl (src,
dst, ch, run), where src and dst are the source and destination
of the flow generating 𝑟𝑞, respectively. 𝑐ℎ = {𝑓1, 𝑓2, . . . , 𝑓𝑛}
represents the SSC, where 𝑓𝑖 denotes a security function, 1 ≤𝑖 ≤ 𝑛. If 1 ≤ 𝑗 = (𝑖+1) ≤ 𝑛, 𝑓𝑖 is the immediate predecessor of

Security and Communication Networks 5

𝑓𝑗, denoted as pre(𝑓𝑗) = {𝑓𝑖}. Similarly, 𝑓𝑗 is the immediate
successor of 𝑓𝑖, denoted as succ(𝑓𝑖) = {𝑓𝑗}. run represents
service demand of 𝑟𝑞. We define it as the throughput demand
for instance and assume that the throughput demand is the
same for the whole SSC in this paper. Other indications can
also be used, like process rate of instance. It is an important
factor for determining the number and types of instances and
splitting flows.

Security Function Instance. A security function has different
types of instances with heterogeneous resource demands,
service capacities, and processing delays. Let ins(𝑓𝑖) ={𝑖𝑡𝑖1, 𝑖𝑡𝑖2, . . . , 𝑖𝑡𝑖𝑛} be the instance set of 𝑓𝑖, where an instance𝑖𝑡𝑖𝑗 is identified by 5-tuple, 𝑖𝑡𝑖𝑗 fl (𝑝 𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝑖𝑛𝑠 𝑛, 𝑐𝑎𝑝,𝑝𝑑). 𝑝 𝑡𝑦𝑝𝑒 is the type of associated security function, like
firewall, IDS. 𝑡𝑦𝑝𝑒 is used to distinguish instances with the
same 𝑝 𝑡𝑦𝑝𝑒, like firewalls developed by different companies.𝑖𝑛𝑠 𝑛 is the set of demands for different resources on service
node. For each 𝑟 ∈ 𝑅, 𝑟𝑑𝑟𝑖𝑗 ∈ 𝑖𝑛𝑠 𝑛. 𝑐𝑎𝑝 represents service
capacity, which is defined as the throughput of instance in this
paper, denoted as 𝑐𝑖𝑗. 𝑝𝑑 is processing delay.
4.2. Problem Statement. Given a physical network 𝐺𝑠 =(𝑁, 𝐸) and a set of security requests 𝑅𝑄, instantiate each
security function required by 𝑟𝑞 ∈ 𝑅𝑄 on certain service
nodes in 𝐺𝑠 and determine the physical routing paths of
the flow generating 𝑟𝑞. This procedure seeks to minimize
resource consumption of service nodes, resource fragmen-
tation, and security service latency. It is subjected to the
following constraints:

(i) A security function 𝑓𝑖 ∈ 𝑟𝑞 can be instantiated on
several service nodes in the form of different instance
types of 𝑓𝑖. Each selected service node has sufficient
resources to accommodate the demand of an instance
of 𝑓𝑖. Additionally, different flows can share a security
function instance on a service node.

(ii) A flow can be split. It means that there may be
multiple routing paths of the flowbetween two service
nodes where two adjacent security functions run. In
addition, the total bandwidth demand on a physical
link cannot exceed its available bandwidth.

5. TPSSC: A Three-Phase Method for
Solving SSC-DP

Based on the architecture presented in Section 3, we pro-
pose TPSSC which finds near-optimal solutions of SSC-
DP in three phases: designing, node mapping, and link
mapping. The former phase, conducted by SSMP, designs
a virtual security service topology according to security
requests, which describes the required instances and their
relations.

However, although the number of instances and the
throughput demand for each instance can be obtained from
the designing phase, optimally mapping virtual security
service topology to physical network is still NP-Hard [24].We
consider two optimization objectives in this paper: reducing

resource fragmentation and security service latency. A naive
way to perform the mapping is to treat each optimization
as an independent subproblem and solve them sequentially,
namely, solving first the placement of instances and then
the routing of flows. However, this way usually makes it
difficult to reduce latency because adjacent instances of the
same flow may be placed far away from each other. On the
other hand, some studies in the field of VNE have proposed
an isomorphic graph search based algorithm to solve those
two problems together [32]. But the algorithm is complex,
and unlike VNE, end nodes of SSC are fixed physically and
the sequence of security functions is often unidirectional.
By combining the advantages of those two methods, we
propose that a mapping procedure considers both resource
fragmentation and security service latency throughout the
mapping process. It can be divided into two phases, namely,
node mapping and link mapping. The two phases jointly
map the virtual security service topology to physical network,
namely, determining placement of instances and routing
paths of flows, which are conducted by SFOE and FSE,
respectively. In each phase, we optimize SSC deployment
from different perspectives. For the sake of convenient query,
we list the related symbols used in this paper in Abbrevia-
tions.

5.1. Designing Phase. In this phase, we propose an algorithm
to map each SSC to a combination of instances. From the
perspective of optimization, the combination of instances
satisfying throughput demand of request should consume
resources on service node as little as possible. And the flow
cannot be too scattered, considering reducing the possibility
of transmission interruption caused by link failure

𝐼 = ∑
𝑟𝑞𝑚∈𝑅𝑄

∑
𝑓𝑖∈𝑟𝑞𝑚.ch

∑
𝑖𝑡𝑖𝑗∈ins(𝑓𝑖)

∑
𝑟∈𝑅

𝜏𝑟 ⋅ 𝑥𝑚𝑖𝑗 ⋅ 𝑟𝑑𝑟𝑖𝑗, (1)

𝐷 = ∑
𝑟𝑞𝑚∈𝑅𝑄

∑
𝑓𝑖∈𝑟𝑞𝑚.ch

∑
𝑖𝑡𝑖𝑗∈ins(𝑓𝑖)

𝑥𝑚𝑖𝑗 . (2)

Let 𝑥𝑚𝑖𝑗 be the number of instances 𝑖𝑡𝑖𝑗 assigned to the
SSC of request 𝑟𝑞𝑚. As shown in (1), 𝐼 is the total resource
consumption of service nodes, where 𝜏𝑟 is weighting factor
used to adjust the relative importance of resources,∑𝑟∈𝑅 𝜏𝑟 =1. As shown in (2), 𝐷 represents the total scatter degree
of flows. Given certain SSC, the more the instances a flow
needs to traverse, the more the microflows that flow should
be split to. The basic procedure of our algorithm is shown
in Algorithm 1. It accepts security request set 𝑅𝑄, security
function set 𝐹, and the maximum number of iterations 𝑅 as
input. Note that each 𝑓𝑖 in 𝐹 has an instance set, in which ele-
ments are sorted by their throughput (i.e., 𝑐𝑖𝑗) in descending
order. Here, we use a temporary variable 𝑡𝑚𝑖𝑗 to keep track of
the candidate value of 𝑥𝑚𝑖𝑗 and use 𝑝𝑚𝑖 to indicate the instance
under consideration. Since there may be too many available
combinations of instances, the proposed algorithm, based
on the idea of greedy, gives priority to instances with high
throughput when assigning them to each SSC and limits the
maximum number of iterations.

6 Security and Communication Networks

Input: Security request set 𝑅𝑄, security function set 𝐹, maximum number of iterations 𝑅
Output: Instance combinations of SSCs
Initialize 𝑟 = 0; 𝑡𝑚𝑖𝑗 = 0; 𝑝𝑚𝑖 = 1
while (𝑟 < 𝑅)
for all 𝑟𝑞𝑚 ∈ 𝑅𝑄 and 𝑓𝑖 ∈ 𝑟𝑞𝑚.ch do𝑑 = 𝑟𝑞𝑚.run − ∑0≤𝑞<𝑝𝑚

𝑖
(𝑡𝑚𝑖𝑞 ⋅ 𝑐𝑖𝑞)

Find the minimum 𝑡𝑚𝑖𝑝𝑚
𝑖
satisfying 𝑡𝑚𝑖𝑝𝑚

𝑖
⋅ 𝑐𝑖𝑝𝑚
𝑖
≥ 𝑑

end for
Compute (𝛼𝐼 + 𝛽𝐷)
if 𝑟 = 1 or (𝛼𝐼 + 𝛽𝐷) < 𝛿 then𝛿 = (𝛼𝐼 + 𝛽𝐷)

Assign all 𝑡𝑚𝑖𝑗 to 𝑥𝑚𝑖𝑗
end if
update(all 𝑡𝑚𝑖𝑗)𝑟 = 𝑟 + 1

end while
return {𝑥𝑚𝑖𝑗 | 𝑟𝑞𝑚 ∈ 𝑅𝑄, 𝑓𝑖 ∈ 𝑟𝑞𝑚.ch, 𝑖𝑡𝑖𝑗 ∈ ins(𝑓𝑖)}
Function update(all 𝑡𝑚𝑖𝑗)
for all 𝑟𝑞𝑚 ∈ 𝑅𝑄 and 𝑓𝑖 ∈ 𝑟𝑞𝑚.ch do
if 𝑝𝑚𝑖 ≥ |𝑖𝑛𝑠(𝑓𝑖)| then

Backtrack set 𝑇𝑚𝑖 from 𝑝𝑚𝑖 − 1th element until
find the first element satisfying 𝑡𝑗 > 0𝑝𝑚𝑖 = 𝑗

end if𝑡𝑚𝑖𝑝𝑚
𝑖
= 𝑡𝑚𝑖𝑝𝑚
𝑖
− 1𝑝𝑚𝑖 = 𝑝𝑚𝑖 + 1

end for

Algorithm 1: Mapping SSC.

Let {𝑥𝑚𝑖𝑗 | 𝑖𝑡𝑖𝑗 ∈ ins(𝑓𝑖)} represent the instance set of𝑓𝑖 which is assigned to 𝑟𝑞𝑚. For each 𝑖𝑡𝑖𝑗, 𝑡ℎ𝑚𝑖𝑗 denotes the
throughput demand of 𝑟𝑞𝑚 for it. It satisfies 𝑡ℎ𝑚𝑖𝑗 ≤ 𝑐𝑖𝑗;∀𝑓𝑖 ∈ 𝑟𝑞𝑚.ch, ∑𝑖𝑡𝑖𝑗∈ins(𝑓𝑖) 𝑡ℎ𝑚𝑖𝑗 = 𝑟𝑞𝑚.run; the larger 𝑐𝑖𝑗 is, the
smaller (𝑐𝑖𝑗 − 𝑡ℎ𝑚𝑖𝑗) is.

Since Algorithm 1 does not take into account sharing
instances among flows, we can merge the instance combi-
nations of different SSCs, which can further reduce resource
consumption. Then virtual security service topology, repre-
sented as a directed graph 𝐺V = (𝑉, 𝐿), is built. The meanings
of symbols are as follows.

V ∈ 𝑉 is a virtual node. If it represents an instance 𝑖𝑡𝑖𝑗,
its weight 𝑤(V) is defined as the set of throughput demands
of requests for this instance. Specifically, if ∑𝑥𝑚𝑖𝑗 >0

𝑡ℎ𝑚𝑖𝑗 ≤ 𝑐𝑖𝑗,𝑤(V) = {𝑡ℎ𝑚𝑖𝑗 | 𝑥𝑚𝑖𝑗 > 0}. Otherwise, there are a set of nodes{V󸀠} representing 𝑖𝑡𝑖𝑗, and for each V󸀠, ∑𝑡ℎ𝑚𝑖𝑗 ∈𝑤(V
󸀠) 𝑡ℎ𝑚𝑖𝑗 ≤ 𝑐𝑖𝑗. If V

represents the source of flow, denoted as 𝑠, 𝑤(V) is defined as
the set of throughput demands of requests whose flow starts

from 𝑠; that is, 𝑤(V) = {𝑟𝑞𝑚.run | 𝑟𝑞𝑚.src = 𝑠}. The definition
of 𝑤(V) is similar if V represents the destination.𝑙 ∈ 𝐿 is a virtual link, representing the order between two
instances or between the source/destination of flow and an
instance. Assume that security functions 𝑓𝑖 and 𝑓𝑗 belong to
SSCs of 𝑟𝑞𝑚 and 𝑟𝑞𝑛, respectively, and they satisfy pre(𝑓𝑗) =𝑓𝑖. If the instance 𝑖𝑡𝑖𝑝 (𝑖𝑡𝑖𝑞) of 𝑓𝑖 (𝑓𝑗) is represented by
the virtual node V𝑝 (V𝑞), there is a virtual link from V𝑝 to
V𝑞, denoted as 𝑙(V𝑝, V𝑞). Its weight is defined as the set of
throughput demands of 𝑟𝑞𝑚 and 𝑟𝑞𝑛; that is, 𝑤(𝑙(V𝑝, V𝑞)) ={𝑑𝑏𝑚(V𝑝 ,V𝑞), 𝑑𝑏𝑛(V𝑝 ,V𝑞)}, where 𝑑𝑏𝑚(V𝑝 ,V𝑞) = min(𝑡ℎ𝑚𝑖𝑝, 𝑡ℎ𝑚𝑖𝑞) and𝑑𝑏𝑛(V𝑝 ,V𝑞) = min(𝑡ℎ𝑛𝑖𝑝, 𝑡ℎ𝑛𝑖𝑞). If an endnode of 𝑙 represents source
or destination, relevant definitions are similar. Additionally,
we use 𝑖𝑑(𝑙) = {𝑟𝑞𝑚, 𝑟𝑞𝑛, . . .} to record the requests whose
SSCs use the edge 𝑙.
5.2. Node Mapping Phase. In this phase, we aim to select a
suitable service node to run the instance represented by each
virtual node.

5.2.1. Formulation

min max
𝑛𝑖∈𝑁sr

(f ra𝑖) , (3)

utl𝑟𝑖 = ∑V𝑓∈𝑉ins 𝑥𝑖𝑓 ⋅ res𝑟𝑓𝑐𝑖 (𝑟) , (4)

Security and Communication Networks 7

utl𝑖 = ∑𝑟∈𝑅 utl
𝑟
𝑖|𝑅| , (5)

fra𝑖 = √∑
𝑟∈𝑅

(utl𝑟𝑖
utl𝑖

− 1)2, (6)

min max
(𝑠,𝑑)∈Φ

[max
𝜋𝑖∈𝜋(𝑠,𝑑)

(∑
𝑙(𝑢,V)∈𝜋𝑖

∑
𝑚,𝑛∈𝑁

𝑥𝑢𝑚 ⋅ 𝑥V𝑛 ⋅ hop(𝑚,𝑛))] , (7)

s.t. ∀V𝑓 ∈ 𝑉ins : ∑
𝑛𝑖∈𝑁sr

𝑥𝑖𝑓 = 1, (8)

∀𝑛𝑖 ∈ 𝑁sr, ∀𝑟 ∈ 𝑅 : ∑
V𝑓∈𝑉ins

𝑥𝑖𝑓 ⋅ res𝑟𝑓 ≤ 𝑐𝑖 (𝑟) (9)

∀V𝑠 ∈ 𝑉end, ∀𝑛𝑖 ∈ 𝑁end − {𝑎} : 𝑥𝑎𝑠 = 1, 𝑥𝑖𝑠 = 0 , (10)

∀V𝑑 ∈ 𝑉end, ∀𝑛𝑖 ∈ 𝑁end − {𝑎󸀠} : 𝑥𝑎󸀠𝑑 = 1, 𝑥𝑖𝑑 = 0 , (11)

∀𝑛𝑖 ∈ 𝑁sr, ∀V𝑓 ∈ 𝑉ins : 𝑥𝑖𝑓 ∈ {0, 1} . (12)

As resource fragmentation limits network to accept secu-
rity requests, we take minimizing the maximum resource
fragmentation of service nodes ((3)) as an objective. fra𝑖
((6))measures the resource fragmentation of 𝑛𝑖 by computing
the deviation between utilizations of different resources ((4)
and (5)). The smaller the deviation is, the more balanced
the utilizations are. Additionally, we consider security service
latency by optimizing the length of routing path. For the sake
of simplicity, we define the path length between two instances
(we regard the source and destination of flow as instances
with fixed physical locations in node mapping phase and link
mapping phase) as the minimum number of hops of all paths
between the service nodes they are placed on. Then for a
virtual path, its length is the sum of path lengths between
instances along it. As a flowmay correspond to several virtual
paths constructed by different instances in the virtual security
service topology, we define the length of routing path as
the maximum length of all virtual paths. So minimizing the
maximum length of routing path ((7)) is regarded as another
objective.

Thus, we provide a constrained multiobjective optimiza-
tion formulation, denoted as Problem P. It seeks to obtain
the optimal selection of service nodes without violating the
constraints of capacities of physical nodes and links. Our
formulation is as follows.

Equation (8) guarantees that an instance must be placed
on exactly one service node; (9) constrains the fact that
resource demands of all instances placed on a service node
should be less than or equal to available resources in that
node; (10) and (11) ensure that physical locations of the source
and destination of a flow are respected, respectively; (12)
constrains decision variables to be 0 or 1. For the sake of
clarify, we denote (3) and (7) as 𝑓1(𝑋) and 𝑓2(𝑋), where𝑋 = (𝑥𝑖𝑗)|𝑁sr+𝑁end|×|𝑉ins+𝑉end|

.

5.2.2. Proposed Algorithm. To obtain the Pareto-optimal
solutions of the above problem, inspired by immunememory
clonal algorithms [33, 34], we propose a service node selec-
tion algorithm based on bidirectional memory. The key idea
is to approximate the Pareto-optimal solutions from feasible
and infeasible regions. The basic procedure of our algorithm
is shown in Algorithm 2. It first establishes the memory unit
and the standby unit to reserve the current Pareto-optimal
feasible and infeasible solutions, respectively. After imple-
menting clone, mutation, and selection operation, it extracts
preponderant antibody population andneighboring antibody
population from the whole population.Then the former inte-
grates with the previous Pareto-optimal solutions in memory
unit, which ensures that the quality of solutions is not
degraded. The latter cooperates with the standby unit to
approximate the Pareto-optimal solutions from infeasible
region, which maintains diversity of antibody population.
Additionally, the newly obtained Pareto-optimal solutions
are used as the initial antibody population in next iteration,
which accelerates convergence rate of the proposed algo-
rithm. The main data structures and detailed operations are
presented as follows.

(1) Main Data Structure Description. There are three main
data structures used in the proposed algorithm.

Antibody Population. The algorithm maintains an antibody
population 𝐴(𝑖𝑡) = {𝑎1(𝑖𝑡), 𝑎2(𝑖𝑡), . . . , 𝑎𝑁𝑎(𝑖𝑡)} at the 𝑖𝑡th
generation, where𝑁𝑎 is the size of the population. Antibody𝑎𝑖(𝑖𝑡) is the encoding of candidate solution𝑋 for the Problem
P; that is, 𝑎𝑖(𝑖𝑡) = 𝑒(𝑋) = (𝑎1𝑖 (𝑖𝑡), 𝑎2𝑖 (𝑖𝑡), . . . , 𝑎𝑛𝑖 (𝑖𝑡)), 1 ≤ 𝑖 ≤𝑁𝑎, where 𝑛 is the length of the antibody and𝑎𝑓𝑖 (𝑖𝑡) = 𝑘means
placing the instance represented by V𝑓 on the service node 𝑛𝑘;
namely, 𝑥𝑘𝑓 = 1. In particular, if V𝑓 represents the source or

8 Security and Communication Networks

Input: Maximum number of iterations 𝑇, maximum size of antibody population𝑁𝑎, maximum
size of memory unit𝑁𝑚, size of standby unit𝑁𝑏, initial mutation probability mp0

Output: Memory unit𝑀(𝑖𝑡)
Initialize 𝑖𝑡 = 0; initializing antibody population 𝐴(𝑖𝑡), memory unit𝑀(𝑖𝑡) and standby unit 𝐵(𝑖𝑡).
Step 1. Generate 𝐶(𝑖𝑡) from 𝐴(𝑖𝑡) by the clone operation 𝑂𝑐:𝐶(𝑖𝑡) = 𝑂𝑐(𝐴(𝑖𝑡)) == {𝑐1(𝑖𝑡), 𝑐2(𝑖𝑡), . . . , 𝑐𝑁𝑐 (𝑖𝑡)}, where 𝑁𝑐 = ∑𝑁

𝑖=1 𝑝𝑖 (𝑖𝑡) .
Step 2. Update 𝐶(𝑖𝑡) by the mutation operation 𝑂𝑚:𝐷(𝑖𝑡) = 𝑂𝑚(𝐶(𝑖𝑡)) = {𝑑1(𝑖𝑡), 𝑑2(𝑖𝑡), . . . , 𝑑𝑁𝑐 (𝑖𝑡)}.
Step 3. Generate preponderant antibody population 𝑃(𝑖𝑡) and neighboring antibody population𝑄(𝑖𝑡) from𝐷(𝑖𝑡) by selection operation 𝑂𝑠.
Step 4. If the size of 𝑃(𝑖𝑡) is larger than𝑁𝑎, sort antibodies by their crowding distances [35] in

descending order and select the top𝑁𝑎 antibodies to form new antibody population 𝑃󸀠(𝑖𝑡),
otherwise 𝑃󸀠(𝑖𝑡) = 𝑃(𝑖𝑡):𝑃󸀠(𝑖𝑡) = 𝑂𝑢(𝑃(𝑖𝑡)) = {𝑝󸀠1(𝑖𝑡), 𝑝󸀠2(𝑖𝑡), . . . , 𝑝󸀠𝑁𝑎 (𝑖𝑡)}.

Step 5. Produce new memory unit𝑀󸀠(𝑖𝑡) by applying study operation 𝑂𝑙 on𝑀(𝑖𝑡) and 𝑃󸀠(𝑖𝑡):𝑀󸀠(𝑖𝑡) = 𝑂𝑙(𝑀(𝑖𝑡), 𝑃󸀠(𝑖𝑡)) = {𝑚󸀠
1(𝑖𝑡), 𝑚󸀠

2(𝑖𝑡), . . . , 𝑚󸀠
𝑅(𝑖𝑡+1)(𝑖𝑡)}, where 𝑅(𝑖𝑡 + 1) ≤ 𝑁𝑚.

Step 6. Update 𝑄(𝑖𝑡) by the self-repairing operation 𝑂𝑟:𝑄󸀠(𝑖𝑡) = 𝑂𝑟(𝑄(𝑖𝑡)) = {𝑞󸀠1(𝑖𝑡), 𝑞󸀠2(𝑖𝑡), . . . , 𝑞󸀠𝑁𝑞 (𝑖𝑡)}.
Step 7. Produce new standby unit 𝐵󸀠(𝑖𝑡) by applying replacement operation 𝑂𝑎 on 𝐵(𝑖𝑡) and 𝑄󸀠(𝑖𝑡):𝐵󸀠(𝑖𝑡) = 𝑂𝑎(𝐵(𝑖𝑡), 𝑄󸀠(𝑖𝑡)) = {𝑏󸀠1(𝑖𝑡), 𝑏󸀠2(𝑖𝑡), . . . , 𝑏󸀠𝑁𝑏 (𝑖𝑡)}.
Step 8. If 𝑖𝑡 ≥ 𝑇, output𝑀󸀠(𝑖𝑡) and end, otherwise 𝐴(𝑖𝑡 + 1) = 𝑃󸀠(𝑖𝑡),𝑀(𝑖𝑡 + 1) = 𝑀󸀠(𝑖𝑡),𝐵(𝑖𝑡 + 1) = 𝐵󸀠(𝑖𝑡), 𝑖𝑡 = 𝑖𝑡 + 1, go to Step 1.

Algorithm 2: Service node selection algorithm based on bidirectional memory.

destination of flow, 𝑎𝑓𝑖 (𝑖𝑡) is a known quantity and will not be
changed by the following operations.

By this encoding method, the two-dimensional mapping
relation between instances and service nodes is transformed
to one-dimensional vector, which satisfies (8) and (10)–(12)
inherently. So (9) is used to judge the feasibility of 𝑎𝑖(𝑖𝑡).

We introduce a new function 𝑔𝑟𝑖 (𝑋(𝑖, :)) = max{0,∑V𝑓∈𝑉ins 𝑥𝑓𝑖 ⋅ res𝑟𝑓 − 𝑐𝑖(𝑟)}, where 𝑛𝑖 ∈ 𝑁sr and 𝑟 ∈ 𝑅. Assume
that 𝑓3(𝑋) = ∑𝑛𝑖∈𝑁sr

∑𝑟∈𝑅 𝑔𝑟𝑖 (𝑋(𝑖, :)). If 𝑓3(𝑒−1(𝑎𝑖(𝑖𝑡))) = 0,
namely,𝑋 = 𝑒−1(𝑎𝑖(𝑖𝑡)) satisfies all constraints of the Problem
P, 𝑎𝑖(𝑖𝑡) is called feasible antibody. Otherwise, 𝑎𝑖(𝑖𝑡) is called
infeasible antibody. Furthermore, 𝑓3(𝑒−1(𝑎𝑖(𝑖𝑡))) is used to
measure the degree of constraint violation of an infeasible
antibody. The larger it is, the deeper the degree of constraint
violation of 𝑎𝑖(𝑖𝑡) is.

If two feasible antibodies, 𝑎𝑖(𝑖𝑡) and 𝑎𝑗(𝑖𝑡), satisfy the
condition that (∀𝑘 = 1, 2 : 𝑓𝑘(𝑒−1(𝑎𝑖(𝑖𝑡))) ≤ 𝑓𝑘(𝑒−1(𝑎𝑗(𝑖𝑡)))) ∧(∃𝑔 = 1, 2 : 𝑓𝑔(𝑒−1(𝑎𝑖(𝑖𝑡))) < 𝑓𝑔(𝑒−1(𝑎𝑗(𝑖𝑡)))), 𝑎𝑖(𝑖𝑡) is said to
Pareto dominate 𝑎𝑗(𝑖𝑡), denoted as 𝑎𝑖(𝑖𝑡) ≻ 𝑎𝑗(𝑖𝑡). Further-
more, 𝑎𝑖(𝑖𝑡) is called Pareto-optimal if there does not exist
another feasible antibody 𝑎∗(𝑖𝑡) in𝐴(𝑖𝑡) that satisfies 𝑎∗(𝑖𝑡) ≻𝑎𝑖(𝑖𝑡).
Memory Unit. Memory unit 𝑀(𝑖𝑡) = {𝑚1(𝑖𝑡), 𝑚2(𝑖𝑡), . . . ,𝑚𝑅(𝑖𝑡)(𝑖𝑡)} is defined as the set of all Pareto-optimal antibodies
in 𝐴(𝑖𝑡), whose size 𝑅(𝑖𝑡) changes dynamically. In other
words, it contains service node selection schemes that are
Pareto-optimal. We can implement any one scheme in it. To
improve the quality of solutions, we assume that the upper
limit of 𝑅(𝑖𝑡) is𝑁𝑚.

StandbyUnit. Standby unit𝐵(𝑖𝑡) = {𝑏1(𝑖𝑡), 𝑏2(𝑖𝑡), . . . , 𝑏𝑁𝑏(𝑖𝑡)},
whose size is𝑁𝑏, is defined as the set of infeasible antibodies
with relatively low degree of constraint violation in 𝐴(𝑖𝑡).
(2) Operation Description. We describe operations in the
proposed algorithm successively.

Initializing Operation. To improve the quality of initial
solutions, we propose an antibody population initializa-
tion algorithm based on preference. The preference of the
instance V𝑓 for the service node 𝑛𝑖 is defined as 𝑝𝑓𝑖𝑓 =1/((1/|𝑅|) ∑𝑟∈𝑅 𝜆2𝑟 − ((1/|𝑅|) ∑𝑟∈𝑅 𝜆𝑟)2 + 𝜎), where 𝜆𝑟 =
res𝑟𝑓/𝑐𝑖(𝑟) is the occupancy ratio of resource 𝑟 in 𝑛𝑖 occupied
by V𝑓 and 𝜎 is a small positive constant to avoid dividing by
zero in computing the preference. Then the preference list of
V𝑓, denoted as 𝑃𝐿(V𝑓), is built by sorting service nodes by𝑝𝑓𝑖𝑓 in descending order. Note that preference lists are known
before running the algorithm.

The key idea of our algorithm is to traverse preference
list of each instance until finding the service node satis-
fying resource constraint and distance constraint so as to
achieve optimization objectives initially. The basic procedure
is shown in Algorithm 3. Here, function 𝑆𝑒𝑙𝑒𝑐𝑡𝑓𝑖𝑟𝑠𝑡(𝑃𝐿(V𝑓))
means traversing 𝑃𝐿(V𝑓) in sequence until finding 𝑛𝑖 which
is the first service node satisfying two conditions simultane-
ously: (i) ∀𝑟 ∈ 𝑅, res𝑟𝑓 ≤ 𝑐𝑖(𝑟); (ii) ∀V𝑗 ∈ pre(V𝑓), 𝑎𝑗 = 𝑔,
hop(𝑛𝑔, 𝑛𝑖) ≤ 𝜃. If all nodes in 𝑃𝐿(V𝑓) just satisfy only one
condition, it selects the first node satisfying condition (i). If
all nodes do not satisfy condition (i), it randomly selects a
service node occupied by an instance of pre(V𝑓).

Security and Communication Networks 9

Input: 𝐺V, preference lists of all instances, the upper limit of hops between two nodes 𝜃
Output: Initial antibody population
for 𝑚 = 1 to𝑁𝑎 do
Trs = ⌀
while (𝑇𝑟𝑠 ̸= 𝑉ins)

for all V𝑓 ∈ 𝑉ins do
if idgV𝑓 = 0 then //idgV𝑓 is the in-degree of V𝑓𝑛𝑖 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑓𝑖𝑟𝑠𝑡 (𝑃𝐿(V𝑓))𝑎𝑓𝑚 = 𝑖

for all 𝑟 ∈ 𝑅 do𝑐𝑖(𝑟) = 𝑐𝑖(𝑟) − res𝑟𝑓
end for
idgV𝑓 = idgV𝑓 − 1
Trs = Trs⋃{V𝑓}
for all V𝑘 ∈ succ(V𝑓) do

idgV𝑘 = idgV𝑘 − 1
end for

end if
end for

end while𝑚 = 𝑚 + 1
end for
return 𝐴(0) = {𝑎1(0), 𝑎2(0), . . . , 𝑎𝑁𝑎 (0)}

Algorithm 3: Antibody population initialization algorithm based on preference.

Clone Operation. 𝑂𝑐 is defined as 𝑂𝑐(𝐴(𝑖𝑡)) = {𝑂𝑐(𝑎1(𝑖𝑡)),𝑂𝑐(𝑎2(𝑖𝑡)), . . . , 𝑂𝑐(𝑎𝑁𝑎(𝑖𝑡))}, where 𝑂𝑐(𝑎𝑖(𝑖𝑡)) = {𝑎11(𝑖𝑡), . . . ,𝑎1𝑝𝑖(𝑖𝑡)(𝑖𝑡)}, 1 ≤ 𝑖 ≤ 𝑁𝑎, and 𝑝𝑖(𝑖𝑡) is the clone scale of 𝑎𝑖(𝑖𝑡)
𝑝𝑖 (𝑖𝑡) = Int(𝐻 ⋅ 𝜂𝑖 (𝑖𝑡)∑𝑁(𝑖𝑡)

𝑗=1 𝜂𝑗 (𝑖𝑡) ⋅
1𝜓𝑖 (𝑖𝑡)) . (13)

𝑝𝑖(𝑖𝑡) is given by (13) and can self-adaptively be adjusted
by the antibody-antibody affinity 𝜓𝑖(𝑖𝑡) and the antibody-
antigen affinity 𝜂𝑖(𝑖𝑡).Their detailed definitions are as follows:

(i) Antibody-antibody affinity 𝜓𝑖(𝑖𝑡): it is measured by
the Euclidean distance between 𝑎𝑖(𝑖𝑡) and other anti-
bodies: 𝜓𝑖(𝑖𝑡) = min{exp(−‖𝑎𝑖(𝑖𝑡) − 𝑎𝑗(𝑖𝑡)‖)}, where𝑖 ̸= 𝑗, 1 ≤ 𝑗 ≤ 𝑁𝑎; ‖ ⋅ ‖ represents Euclidean distance,
and it is normalized to [0, 1].

(ii) Antibody-antigen affinity 𝜂𝑖(𝑖𝑡).
𝑅𝑗𝑖 (𝑎𝑘 (𝑖𝑡))
= {{{

1 𝑓𝑗 (𝑒−1 (𝑎𝑖 (𝑖𝑡))) ≤ 𝑓𝑗 (𝑒−1 (𝑎𝑘 (𝑖𝑡))) ,0 else,
(14)

𝜂𝑗𝑖 (𝑖𝑡) = 𝑁𝑎∑
𝑘=1

𝑅𝑗𝑖 (𝑎𝑘 (𝑖𝑡)) , (15)

𝜂𝑖 (𝑖𝑡) = 3∑
𝑗=1
𝜂𝑗𝑖 (𝑖𝑡) . (16)

To unify the affinity computation of feasible and infeasible
antibodies, we regard min𝑓3(𝑋) as an objective of the Prob-
lem P. So given a single antigen (i.e., an objective function)𝑓𝑗(𝑋), we can obtain relative affinity between the antibody𝑎𝑖(𝑖𝑡) and the antigen 𝑓𝑗(𝑋), denoted as 𝜂𝑗𝑖 (𝑖𝑡) ((15)), through
comparing the objective value of 𝑎𝑖(𝑖𝑡) (i.e., 𝑓𝑗(𝑒−1(𝑎𝑖(𝑖𝑡))))
with objective values of other antibodies ((14)). For the
Problem P with multiple objectives, 𝜂𝑖(𝑖𝑡) is defined as the
sum of relative affinities between 𝑎𝑖(𝑖𝑡) and each objective
((16)). This method can eliminate the bad influence of a too
large or too small objective value on the affinity.𝐻 is a given value relating to clone scale (we assume that𝐻 = 3𝑁) and the function Int() returns the value of a number
rounded upwards to the nearest integer. Apparently, the clone
scale decreases with the increase of inhibitory effect between
antibodies (namely, 𝜓𝑖(𝑖𝑡) increases) and the decrease of
antigen stimulation (namely, 𝜂𝑖(𝑖𝑡) decreases).
Mutation Operation. Since every value in antibody indicates
a service node, we propose a new mutation strategy to make
the mutation operation meaningful. For each antibody in𝐶(𝑖𝑡), we select two values in it randomly and exchange them
with probability of mp = mp0 ⋅ (1 − 𝑖𝑡/𝑇), where mp0 is the
initial mutation probability, and 𝑖𝑡 and 𝑇 are the current and
the maximum number of iterations, respectively. Apparently,
mp decreases with the proposed algorithm running.

Selection Operation. First of all, we separate feasible anti-
bodies from infeasible ones. Then, we extract Pareto-optimal
antibodies from the former to form the preponderant anti-
body population 𝑃(𝑖𝑡). Meanwhile, we choose𝑁𝑞 antibodies

10 Security and Communication Networks

with the lowest degree of constraint violation from infeasible
antibodies to form the neighboring antibody population𝑄(𝑖𝑡). Adding antibodies of 𝑄(𝑖𝑡), which approximate the
edge of feasible region, to the next iteration can improve
diversity of antibody population.

Self-Repairing Operation. Through migrating instances from
overloaded service nodes to those with abundant resources,
self-repairing operation can reduce the degree of constraint
violation of infeasible antibody and make it enter or be more
close to feasible region. Let𝑄(𝑖𝑡) = {𝑞1(𝑖𝑡), 𝑞2(𝑖𝑡), . . . , 𝑞𝑁𝑞(𝑖𝑡)}
be the neighboring antibody population. Assume that anti-
bodies in 𝑄(𝑖𝑡) are sorted by the degree of constraint
violation in descending order. For an antibody 𝑞𝑖(𝑖𝑡), the
resource burden of service node 𝑛𝑗 is defined as bur𝑗 =∑𝑟∈𝑅(max{0, ∑𝑘∈{𝑘|𝑞𝑖𝑘=𝑗}

res𝑟𝑘 − 𝑐𝑗(𝑟)}/𝑐𝑗(𝑟)). If there exists a
node without burden, that is, bur𝑗 = 0, self-repairing
operation will be applied to 𝑞𝑖(𝑖𝑡). Specifically, starting from𝑛𝑗 with the heaviest burden, it selects an instance V𝑘 randomly
andmigrates it to the node 𝑛𝑗󸀠 with bur𝑗󸀠 = 0, that is, replacing𝑞𝑖𝑘 = 𝑗 with 𝑞𝑖𝑘 = 𝑗󸀠. If the degree of constraint violation
of the new antibody 𝑞󸀠𝑖 (𝑖𝑡) is smaller than that of 𝑞𝑖(𝑖𝑡), this
migration is accepted. Otherwise, it selects another instance
and repeats the previous migration until all instances on 𝑛𝑗
are traversed. Then it tries to do migration in other nodes
until there are no nodes without burden. Assuming that

self-repairing operation is only applied to 𝑚 antibodies, the
time consumption can be controlled by adjusting𝑚. In other
words,𝑚 is the depth of self-repairing operation.

Replacement Operation. It replaces the antibodies in the
standby unit with the antibodies which have lower degree of
constraint violation in the neighboring antibody population.
It ensures that the standby unit approximates feasible region
gradually.

Study Operation. Through comparing antibodies in the
updated preponderant antibody population with those in the
memory unit, study operation updates the memory unit with
the newest Pareto-optimal antibodies. If the size of memory
unit exceeds 𝑁𝑚, updating operation based on crowding
distance will be applied [35].

5.3. Link Mapping Phase. This phase is to route flows among
the selected service nodes based on the virtual security
service topology. We refer to this problem as the service
path establishment problem. Since a flow can be split and
the capacity of physical link is limited, we treat virtual links
as commodities and model the service path establishment
problem as the capacitated multicommodity flow problem.

5.3.1. Formulation

min max
(𝑠,𝑑)∈Φ

(𝑐𝑙𝑡𝑠𝑑) , (17)

𝑐𝑙𝑡𝑠𝑑 = max
𝜋𝑖∈𝜋(𝑠,𝑑)

[[∑
𝑙(𝑢,V)∈𝜋𝑖

∑
𝑒(𝑚,𝑛)∈𝐸

𝑠𝑡𝑓 (𝑦(𝑢,V)(𝑚,𝑛)) ⋅ lat(𝑚,𝑛) + ∑
V𝑓∈𝜑(𝜋𝑖)

𝑝𝑑𝑓]] , (18)

s.t. ∀𝑒 (𝑚, 𝑛) ∈ 𝐸 : ∑
𝑙(𝑢,V)∈𝐿

𝑦(𝑢,V)(𝑚,𝑛) ≤ 𝑏𝑤(𝑚,𝑛), (19)

∀𝑙 (𝑢, V) ∈ 𝐿, 𝑥𝑢𝑏 = 𝑥V𝑏󸀠 = 1, ∀𝑛 ∈ 𝑁 − {𝑏, 𝑏󸀠} :
∑
𝑐∈𝑁

𝑦(𝑢,V)(𝑐,𝑛) − ∑
𝑐󸀠∈𝑁

𝑦(𝑢,V)
(𝑛,𝑐󸀠)

= 0,
∑
𝑐∈𝑁

𝑦(𝑢,V)(𝑐,𝑏) = ∑
𝑐󸀠∈𝑁

𝑦(𝑢,V)
(𝑏󸀠 ,𝑐󸀠)

= 0,
∑
𝑐∈𝑁

𝑦(𝑢,V)(𝑏,𝑐) = ∑
𝑐󸀠∈𝑁

𝑦(𝑢,V)
(𝑐󸀠 ,𝑏󸀠)

= 𝑑𝑏(𝑢,V),
(20)

∀𝑒 (𝑚, 𝑛) ∈ 𝐸, 𝑙 (𝑢, V) ∈ 𝐿: 𝑦(𝑢,V)(𝑚,𝑛) ≤ 𝑧(𝑚,𝑛)(𝑚󸀠 ,𝑛󸀠)
⋅ 𝑥𝑢𝑚󸀠 ⋅ 𝑥V𝑛󸀠 ⋅min (𝑏𝑤(𝑚,𝑛), 𝑑𝑏(𝑢,V)) , (21)

∀𝑒 (𝑚, 𝑛) ∈ 𝐸, 𝑙 (𝑢, V) ∈ 𝐿: 𝑦(𝑢,V)(𝑚,𝑛) ≥ 0. (22)

A security request may correspond to multiple virtual
paths constructed by different instances in the virtual security
service topology. So the maximum latency of those paths
is regarded as the service latency of security request ((18)),
where stf() is step function and it is assumed that stf(0) = 0;

(19) is a constraint on the maximum bandwidth of physical
links that can be assigned to different virtual links; (20) is the
flow conservation constraint. It ensures that, for every node 𝑛
in the physical network, if one of its incoming links belongs to
the path which a virtual link is mapped to, one of its outgoing

Security and Communication Networks 11

links also belongs to that path. Excluded from this rule is the
case where the node is one of the nodes to which the two
end nodes of virtual link are mapped; (21) constrains the fact
that a virtual link must be mapped to the path between the
two nodes whose end nodes are mapped to. Note that 𝑧(𝑚,𝑛)

(𝑚󸀠 ,𝑛󸀠)
,𝑥𝑢𝑚󸀠 , and 𝑥V𝑛󸀠 are not decision variables but introduced to

express that constraint; (22) is a constraint on the values of
decision variables.

5.3.2. Proposed Algorithm. Since the capacitated multicom-
modity flow problem is NP-Hard [36], we propose a heuristic
named service path establishment algorithm based on hybrid
taboo search. Before introducing the algorithm, we describe
the main data structures followed by discussing the key
aspects of the algorithm: neighborhood search method,
evaluation function, and termination condition.

(1) Main Data Structure Description. There are three main
data structures used in the proposed algorithm.

Initial Solution Set. The initial solution set is defined as 𝑆0 ={𝑠1, 𝑠2, . . . , 𝑠𝑛}, where 𝑠𝑖 = (𝑦(𝑢,V)
(𝑚,𝑛)

)𝐸×𝐿, 1 ≤ 𝑖 ≤ 𝑛. Take
the process of generating an initial solution as an example.
Assume that every virtual link has a set of 𝑘-shortest physical
paths between the two nodes whose start and end node are
mapped to. The algorithm randomly selects a node of which
the in-degree equals 0 in the virtual security service topology
and maps virtual links connected to that node to physical
paths. For each virtual link, single path mapping is applied
first. Specifically, physical path in its 𝑘-shortest path set is
traversed in increasing order of their lengths until a path
satisfying bandwidth demand is found. If no such single path
exists, multipath mapping is applied, which prefers to assign
as much bandwidth demand as possible to relatively short
physical path. After all virtual links connected to the node
have been mapped, the node and virtual links are marked
as “traversed” and removed from the virtual topology. Then
another node of which the in-degree equals 0 will be chosen
to repeat the above operation. An initial solution is generated
after all nodes and links in the virtual topology have been
traversed.

Dominant Solution Set. For 𝑆0 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, solu-
tions are sorted by their objective function values (i.e.,
max(𝑠,𝑑)∈Φ(𝑐𝑙𝑡𝑠𝑑), denoted as ℎ(𝑠𝑖)) in ascending order. So
the first 𝑚 solutions are chosen to form the dominant
solution set. It is denoted as DS = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, whereℎ(𝑠1) ≤ ⋅ ⋅ ⋅ ≤ ℎ(𝑠𝑚). During the running time, DS will be
updated continually to ensure that it always keeps the optimal
solutions. Moreover, the depth of local search is adjusted
dynamically according to whether DS is updated or not.

Tabu List. Assuming that virtual links and physical links are
identified by positive integers, the tabu list is defined as TL =({(𝑙, {𝑦𝑎𝑏 | 1 ≤ 𝑎 ≤ |𝐸|, 𝑏 = 𝑙}) | 1 ≤ 𝑙 ≤ |𝐿|}, 𝑐𝑡𝑙), where𝑙 is the identification of virtual link and 𝑦𝑎𝑏 is the bandwidth
assigned to the virtual link 𝑏 by the physical link 𝑎.The length
of TL is set to be 7 [36].

(2) Key Aspect Description. In what follows, we discuss three
key aspects with respect to the proposed algorithm.

Neighborhood Search Method. Given the solution 𝑠𝑖, its
neighborhood 𝑁(𝑠𝑖) = 𝑁𝑒𝑏𝑜𝑟𝐶𝑜𝑛𝑠(𝑠, 𝑛𝑠) = {𝑠1𝑖 , 𝑠2𝑖 , . . . , 𝑠𝑛𝑠𝑖 }
can be built as follows. First, a virtual link is selected
randomly. Then through adjusting the bandwidth demand
assigned to each physical path in its 𝑘-shortest path set, a
new service path establishment scheme, or in other words
a neighboring solution 𝑠1𝑖 is generated. It is particularly
important that the new scheme should satisfy the overall
bandwidth demand of the selected virtual link. Similarly,
other (𝑛𝑠 − 1) neighboring solutions can be generated. The
size of𝑁(𝑠𝑖) is defined as 𝑛𝑠 = 𝑛𝑠min+𝑛𝑡 ⋅ (𝑛𝑠max−𝑛𝑠min)/𝑁𝑇,
where 𝑛𝑠max = 𝐿 and 𝑛𝑠min = 0.5𝐿 are the maximum and
the minimum size of neighborhood, respectively, and 𝑛𝑡 and𝑁𝑇 are the current and the maximum number of iterations
of neighborhood search, respectively. Note that though the
generated neighboring solutions satisfy (20) and (21), some
of them may violate (19), which should be eliminated.

Evaluation Function. It is denoted as Evaluate(). We take
the objective function ℎ(𝑠) as the evaluation function. To
eliminate infeasible solutions, a highest evaluation value will
be assigned to them.

Termination Condition. The algorithm will terminate as long
as one of the following conditions are satisfied: the number of
iterations exceeds 𝑇; solutions are not improved; namely, the
objective function value remains constant after 𝑅 successive
iterations.

The basic procedure of our algorithm is shown in Algo-
rithm 4. Here, we use the functions 𝑈𝑝𝑑𝑎𝑡𝑒(𝐷𝑆, 𝑆0) and𝑈𝑝𝑑𝑎𝑡𝑒(𝐷𝑆,𝑁(𝑠)) to replace some solutions in 𝐷𝑆 with
better ones in 𝑆0 and𝑁(𝑠), respectively. We also use roulette
wheel strategy to select the candidate solution set from𝑁(𝑠),
denoted as 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙(𝑁(𝑠)).

The algorithm generates multiple initial solutions based
on greedy strategy and randomly selects one solution as the
start point of iteration, which can solve the problem that
tabu search relies heavily on initial solution. Additionally,
it takes into account both diversification and intensification
strategy. On the one hand, the longer the dominant solution
set is not updated during neighborhood search, the larger
the search space is. It reflects that the algorithm increases
diversity of solutions by expanding search space, which
benefits finding better solutions. On the other hand, the
dominant solution set keeps the first 𝑚 excellent solutions
so far and every iterative search starts from them. It reflects
that the algorithm is exploited in promising space through
concentrating on searching the neighborhood of the current
excellent solutions.

5.4. Time Complexity Analysis. We mainly analyze the time
complexity of two algorithms in mapping phase.

For the service node selection algorithm based on bidi-
rectional memory, we take the first iteration as an example
to analyze its time complexity step by step. 𝑁𝑎, 𝑁𝑚, and 𝑁𝑏

12 Security and Communication Networks

Input:𝑁𝑇, 𝑇, 𝑅
Output: The best solution 𝑠∗
Initialize: DS = ⌀; TL = ⌀; 𝑡 = 0; 𝑖𝑚𝑝𝑟𝑜 = 0
Generate initial solution set 𝑆0𝑈𝑝𝑑𝑎𝑡𝑒 (DS, 𝑆0)
while (𝑡 < 𝑇 and 𝑛𝑜𝑖𝑚𝑝𝑟𝑜 < 𝑅)

Randomly select 𝑠 from DS𝑟 = ℎ(DS[1])𝑛𝑡 = 0𝑠best = 𝑠
while (𝑛𝑡 < 𝑁𝑇)𝑁(𝑠) = 𝑁𝑒𝑏𝑜𝑟𝐶𝑜𝑛𝑠(𝑠, 𝑛𝑠)𝐸V𝑎𝑙𝑢𝑎𝑡𝑒 (𝑁(𝑠))𝑖𝑠𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑈𝑝𝑑𝑎𝑡𝑒 (DS, 𝑁(𝑠))

if isupdated then 𝑛𝑡 = 0
else 𝑛𝑡 + +
end if𝐶𝑆 = 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 (𝑁(𝑠))
if isaspiration then𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡 (𝐶𝑆)𝑠best = 𝑠

Update the tabu list TL
else𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡 𝑛𝑜𝑡𝑎𝑏𝑢 (𝐶𝑆)

Update the tabu list TL
end if

end while𝑡 + +
if ℎ(DS[1]) < 𝑟 then 𝑛𝑜𝑖𝑚𝑝𝑟𝑜 = 0
else 𝑛𝑜𝑖𝑚𝑝𝑟𝑜 + +
end if

end while
return DS[1]

Algorithm 4: Service path establishment algorithm based on
hybrid taboo search.

represent the size of the initial antibody population, memory
unit, and standby unit, respectively. Firstly, assuming that
the number of service nodes and instances is 𝑁sr and𝑁ins, respectively, the worst time complexity of initializing
operation is 𝑂(𝑁𝑎 ⋅ 𝑁ins ⋅ 𝑁sr). Then, the time complexity of
buildingmemory unit and standby unit is𝑂(𝑁𝑎

2) and𝑂(𝑁𝑎+𝑁𝑎 log𝑁𝑏), respectively. Thirdly, if𝐻 is a given value relating
to clone scale, the worst time complexity of clone operation
is 𝑂(𝑁𝑎𝐻). Fourthly, if the size of antibody population after
cloning is 𝑁𝑐, the time complexity of mutation operation is𝑂(𝑁𝑐). Fifthly, selection operation includes computing the
degree of constraint violation of antibodies, selecting Pareto-
optimal antibodies, and choosing 𝑁𝑞 antibodies with the
lowest degree of constraint violation.Their time complexities
are 𝑂(𝑁𝑐), 𝑂(𝑁2

𝑐), and 𝑂(𝑁𝑐 log𝑁𝑞), respectively. Then, if
the size of preponderant antibody population after selection
operation is 𝐾 and there are 𝑁𝑎 Pareto-optimal antibodies
that should be reserved, the time complexity of updating pre-
ponderant antibody population is 𝑂(𝑁𝑎𝐾2). Next, the time
complexity of self-repairing operation is 𝑂(𝑚 ⋅ 𝑁sr log𝑁sr) if
its depth is𝑚.Then the worst time complexity of replacement
operation is 𝑂(𝑁𝑏 ⋅ 𝑁𝑞). Finally, the time complexity of

Table 1: Simulated networks used in evaluation.

Network FT-6-A FT-6-B FT-8 Waxman
Forwarding node 45 45 80 24
End node 38 27 90 403
Service node 16 27 38 173

study operation is 𝑂((𝑁𝑎 + 𝑁𝑚)2). Therefore, the worst
time complexity of the proposed algorithm during the first
iteration is 𝑂(𝑁𝑎 ⋅ 𝑁ins ⋅ 𝑁sr + 𝑁2

𝑐 + 𝑁𝑎 ⋅ 𝐾2 + 𝑁𝑎
2 + 𝑁2

𝑚).
For the service path establishment algorithm based on

hybrid taboo search, we take an iteration as an example to
analyze its time complexity. Assume that there are 𝐿 virtual
links. The worst time complexity of generating the initial
solution set with 𝑛 solutions is𝑂(𝑛𝑘𝐿). Subsequently, the time
complexity of updating the dominant solution set with 𝑚
solutions is 𝑂(𝑛 log𝑚). The main operation in an iteration
is building neighborhood with variable size. Considering the
process from 𝑛𝑡 = 0 to 𝑛𝑡 = 𝑁𝑇, the number of generated
neighboring solutions is𝑁𝑇 ⋅ 𝑛𝑠min + 0.5 ⋅ (𝑁𝑇+ 1) ⋅ (𝑛𝑠max −𝑛𝑠min). So the time complexity of this process can be regarded
as 𝑂(𝑁𝑇 ⋅ 𝑛𝑠max). In conclusion, the time complexity of an
iteration of the proposed algorithm is 𝑂(𝑛𝑘𝐿 + 𝑁𝑇 ⋅ 𝑛𝑠max).
6. Evaluation

6.1. Experimental Setup. Our experiments are conducted on
the fat-tree andWaxman topologies.The number of different
types of nodes in simulated networks is shown in Table 1.
The CPU andmemory of service nodes are random numbers
uniformly distributed between 200 and 500. The latency of
each physical link is a number with uniform distribution
between 1 and 10 time units. The bandwidth of each physical
link is set to 5000. Note that the units for the bandwidth of
physical link, the throughput demand of security request, and
the throughput of instance are the same in the experiments.
We omit them for the sake of simplicity. The above setting is
the same for all experiments.

For the service node selection algorithm of TPSSC, we set𝑇 = 200, 𝑁𝑎 = 300, 𝑁𝑚 = 𝑁𝑏 = 30, and mp0 = 0.7. For
the service path establishment algorithm, we set 𝑁𝑇 = 20,𝑇 = 200, and 𝑅 = 50. We design a random algorithm and
two greedy algorithms with single objective for comparison,
which are denoted as RD, GD-1, and GD-2, respectively. RD
randomly selects service nodes and establishes service paths.
The goal of GD-1 is to reduce resource fragmentation. For
a security request, GD-1 traverses its SSC sequentially and
selects the “best” service node for running instance of each
security function. The “best” service node has the minimum
resource fragmentation after the instance is placed on it.With
the objective to reduce security service latency, GD-2 defines
the “best” service node as the one that the latency from the
previous placed instance to it is the minimum. Note that
instances can be placed on the same service node.

In the evaluation, we first compare TPSSC against the
above three algorithms with respect to length of SSC and
throughput demand of security request. Experiments are
conducted in the FT-6-B network. In each experiment, there

Security and Communication Networks 13

GD-1
GD-2
HConSSC

4 6 8 102
Length of SSC

0

0.5

1

1.5

2

2.5

3

Ac
ce

pt
an

ce
 ra

tio
 (v

er
su

s R
D

)

Figure 3: Comparison of acceptance ratio.

are 300 service requests arriving in a Poisson process. Their
sources and destinations are uniformly distributed in the
simulated network. Their throughput demands are numbers
uniformly distributed between 50 and 250.The length of SSC
is fixed to one of {2, 4, 6, 8, 10}. As the above three algorithms
do not consider the case where several instances of the same
security function should be combined to serve a flow, we
assume that every security function has only one instance.
The CPU demand, memory demand, and throughput of an
instance are 10, 10, and 300, respectively. We measure the
acceptance ratio, the maximum resource fragmentation, the
maximum security service latency, and the time overhead
of algorithm. Each experiment is iterated 50 times and the
arithmetic mean is reported.The results are shown with their
95%confidence intervals. For the convenience of comparative
analysis, we take RD’s value as benchmark and the ratio of the
value of other three algorithms to RD’s corresponding value
is reported.We also conduct some experiments to analyze the
performance of TPSSC specifically.

6.2. Results

6.2.1. Acceptance Ratio. Figure 3 shows the acceptance ratio
of GD-1, GD-2, and TPSSC versus RD. When the length of
SSC is less than 4, the acceptance ratios are similar to each
other. However, TPSSC, GD-1, and GD-2 have better results
for longer SSC. Particularly, TPSSC becomes more and more
superior as the length increases.Thefirst reason is that TPSSC
takes into account reusing instance for several flows in the
designing phase. As a result, fewer resources of service nodes
are needed. The second reason is that TPSSC optimizes the
allocation of network resources based on the full analysis of
all security requests over time. So the situation, where “small”
security requests are refused because of network resources
having been occupied by “big” security requests in advance,
can be avoided to a certain extent.

In order to further evaluate the ability of TPSSC to accept
security requests, we measure the acceptance ratio of TPSSC
by changing someparameters of security request andnetwork
environment.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ac
ce

pt
an

ce
 ra

tio
 (v

er
su

s R
D

)

4 6 82
Length of SSC

50
100
150

200
250

Figure 4: Acceptance ratio of TPSSC in the FT-6-A network.

(1) Acceptance Ratio under Different Throughput Demands.
Experiments are conducted in the FT-6-A network. In
each experiment, there are 400 security requests arriving
in a Poisson process. The length of SSC is fixed and
the throughput demand of each request is set to one
of {50, 100, 150, 200, 250}. Every security function has 4
instances. The CPU and memory demands of an instance
are numbers with uniform distribution between 5 and 30.
The throughput of an instance is a number with uniform
distribution between 10 and 300. Each experiment is iterated
50 times and the arithmetic mean is reported. The results are
shown in Figure 4. Security requests with higher throughput
demand and longer SSC have the less opportunity to be
accepted because of limited network resources.Moreover, the
acceptance ratio drops to less than 20% when the length of
SSC is 8 and the throughput demand is 250 due to serious
lack of network resources.

We also conduct the above experiment in the FT-6-B
network. The results are shown in Figure 5. The acceptance
ratio in the FT-6-B network is higher than that in the FT-6-A
network. This is because the former has more service nodes
for running more instances. Moreover, it allows TPSSC to
choose from awider range of service nodes and routing paths.

(2) Acceptance Ratio under Different Network Scales. Exper-
iments are conducted in the FT-6-A, FT-8, and Waxman
network, respectively. In each experiment, there are 1000
security requests arriving in a Poisson process. The length
of SSC is fixed and the throughput demands are uniformly
distributed between 50 and 250. Every security function has
4 instances. The CPU and memory demands of an instance
are numbers with uniform distribution between 5 and 30.
The throughput of an instance is a number with uniform
distribution between 10 and 500. Each experiment is iterated
50 times and the arithmetic mean is reported. Figure 6 shows
the results.

As shown in Figure 6, the acceptance ratio in theWaxman
network is higher than that in the other two networks.
The reason is that there are more network resources in

14 Security and Communication Networks

50
100
150

200
250

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ac
ce

pt
an

ce
 ra

tio
 (v

er
su

s R
D

)

4 6 82
Length of SSC

Figure 5: Acceptance ratio of TPSSC in the FT-6-B network.

Ac
ce

pt
an

ce
 ra

tio
 (v

er
su

s R
D

)

FT-8
Waxman
FT-6-B

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8 102
Length of SSC

Figure 6: Acceptance ratio of TPSSC in different network scales.

the Waxman network. This experiment also indicates that
TPSSC has good scalability and large search space, which can
perform well in the network with more nodes and links. In
addition, when the length of SSC exceeds 6, the acceptance
ratio in the FT-6-B network drops rapidly due to insufficient
resources.

6.2.2. Resources Fragmentation. Figure 7 shows the maxi-
mum resource fragmentation of GD-1, GD-2, and TPSSC
versus RD. The results of TPSSC and GD-1 are significantly
lower than those of RD and GD-2 since the first two try
to minimize resource fragmentation when selecting service
nodes. In contrast, RD does not optimize the selection of
service nodes and GD-2 prefers to place multiple instances
in the same service node. Moreover, the resource fragmen-
tation of GD-2 is higher than that of RD as the length of
SSC increases. The reason is that GD-2 can accept more
security requests than RD, which further increases resource
fragmentation. Meanwhile, the advantage of TPSSC is more
and more obvious with the increasing length. This is mainly
attributed to the service node selection algorithm based on

GD-1
GD-2
HConSSC

4 6 8 102
Length of SSC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

M
ax

im
um

 re
so

ur
ce

fr
ag

m
en

ta
tio

n
(v

er
su

s R
D

)

Figure 7: Comparison of the maximum resource fragmentation.

4 6 8 102
Length of SSC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

M
ax

im
um

 se
cu

rit
y

se
rv

ic
e

GD-1
GD-2
HConSSC

lat
en

cy
 (v

er
su

s R
D

)

Figure 8: Comparison of the maximum security service latency.

bidirectional memory, which has high capability of global
search and can find the near-optimal service node selection
scheme to reduce resource fragmentation as far as possible.

6.2.3. Security Service Latency. Figure 8 shows the maximum
security service latency (namely, the maximum end-to-end
latency of flow) of GD-1, GD-2, and TPSSC versus RD. The
results of GD-2 and TPSSC are better than those of RD and
GD-1 since the first two aim at reducing security service
latency. Conversely, GD-1 ignores latency when selecting
service nodes, which may result in long security service
latency since the selected service nodes may be far away from
each other. It is worth noting that the maximum security
service latency of TPSSC is slightly longer than that of GD-
2 when the length of SSC is less than or equal to 6. It is
due to the fact that TPSSC does not take into account the
bandwidth of the shortest physical path between two service
nodes when placing instances. In fact, it may not satisfy
throughput demands of flows. So the placement of instances
may still affect reducing security service latency. However,
as the length of SSC increases further, GD-2 has to place

Security and Communication Networks 15

GD-1
GD-2
HConSSC

0
2
4
6
8

10
12
14
16
18
20

Ti
m

e o
ve

rh
ea

d
(v

er
su

s R
D

)

4 6 8 102
Length of SSC

Figure 9: Comparison of the time overhead of algorithm.

more instances, which leads to higher possibility of placing
instances far away from each other. As a result, the maximum
security service latency of TPSSC is shorter than GD-2.

6.2.4. Time Overhead of Algorithm. Figure 9 shows the time
overhead of GD-1, GD-2, and TPSSC versus RD. As expected,
the time overhead increases with the length of SSC. RD
has the least time overhead since it does not consider any
optimizations. When the length of SSC is 10, the time
overhead of TPSSC is about 18 times higher than that of RD.
But we can see from Figures 3, 7, and 8 that TPSSC can accept
nearly 2 times security requests than RD and the maximum
resource fragmentation is reduced by about 97%. Those data
reflects that TPSSC can improve the possibility of network
to accept more security requests. Meanwhile, the maximum
security service latency of TPSSC is reduced by about 80%,
which reflects that user experience improves significantly.
From the above analysis, it is apparent that TPSSC is suitable
for processing security requests in batch mode.

In order to evaluate the performance of TPSSC further,
we conduct experiments with different number of secu-
rity requests in the FT-8 network and measure the time
overhead and the acceptance ratio. In each experiment,
security requests arrive in a Poisson process. The lengths
of SSCs are approximately uniformly distributed between
1 and 10. Note that the length must be a positive integer.
The throughput demands are uniformly distributed between
50 and 500. Every security function has 4 instances. The
CPU and memory demands of an instance are numbers with
uniform distribution between 5 and 30. The throughput of
an instance is a number with uniform distribution between
500 and 800. Each experiment is iterated 50 times and the
arithmetic mean is reported. Figure 10 shows the results.

With the increasing number of security requests, the time
overhead of TPSSC increases and the increasing rate also
broadens.Therefore, it is necessary to process several batches
of security requests in parallel. In addition, the acceptance
ratio decreases. But it is due to the fact that the lifetime of
security request is not considered in the experiment. Thus,

Time overhead
Acceptance ratio

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 ra

tio

0

5

10

15

20

Ti
m

e o
ve

rh
ea

d
(s

)

500 1000 1500100
Number of security requests

Figure 10: Performance of TPSSC under different number of
security requests.

TPSSC should recycle the released resources before running
so as to allow the network to acceptmore subsequent security
requests.

7. Conclusions and Future Work

The method of deploying SSC promises to address cost
reduction and flexibility in security service delivery. Yet, SSC-
DP remains a challenging problem to be tackled. In this paper,
we present a novel approach to integrate SSC into delivering
security service and propose a three-phase method TPSSC
to find near-optimal solutions of SSC-DP. In the case that
instances differ in service capacity and resource demand,
TPSSC not only determines the combination of instances,
placement of instances, and routing of flows, but also seeks to
minimize resource consumption of service nodes, resource
fragmentation, and security service latency. It facilitates
delivering customized security service as well as optimizing
utilization of network and security resources.Our evaluations
show that although the time overhead of TPSSC is higher
than RD, TPSSC has better performance in acceptance ratio,
the maximum resource fragmentation, and the maximum
security service latency. Moreover, compared with the two
greedy algorithms, TPSSC becomes more and more superior
as the length of SSC increases. As perspectives for future
work, we intend to extend the evaluation of the proposed
method by applying it to real network. Moreover, we plan
to introduce failure-resilience mechanism into SSC mainte-
nance for guaranteeing the continuity of security service.

Abbreviations

𝑁sr: Set of service nodes in physical network𝑁end: Set of end nodes in physical network𝐸: Set of physical links𝑅𝑄: Set of security requests𝑉ins: Set of virtual nodes representing instances𝑉end: Set of virtual nodes representing sources
and destinations of flows𝐿: Set of virtual links

16 Security and Communication Networks

𝑟𝑑𝑟𝑖𝑗: Demand of the instance 𝑖𝑡𝑖𝑗 for resource 𝑟𝑐𝑖𝑗: Throughput of the instance 𝑖𝑡𝑖𝑗𝑡ℎ𝑚𝑖𝑗 : Throughput demand of the security
request 𝑟𝑞𝑚 for the instance 𝑖𝑡𝑖𝑗Φ: Set of virtual node pairs representing
source-destination pairs of all security
requests Φ = {(V𝑠, V𝑑), . . . (V𝑠󸀠 , V𝑑󸀠)}𝜋(𝑠, 𝑑): Set of virtual paths between V𝑠 and V𝑑
which represent the source and
destination of flow, respectively; that is,𝜋(𝑠, 𝑑) = {𝜋1, 𝜋2, . . . 𝜋𝑘}, in which𝜋𝑖 = {𝑙(V𝑠, V1), 𝑙(V1, V2), . . . , 𝑙(V𝑗, V𝑑)} (1 ≤𝑖 ≤ 𝑘) and ⋂𝑙(V𝑔 ,V𝑔󸀠)∈𝜋𝑖

𝑖𝑑(𝑙(V𝑔, V𝑔󸀠)) = 𝑟𝑞𝑚𝜑(𝜋𝑖): Set of virtual nodes along the virtual path𝜋𝑖𝑃𝑇(𝑚󸀠, 𝑛󸀠): Set of 𝑘-shortest paths between physical
node𝑚󸀠 and 𝑛󸀠𝑥𝑖𝑓: If the instance represented by V𝑓 is placed
on service node 𝑛𝑖, 𝑥𝑖𝑓 = 1, or else 𝑥𝑖𝑓 = 0𝑦(𝑢,V)

(𝑚,𝑛)
: Bandwidth assigned to virtual link 𝑙(𝑢, V)

by physical link 𝑒(𝑚, 𝑛)𝑧(𝑚,𝑛)
(𝑚󸀠 ,𝑛󸀠)

: If physical link 𝑒(𝑚, 𝑛) is a part of physical
path 𝑝(𝑚󸀠, 𝑛󸀠) and 𝑝(𝑚󸀠, 𝑛󸀠) ∈ 𝑃𝑇(𝑚󸀠, 𝑛󸀠),𝑧(𝑚,𝑛)
(𝑚󸀠 ,𝑛󸀠)

= 1, or else 𝑧(𝑚,𝑛)
(𝑚󸀠 ,𝑛󸀠)

= 0
res𝑓𝑟 : Demand of the instance represented by V𝑓

for resource 𝑟
pd𝑓: Processing delay of the instance

represented by V𝑓𝑐𝑖(𝑟): The amount of resource 𝑟 on service node𝑛𝑖
utl𝑟𝑖 : Utilization of resource 𝑟 on service node 𝑛𝑖
f ra𝑖: Resource fragmentation of service node 𝑛𝑖
bw(𝑚,𝑛): Bandwidth of physical link 𝑒(𝑚, 𝑛)
lat(𝑚,𝑛): Latency of physical link 𝑒(𝑚, 𝑛)
hop(𝑚,𝑛): The number of hops of the shortest path

between physical nodes𝑚 and 𝑛
db(𝑢,V): Bandwidth demand of virtual link 𝑙(𝑢, V).
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by National High-Tech
Research and Development Project (863) of China
(2012AA012704) and Zhengzhou Science and Technology
Talents (131PLJRC644).

References

[1] P. Quinn and T. Nadeau, “Problem Statement for Service
Function Chaining,” RFC Editor RFC7498, 2015.

[2] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, 2008.

[3] M. Chiosi, D. Clarke, P. Willis, and A. Reid, Network functions
virtualisation-introductory, White paper, ETSI, 2012.

[4] O. N. Foundation, Software-defined networking: The new norm
for networks, White paper, ONF, 2012.

[5] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in
Proceedings of the IEEE Network Operations and Management
Symposium (NOMS ’14), pp. 1–9, Krakow, Poland, May 2014.

[6] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: high
performance and flexible networking using virtualization on
commodity platforms,” IEEE Transactions on Network and
Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[7] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast,
dynamic network processing with ClickOS,” in Proceedings of
the 2013 2nd ACM SIGCOMMWorkshop on Hot Topics in Soft-
ware Defined Networking, HotSDN 2013, pp. 67–72, China,
August 2013.

[8] W. Zhang,G. Liu,W. Zhang et al., “OpenNetVM,” inProceedings
of the the 2016workshop, pp. 26–31, Florianopolis, Brazil, August
2016.

[9] J. Wilson, “Delivering security virtually everywhere with sdn
and nfv,” Technical Report, 2015.

[10] W. Lee, Y. Choi, and N. Kim, “Study on Virtual Service Chain
for Secure Software-Defined Networking,” in Proceedings of the
The 6th International Conference on Control and Automation,
pp. 177–180.

[11] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D.
Hausheer, “Position paper: Software-defined network service
chaining,” in Proceedings of the 3rd European Workshop on
Software-Defined Networks, EWSDN 2014, pp. 109–114, Hun-
gary, September 2014.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in Proceedings of the
11th International Conference on Network and Service Manage-
ment, CNSM 2015, pp. 50–56, Spain, November 2015.

[13] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on
service function chaining,” Journal of Network and Computer
Applications, vol. 75, pp. 138–155, 2016.

[14] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad,
“Multi-cloud distribution of virtual functions and dynamic
service deployment: OpenADN perspective,” in Proceedings of
the 2015 IEEE International Conference on Cloud Engineering,
IC2E 2015, pp. 299–304, USA, March 2015.

[15] G. Katsikas, Realizing high performance nfv service chains [Mas-
ter, thesis], KTH School of Information and Communication
Technology, 2017, https://www.researchgate.net/publication.

[16] X.-L. Li, H.-M. Wang, B. Ding, C.-G. Guo, and X.-Y. Li,
“Research and development of virtual network mapping prob-
lem,” Ruan Jian Xue Bao/Journal of Software, vol. 23, no. 11, pp.
3009–3028, 2012.

[17] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for
Virtual Network Functions in Software-Defined Networks,” in
Proceedings of the the 2016 workshop, pp. 32–37, Florianopolis,
Brazil, August 2016.

[18] Z. Cao, M. Kodialam, and T. V. Lakshman, “Traffic steering
in software defined networks: Planning and online routing,”
in Proceedings of the ACM SIGCOMM 2014 Workshop on
Distributed Cloud Computing, DCC 2014, pp. 65–70, USA,
August 2014.

[19] G. Xiong, Y. Hu, J. Lan, and G. Cheng, “A mechanism for con-
figurable network service chaining and its implementation,”
KSII Transactions on Internet and Information Systems, vol. 10,
no. 8, pp. 3701–3727, 2016.

https://www.researchgate.net/publication

Security and Communication Networks 17

[20] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in
Proceedings of the 4th IEEE International Conference on Cloud
Networking, CloudNet 2015, pp. 255–260, Canada,October 2015.

[21] S.Mehraghdam,M. Keller, andH. Karl, “Specifying and placing
chains of virtual network functions,” in Proceedings of the
2014 3rd IEEE International Conference on Cloud Networking,
CloudNet 2014, pp. 7–13, Luxembourg, October 2014.

[22] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K.
Ramakrishnan, and T. Wood, “Virtual function placement and
traffic steering in flexible and dynamic software defined net-
works,” in Proceedings of the 21st IEEE International Workshop
on Local andMetropolitan Area Networks, Lanman 2015, China,
April 2015.

[23] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proceedings
of the 4th IEEE International Conference on Cloud Networking,
CloudNet ’15, pp. 171–177, October 2015.

[24] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba, Service
function chaining simplified, CoRR abs/1601.00751, 2016.

[25] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L.
P. Gaspary, “Piecing together the NFV provisioning puzzle: effi-
cient placement and chaining of virtual network functions,” in
Proceedings of the 14th International Symposium on Integrated
Network Management, IM ’15, pp. 98–106, IEEE, Toronto,
Canada, May 2015.

[26] A. Gupta, M. F. Habib, U.Mandal, P. Chowdhury, M. Tornatore,
and B. Mukherjee, On service-chaining strategies using virtual
network functions in operator networks, CoRR abs/1611.03453,
2016.

[27] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin,
“Virtual function placement for service chaining with partial
orders and anti-affinity rules,” Networks, 2017.

[28] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting
congestion games to achieve distributed service chaining in
NFV networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 35, no. 2, pp. 407–420, 2017.

[29] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Network
service chaining with efficient network functionmapping based
on service decompositions,” in Proceedings of the 1st IEEE Con-
ference on Network Softwarization, NETSOFT 2015, UK, April
2015.

[30] T. Lukovszki and S. Schmid, “Online admission control and
embedding of service chains,” LectureNotes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics): Preface, vol. 9439, pp. 104–118,
2015.

[31] ETSI, Network functions virtualisation (nfv), architectural
framework, ETSI GS NFV 002 V1.2.1, ETSI, 2014.

[32] J. Lischka and H. Karl, “A virtual network mapping algorithm
based on subgraph isomorphism detection,” in Proceedings of
the 1st ACM SIGCOMMWorkshop on Virtualized Infrastructure
Systems and Architectures (VISA ’09), pp. 81–88, ACM, New
York, NY, USA, 2009.

[33] R.-C. Liu, L.-C. Jiao, and H.-F. Du, “Clonal strategy algorithm
based on the immune memory,” Journal of Computer Science
and Technology, vol. 20, no. 5, pp. 728–734, 2005.

[34] R. Shang andW. Ma, “Immune Clonal MO Algorithm for ZDT
Problems,” in Advances in Natural Computation, vol. 4222 of
Lecture Notes in Computer Science, pp. 100–109, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Tran-
sactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197,
2002.

[36] C. Lagos, B. Crawford, E. Cabrera, R. Soto, J.-M. Rubio, and
F. Paredes, “Combining Tabu search and genetic algorithms to
solve the capacitated multicommodity network flow problem,”
Studies in Informatics and Control, vol. 23, no. 3, pp. 265–276,
2014.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

