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The L
2
-gain analysis is extended towards hybrid mechanical systems, operating under unilateral constraints and admitting both

slidingmodes and collision phenomena. Sufficient conditions for such a system to be internally asymptotically stable and to possess
L
2
-gain less than an a priori given disturbance attenuation level are derived in terms of two independent inequalities which are

imposed on continuous-time dynamics and on discrete disturbance factor that occurs at the collision time instants. The former
inequality may be viewed as the Hamilton-Jacobi inequality for discontinuous vector fields, and it is separately specified beyond
and along sliding modes, which occur in the system between collisions. Thus interpreted, the former inequality should impose the
desired integral input-to-state stability (iISS) property on the Filippov dynamics between collisions whereas the latter inequality is
invoked to ensure that the impact dynamics (when the state trajectory hits the unilateral constraint) are input-to-state stable (ISS).
These inequalities, being coupled together, form the constructive procedure, effectiveness of which is supported by the numerical
study made for an impacting double integrator, driven by a sliding mode controller. Desired disturbance attenuation level is shown
to satisfactorily be achieved under external disturbances during the collision-free phase and in the presence of uncertainties in the
transition phase.

1. Introduction

Significant research interest has been devoted to the stability
analysis and control synthesis of switched systems subject to
input, state, and output constraints. The progress made in
the area relied on different tools such as multiple Lyapunov
functions [1] and predictive control [2].More recently, barrier
Lyapunov functions (functions which grow to infinity when
their arguments approach the domain boundaries) have
been involved in the tracking control synthesis of nonlinear
switched systemswith output constraints [3–6]. Slidingmode
control of switched single-input, output-constrained systems
has also been brought into play [7]. In addition, robustness
of linear switched systems subject to actuator constraints
has been studied in [8] in terms of L

2
-gain, using the

LMI-optimization approach. A piecewise linearH
∞

control
synthesis was developed for switched systems with output
constraints in [9], relying again on the LMI-optimization.

Hybrid dynamic systems which are typically governed by
a continuous differential equation and a difference equation,
where the switch between such equations is defined according
to output and/or time constraints, have also attracted a lot of
attention due to the wide variety of their applications and due
to the need of special analysis tools for this type of system.The
interested reader may refer to the relevant works by Goebel
et al. [10], Hamed and Grizzle [11], Naldi and Sanfelice [12],
and Nešić et al. [13] to name a few. While admitting sliding
modes and collision phenomena, hybrid dynamic systems
possess nonsmooth solutions and a challenging problem is to
extend popular robust technique such as the nonlinear H

∞

approach [14–16] to this kind of dynamic system.
It is worth noticing that potentially interesting Lyapunov

characterizations of iISS of sliding modes [17] and that of
impulsive systems [18] were confined to matched distur-
bances and to state-independent resets, respectively, thus
suffering from the absence of the slidingmode analysis under
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both mismatched disturbances and state-dependent impacts.
Recently, it was demonstrated by Castaños and Fridman [19]
that the closed-loop system, driven in the sliding mode, is
capable of presenting good performance in the presence of
unmatched disturbances as well; however, L

2
-gain analysis

of such systems has not been addressed yet. To avoid this
shortcoming, L

2
-gain analysis was separately developed for

sliding mode systems by Osuna and Orlov [20] and for
dynamic systems under unilateral constraints by Montano
et al. [21].

The present L
2
-gain analysis focuses on sliding mode

mechanical systems, operating under unilateral constraints.
Throughout, only unilateral constraints of codimension 1

are in play. The general case of multiunilateral constraints,
possibly, resulting in ill-posed dynamics [22], calls for further
investigation. L

2
-gain analysis, which has recently been

developed by Orlov and Aguilar [23] towards nonsmooth
mechanical applications with hard-to-model friction forces
and backlash effects, is now extended in the presence of
sliding modes and unilateral constraints.

Provided that the energy of the underlying mechanical
system dissipates at the collision time instants when the
unilateral constraint is attained, sufficient conditions for a
hybrid system to be internally asymptotically stable and to
possess L

2
-gain less than an a priori given disturbance

attenuation level are carried out.These conditions are given in
terms of appropriate solvability of a Hamilton-Jacobi partial
differential inequality, separately viewed beyond and on the
sliding manifold.

The proposed nonsmooth L
2
-gain analysis of hybrid

mechanical systems in the presence of sliding modes and
unilateral constraints constitutes themain contribution of the
paper. An essential feature, adding the value to the present
investigation, is that not only matched external disturbances
(affecting the collision-free motion phase) but also their
mismatched and discrete-time counterparts (which partic-
ularly occur in the collision phase) are attenuated with the
proposed L

2
-gain test. In addition, this robustness feature

is numerically justified in a benchmark double integrator,
driven by a first-order sliding mode controller and impacting
against a barrier.

The rest of the paper is outlined as follows. Section 2
presents a hybrid model of interest and its L

2
-gain anal-

ysis is developed. Capabilities of the proposed analysis are
numerically illustrated in Section 3 for an impacting double
integrator, driven by a sliding mode controller. Finally, con-
clusions and potential extensions of this work are presented
in Section 4.

1.1. Notation and Preliminaries. The argument 𝑡
+ is used to

denote the right-hand side value x(𝑡+) of a trajectory x(𝑡) at
an impact time instant 𝑡whereas x(𝑡−) stands for the left-hand
side value of the same; by default, x(𝑡) is reserved for x(𝑡−),
thus implying an underlying trajectory to be continuous on
the left. A standard notation

DV (x; l) = lim
𝜏→0

𝑉 (x + 𝜏l) − 𝑉 (x)
𝜏

(1)

is for a Dini derivative of a scalar function𝑉(x), computed in
the direction l ∈ R𝑛 at x ∈ R𝑛.

The following notion is due toClarke [24]. A vector 𝜁(x̂) ∈

R𝑛 is a supergradient of a scalar function f(x) at x̂ ∈ R𝑛 if
there exists some 𝜎(x̂) > 0 such that

f (x) ≤ f (x̂) + 𝜁
⊤
(x̂) (x − x̂) + 𝜎 (x̂) ‖x − x̂‖2 (2)

for all x in some neighborhood 𝑈(x̂) of x̂.
The set of supergradients at x is denoted by 𝜕f(x) and is

referred to as the superdifferential.
For later use, a technical lemma is extracted from [25,

Chapter 3].

Lemma 1. Let x ∈ R𝑛 be an absolutely continuous function
of time variable 𝑡 and let 𝑉(x) be a scalar locally Lipschitz
function around x ∈ R𝑛. Then, the composite function 𝑉(x)
is absolutely continuous and its time derivative is given by

d
d𝑡

𝑉 (x (𝑡)) = DV (x (𝑡) , ẋ (𝑡)) (3)

almost everywhere. Furthermore,

DV (x (𝑡) , ẋ (𝑡)) ≤
𝜕𝑉

𝜕x
ẋ (𝑡) (4)

for almost all t and for all supergradients (𝜕𝑉/𝜕x)𝑇 ∈ 𝜕𝑉(x), if
any.

2. The Generic L
2
-Gain Analysis

Given a scalar unilateral constraint 𝐹(x1) ≥ 0, consider
a nonlinear system, evolving within the above constraint,
which is governed by continuous dynamics of the form

ẋ
1
= x
2
+ 𝜓
1
(x
1
, x
2
)w,

ẋ
2
= 𝜑 (x

1
, x
2
) + 𝜓
2
(x
1
, x
2
)w,

(5)

z = h (x
1
, x
2
) (6)

beyond the surface 𝐹(x1) = 0 when the constraint is inactive
and by the algebraic relations

x
1
(𝑡
+

𝑖
) = x
1
(𝑡
−

𝑖
) ,

x
2
(𝑡
+

𝑖
) = 𝜇
0
(x
1
(𝑡
𝑖
) , x
2
(𝑡
−

𝑖
)) + 𝜔 (x

1
(𝑡
𝑖
) , x
2
(𝑡
−

𝑖
))wd

i ,
(7)

zdi = x
2
(𝑡
+

𝑖
) (8)

at a priori unknown collision time instants 𝑡 = 𝑡
𝑖
, 𝑖 = 1, 2, . . .,

when the system trajectory hits the surface 𝐹(x1) = 0.
In the above relations, x⊤ = [x⊤

1
, x⊤
2
] ∈ R2𝑛 represents the

state vector with components x
1

∈ R𝑛 and x
2

∈ R𝑛; w ∈ R𝑙

andwd
i ∈ R𝑞 collect exogenous signals affecting themotion of

the system (external forces, including impulsive ones, as well
as model imperfections); the output variables z ∈ R𝑚 and
zdi ∈ R𝑛 are responsible for the performance of the system.

Clearly, system (5)–(8) governs a wide class ofmechanical
systems with impacts and it is an affine system of the 𝑙-vector



Mathematical Problems in Engineering 3

relative degree [2, . . . , 2]
⊤ with respect to the disturbance

vector 𝑤 provided that 𝜓
1

≡ 0 and 𝜓
2

̸= 0; for the sake
of generality, 𝜓

1
is admitted to take nonzero values. If

interpreted in terms of mechanical systems, (5) describes the
continuous dynamics before the underlying system hits the
reset surface 𝐹(x1) = 0, depending on the position only,
whilst the restitution law, given by (7), is a physical law for
the instantaneous change of the velocity when the resetting
surface is hit. Thus, the position is not instantaneously
changed at the collision time instants whereas the postimpact
velocity x

2
(𝑡
+
) is a function of both the preimpact state

(x
1
(𝑡), x
2
(𝑡
−
)) and a discrete perturbation wd accounting for

inadequacies of the restitution law.
Throughout, the matrix functions 𝜓

1
, 𝜓
2
, h, 𝐹, 𝜇

0
, and 𝜔

are of appropriate dimensions, which are continuously differ-
entiable in their arguments, whereas the vector-function 𝜑 ∈

R𝑛 is piecewise continuously differentiable only. In addition,
the origin is assumed to be an equilibrium of the unforced
system (5)–(8), and h(0, 0) = 0, and 𝜇

0
(0, 0) = 0.

For convenience of the reader, recall that the function
𝜑(x) : R𝑛 → R𝑛 is piecewise (locally Lipschitz) continuous if
and only if R𝑛 is partitioned into a finite number of domains
𝐺
𝑗
⊂ R𝑛, 𝑗 = 1, . . . , 𝑁, with disjoint interiors and boundaries

𝜕𝐺
𝑗
of measure zero such that 𝜑(x) is (locally Lipschitz)

continuous within each of these domains and for all 𝑗 =

1, . . . , 𝑁 it has a finite limit 𝜑𝑗(x) as the argument x∗ ∈ 𝐺
𝑗

approaches a boundary point x ∈ 𝜕𝐺
𝑗
.

As a matter of fact, the continuous dynamics (5) can be
rewritten in the form

ẋ = f (x) + g (x)w, (9)

whereas the restitution rule admits the representation

x (𝑡
+

𝑖
) = 𝜇 (x (𝑡

−

𝑖
)) +Ω (x (𝑡

−

𝑖
))wd

i , 𝑖 = 1, 2, . . . , (10)

with x⊤ = [x⊤
1
, x⊤
2
], f⊤(x) = [x⊤

2
,𝜑⊤(x)], g⊤(x) = [𝜓⊤

1
(x),

𝜓⊤
2
(x)], 𝜇⊤(x) = [x⊤

1
,𝜇⊤
0
(x)], andΩ⊤(x) = [0,𝜔(x)].

The precise meaning of the differential equation

ẋ = f (x) , (11)

with a piecewise continuous right-hand side, is throughout
defined in the sense of Filippov. For convenience of the reader,
the following definition is recalled from Filippov [26].

Definition 2. Given the differential equation (11), let one
introduce for each point x ∈ R𝑛 the smallest convex closed set
F(x) which contains all the limit points of f(x∗) as x∗ → x,
and x∗ ∈ R𝑛 \ (∪

𝑁

𝑗=1
𝜕𝐺
𝑗
). An absolutely continuous function

x is said to be a solution of (11) if it satisfies the differential
inclusion

ẋ ∈ F (x) . (12)

Note that the extension of the Filippov solution concept
to the perturbed differential equation (9) is straightforward.

At any continuity point x ∈ ∪
𝑁

𝑖=1
𝐺
𝑖
of the function f

the Filippov set F(x) consists of the only point f(x), and
the Filippov solution satisfies (11) in the conventional sense.

If the function f(x) undergoes discontinuities on a smooth
surface 𝑆, governed by a scalar equation 𝑠(x) = 0, then the
discontinuity set 𝑆 separates x space into domains 𝐺

−
= {x ∈

R𝑛 : 𝑠(x) < 0} and 𝐺
+

= {x ∈ R𝑛 : 𝑠(x) > 0}, and the
Filippov setΦ(x) is a linear segment joining the endpoints of
the vectors

f− (x) = lim
𝜉∈𝐺− ,𝜉→ x

f (𝜉) ,

f+ (x) = lim
𝜉∈𝐺+ ,𝜉→ x

f (𝜉) .
(13)

According to Definition 2, a sliding mode on the discon-
tinuity set 𝑠(x) = 0, if any, is governed by

ẋ = f0 (x) + g0 (x)w, (14)

where the intersection of the Filippov segmentF(x) and the
plane𝑇, tangential to 𝑆, determines the endpoint of the vector
f0(x). Analytically, this vector is expressed in the form

f0 (x) + g0 (x)w = 𝜅 (x) f+ (x) + [1 − 𝜅 (x)] f− (x)

+ g (x)w,

(15)

where

𝜅 (x) =
grad⊤𝑠 (x) [f− (x) + g (x)w]

grad⊤𝑠 (x) [f− (x) − f+ (x)]
(16)

is found from the condition

grad⊤𝑠 (x) {𝜅 (x) f+ (x) + [1 − 𝜅 (x)] f− (x) + g (x)w}

= 0

(17)

where the velocity vector (15) is in the plane 𝑇, tangential to
𝑆. To summarize, the relations

f0 (x) =
grad⊤𝑠 (x) f− (x)

grad⊤𝑠 (x) [f− (x) − f+ (x)]
f+ (x)

−
grad⊤𝑠 (x) f+ (x)

grad⊤𝑠 (x) [f− (x) − f+ (x)]
f− (x) ,

(18)

g0 (x)w = g (x)w +
grad⊤𝑠 (x) g (x)w

grad⊤𝑠 (x) [f− (x) − f+ (x)]
f+ (x)

+ [1 −
grad⊤𝑠 (x) g (x)w

grad⊤𝑠 (x) [f− (x) − f+ (x)]
] f− (x)

(19)

are derived to determine the functions f0(x) and g0(x).
Our objective is to developL

2
-gain analysis of the hybrid

system (9) with the restitution rule (10) on the unilateral
constraint surface 𝐹(x1) = 0 and with the performance
output, specified by (6), (8). The analysis to be developed
is made under the following assumptions, imposed on the
underlying system:

(A1) The functions g⊤(x) and h(x) are locally Lipschitz
continuouswhereas g(x) is piecewise locally Lipschitz
continuous.
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(A2) The origin is assumed to be an equilibrium of the
unforced system (11), and h(0) = 0, and 𝜇(0) = 0.

(A3) The function f(x) undergoes discontinuities on a
smooth surface 𝑆, governed by the scalar equation

𝑠 (x) = 0. (20)

We are now in position to introduce L
2
-gain concept

for the underlying discontinuous system (5)–(8), equivalently
represented in the generic form (9), (10).

Definition 3. Given a real number 𝛾 > 0, referred to as a
disturbance attenuation level, it is said that the generic system
(9), (10) locally possessesL

2
-gain less than 𝛾 with respect to

outputs (6), (8) if the inequality

∫

𝑇

0

‖z (𝑡)‖
2 d𝑡 +

𝑁
𝑇

∑

𝑖=1


zdi



2

≤ 𝛾
2
[∫

𝑇

0

‖w (𝑡)‖
2 d𝑡 +

𝑁
𝑇

∑

𝑖=1


wd
i


2

] + 𝛽
0
(x (0))

+

𝑁
𝑇

∑

𝑘=1

𝛽
𝑘
(x (𝑡
−

𝑘
))

(21)

holds for some positive definite functions 𝛽
𝑘
(x), 𝑘 =

0, . . . , 𝑁
𝑇
, for all segments 𝑇 > 0 and natural 𝑁

𝑇
such that

𝑡
𝑁
𝑇

≤ 𝑇 < 𝑡
𝑁
𝑇

+1
, for all piecewise continuous disturbances

w(𝑡) and discrete ones wd
i , 𝑖 = 1, 2, . . ., for which the state

trajectory of the underlying system starting from an initial
point x(𝑡

0
) = x0 ∈ U remains in some neighborhood U ∈

R2𝑛 of the origin for all 𝑡 ∈ [0, 𝑇].

It is worth noticing that the above L
2
-gain definition

is consistent with the notion of dissipativity, introduced by
Willems [27] and Hill andMoylan [28], and with iISS notion,
Hespanha et al. [18], and it represents a natural extension
to hybrid systems (see, e.g., the works by Nešić et al. [29],
Yuliar et al. [30], Lin and Byrnes [31], and Baras and James
[32]). In order to facilitate the exposition, the underlying
system, chosen for treatment, has been prespecified with the
postimpact velocity value x

2
(𝑡) in the discrete output (8).The

general case of a certain function 𝜅(x
2
(𝑡)) of the postimpact

velocity value in the discrete output (8) can be treated in a
similar manner becauseL

2
-gain inequality (21) is flexible in

the choice of positive definite functions 𝛽
𝑘
(x), 𝑘 = 0, . . . , 𝑁

𝑇
.

2.1. Hamilton-Jacobi Inequality and Its Proximal Solutions.
TheHamilton-Jacobi inequality

𝜕𝑉

𝜕x
𝜑 (x) +

1

4𝛾
2

𝜕𝑉

𝜕x
𝜓 (x)𝜓⊤ (x) (𝜕𝑉

𝜕x
)

⊤

+ h⊤ (x) h (x) ≤ −] (x)
(22)

with some positive 𝛾 and some positive definite function ](x)
is introduced in a standard manner within the continuity
regions 𝐺

− and 𝐺
+ (i.e., outside the discontinuity surface 𝑆)

whereas on the discontinuity surface (20), inequality (22) is
specified according to (15) with

𝜑 (x) = 𝜑
0
(x) provided that 𝑠 (x) = 0. (23)

In other words, the Hamilton-Jacobi inequality, if con-
fined to the discontinuity surface (20), takes the form

𝜕𝑉

𝜕x
𝜑
0
(x) +

1

4𝛾
2

𝜕𝑉

𝜕x
𝜓 (x)𝜓⊤ (x) (𝜕𝑉

𝜕x
)

⊤

+ h⊤ (x) h (x) ≤ −] (x) .
(24)

Definition 4. A locally Lipschitz continuous function 𝑉(x) is
said to be a (local) proximal solution of the partial differential
inequality (22), specified on the discontinuity manifold (23)
according to (15) if and only if its proximal superdifferential
𝜕
𝑃
𝑉(x) is everywhere nonempty and (22) holds with 𝑉(x)

beyond the discontinuity surface (20) (locally around the
origin) for all proximal supergradients 𝜕𝑉/𝜕x ∈ 𝜕

𝑃
𝑉(x)

whereas the sliding mode Hamilton-Jacobi inequality (24) is
satisfied on the discontinuity surface (20) (locally around the
origin) for all 𝜕𝑉/𝜕x ∈ 𝜕

𝑃
𝑉(x).

The interested reader may refer to Clarke [24] for the
proximal superdifferential concept for continuous vector
fields.

Let 𝐵2𝑛
𝛿

∈ R2𝑛 be a ball of radius 𝛿 > 0, centered around
the origin. Given 𝛾 > 0,L

2
-gain analysis of the hybrid system

(9), (10) with respect to outputs (6), (8) is made under the
hypotheses, specified below in a domain x ∈ 𝐵

2𝑛

𝛿
of interest:

(H1) The norm of the matrix function 𝜔 is upper bounded
by (√2/2)𝛾; that is,

‖𝜔 (x)‖ ≤
√2

2
𝛾. (25)

(H2) TheHamilton-Jacobi inequality, given by (22) beyond
the discontinuity surface (20) and specified with (15)
and (23) along this surface, possesses a local positive
definite proximal (Lipschitz continuous!) solution
𝑉(x) under some positive 𝛾 and some positive definite
function ](x).

(H3) Hypothesis (H2) is satisfied with the function 𝑉(x)
which decreases along the direction𝜇 in the sense that
the inequality

𝑉 (x, 𝑡) ≥ 𝑉 (𝜇 (x, 𝑡) , 𝑡) (26)

holds in the domain of 𝑉.

The following result is in force.

Theorem 5. Consider the hybrid system (6), (8), (9), and
(10) with Assumptions (A1)–(A3). Given 𝛾 > 0, suppose that
Hypotheses (H1) and (H2) are satisfied for the system in a
domain x ∈ 𝐵

2𝑛

𝛿
with a function 𝑉(x). Then, the hybrid system

(9), (10) locally possesses L
2
-gain less than 𝛾 with respect to

outputs (6), (8). Once Hypothesis (H3) is satisfied as well, the
asymptotic stability of the disturbance-free version of the hybrid
system (9), (10) is additionally guaranteed.
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2.2. Proof of Theorem 5. The proof of Theorem 5 is preceded
with an instrumental lemma which extends the powerful
Lyapunov approach to impact systems. The following result
specifies [33, Theorem 2.4] to the present case with 𝑥

1
= 𝑥

and 𝑥
2
= 𝑡.

Lemma 6. Consider the unforced (u = 0) disturbance-free
(w = 0, wd

i = 0, 𝑖 = 1, 2, . . .) system (9), (10) with the
assumptions above. Let there exist a positive definite function
𝑉(x) such that its time derivative, computed along (9), is
negative definite whereas𝑉(x) ≥ 𝑉(𝜇(x)) for all x ∈ R2𝑛.Then,
the system is asymptotically stable.

Proof of Theorem 5. The proof is rather technical and it
follows the standard arguments of the nonlinear L

2
-gain

analysis of Isidori and Astolfi [15] and Van Der Schaft [16],
recently extended in Osuna and Orlov [20] to discontinuous
(Filippov) vector fields and Montano et al. [21] to dynamic
systems, operating under unilateral constraints. It is clear that
Lemma 1 is applicable both to a proximal solution𝑉(x) of the
Hamilton-Jacobi inequality (22), viewed on the solutions x(𝑡)
of the disturbance-free system (11) beyond the discontinuity
manifold (20), and to that of (24), viewed on the solutions
of the disturbance-free system (14) when g0(x) = 0 along the
discontinuitymanifold (20).Then, relations (3), (4), (22), and
(24), coupled together, result in

d
d𝑡

𝑉 (x) = DV (x, ẋ) ≤
𝜕𝑉

𝜕x
ẋ =

𝜕𝑉

𝜕x
𝜑 (x) ≤ −] (x) . (27)

With (27) in mind, Hypotheses (H2) and (H3) ensure that
Lemma 6 is applicable to the disturbance-free version of
the hybrid system (9), (10), which is thus shown to be
asymptotically stable.

It remains to demonstrate that the disturbed system (9),
(10) locally possesses L

2
-gain less than 𝛾 with respect to

outputs (6), (8). For this purpose, let us first focus on the
system dynamics beyond the discontinuitymanifold (20) and
let us introduce the multivalued function

𝐻(x,w) =
𝜕𝑉 (x)

𝜕x
[f (x) + g (x)w] + h⊤ (x) h (x)

− 𝛾
2w⊤w,

(28)

where 𝜕𝑉/𝜕x ∈ 𝜕
𝑃
𝑉(x). Clearly, the multivalued function

(28) is quadratic in w. Then,

𝜕𝐻 (x,w)

𝜕w

w=𝛼(x)
=

𝜕𝑉 (x)
𝜕x

g (x) − 2𝛾
2
𝛼
⊤
(x) = 0 (29)

for 𝜕𝑉/𝜕x ∈ 𝜕
𝑃
𝑉(x) and

𝛼
T
(x) =

1

2𝛾
2

𝜕𝑉 (x)
𝜕x

g (x) . (30)

Expanding the quadratic function 𝐻(x,w) in Taylor series,
we derive that

𝐻(x,w) = 𝐻 (x,𝛼 (x)) − 𝛾
2
‖w − 𝛼 (x)‖2 , (31)

where 𝐻(x,𝛼(x)) ≤ −](x) due to (22). Hence,

𝐻(x,w) ≤ −𝛾
2
‖w − 𝛼 (x)‖2 − ] (x) (32)

and employing (28) and (31) we arrive at

𝜕𝑉 (x)
𝜕x

[f (x) + g (x)w]

≤ −𝛾
2
‖w − 𝛼 (x)‖2 − ] (x) − ‖h (x)‖2 + 𝛾

2
‖w‖
2
.

(33)

By applying Lemma 1 and taking (33) into account, a time
derivative estimate of the solution 𝑉(x) of the Hamilton-
Jacobi inequality (22) on the trajectories of (9) between the
collision time instants is given as

d
d𝑡

𝑉 (x) ≤ −𝛾
2
‖w − 𝛼 (x)‖2 − ] (x) − ‖z‖2 + 𝛾

2
‖w‖
2
. (34)

Following the same line of reasoning, estimate (34) is
additionally verified for the system dynamics along the
discontinuity manifold (20) with 𝛼(x) subject to (30), now
specified with g(x) = g0(x), where g0(x) is given by (19).

By integrating (34) between the collision time instants 𝑡
𝑘

and 𝑡
𝑘+1

, 𝑘 = 0, 1, . . ., it follows that

∫

𝑡
𝑘+1

𝑡
𝑘

[𝛾
2
‖w‖
2
− ‖z (𝑡)‖

2
] d𝑡

≥ ∫

𝑡
𝑘+1

𝑡
𝑘

] (x (𝑡)) d𝑡 + ∫

𝑡
𝑘+1

𝑡
𝑘

d𝑉 (x (𝑡))

d𝑡
d𝑡

+ 𝛾
2
∫

𝑡
𝑘+1

𝑡
𝑘

‖w (𝑡) − 𝛼 (x (𝑡) , 𝑡)‖
2 d𝑡 > 0.

(35)

Skipping positive terms in the right-hand side of (35) yields

∫

𝑇

0

(𝛾
2
‖w‖
2
− ‖z (𝑡)‖

2
) d𝑡

≥ 𝑉 (x (𝑇)) +

𝑁
𝑇

∑

𝑖=1

[𝑉 (x (𝑡
−

𝑖
)) − 𝑉 (x (𝑡

+

𝑖
))]

− 𝑉 (x (𝑡
0
)) .

(36)

Since the function 𝑉 is Lipschitz continuous by Hypothesis
(H2), the relation

𝑉 (x (𝑡
−

𝑖
)) − 𝑉 (x (𝑡

+

𝑖
))

 ≤ 𝐿
𝛿

x (𝑡
−

𝑖
) − x (𝑡

+

𝑖
)


≤ 𝐿
𝛿
[
x (𝑡
−

𝑖
)
 +

x (𝑡
+

𝑖
)
]

(37)

holds true with 𝐿
𝛿

> 0 being Lipschitz constant of 𝑉 in the
domain 𝐵

2𝑛

𝛿
∈ R2𝑛. Relations (36) and (37), coupled together,

ensure the inequality

∫

𝑇

𝑡
0

(𝛾
2
‖w‖
2
− ‖z (𝑡)‖

2
) d𝑡

≥ −2𝐿
𝛿

𝑁
𝑇

∑

𝑖=1

x (𝑡
−

𝑖
)
 − 𝑉 (x (0))

(38)
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in the domain 𝐵
2𝑛

𝛿
∈ R2𝑛. Apart from this, inequality

𝑁
𝑇

∑

𝑖=1


zdi



2

=

𝑁
𝑇

∑

𝑖=1

x2 (𝑡
+

𝑖
)


2

≤ 2

𝑁
𝑇

∑

𝑖=1

𝜇0 (x (𝑡
−

𝑖
))



2

+ 2

𝑁
𝑇

∑

𝑖=1


w (x (𝑡

−

𝑖
))wd

i


2

≤ 2

𝑁
𝑇

∑

𝑖=1

𝜇0 (x (𝑡
−

𝑖
))



2

+ 𝛾
2

𝑁
𝑇

∑

𝑖=1


wd
i


2

(39)

is ensured by Hypothesis (H1). Thus, combining (38) and
(39), one derives

∫

𝑇

𝑡
0

‖z (𝑡)‖
2 d𝑡 +

𝑁
𝑇

∑

𝑖=1


zdi



2

≤ 𝑉 (x (0)) + 𝛾
2
[∫

𝑇

𝑡
0

‖w (𝑡)‖
2 d𝑡 +

𝑁
𝑇

∑

𝑖=1


wd
i


2

]

+ 2

𝑁
𝑇

∑

𝑖=1

𝜇0 (x (𝑡
−

𝑖
))



2

+ 2𝐿
𝛿

𝑁
𝑇

∑

𝑖=1

x (𝑡
−

𝑖
)
 ;

(40)

that is, the disturbance attenuation inequality (21) is estab-
lished with the positive definite functions

𝛽
0
(x) = 𝑉 (x) ,

𝛽
𝑖
(x) = 2𝐿

𝛿 ‖x‖ + 2
𝜇0 (x)

2

,

𝑖 = 1, . . . , 𝑁.

(41)

Theorem 5 is thus proved.

While proving Theorem 5, it is established that the
proximal solution 𝑉(𝑥) of the Hamilton-Jacobi inequality
represents a Lyapunov function of the undisturbed system.
Once the plant equations are linear, a Lyapunov function can
be sought in the quadratic form, and its specific expression
is obtained by solving the corresponding Hamilton-Jacobi
inequality (22). This is however not generally true, and for
switched systems, absolute-value functions become useful in
combinationwith quadratic ones. Such a combinedLyapunov
function is further utilized to tune sliding mode controller
gains while regulating a double integrator to the impact
surface.

3. A Case Study: Impacting Double Integrator
Driven by Sliding Mode Controller

3.1. Model of the Plant. To support our theoretical results,
system (9), (10) is specified in the state space 𝑥 ∈ R2 with

x= [𝑥1 𝑥
2]
⊤

,

w = [𝑤1 𝑤
2]
⊤

,

(42)

𝜇 (x) = [𝑥1 −𝑒𝑥
2]
⊤

,

Ω (x) = [0 𝜖]
⊤

,

(43)

f (x) = [𝑥2 −𝑀 sign (𝑐𝑥
1
+ 𝑥
2
)]
⊤

, (44)

g (x) = [

𝑑
1

0

0 𝑑
1

] , (45)

where 𝑀 > 0 and 𝑐 > 0 are the parameters of the
switched input 𝑀 sign(𝑐𝑥

1
+ 𝑥
2
); 𝜖 > 0 is the restitution

uncertainty factor. The above system represents a controlled
double integrator, operating under unilateral constraint 𝑥

1
≥

0 with a restitution parameter 𝑒 ∈ (0, 1) that can readily
be interpreted in terms of dimensionless impacting double
integrator (to numerically be studied in Section 3.4) where
𝑥
1
stands for a position deviation and 𝑥

2
is for its velocity.

Both a piecewise continuous unmatched disturbance 𝜔
1

∈

R and a matched disturbance 𝜔
2

∈ R of the same class
affect the system. It is well known that, in the unconstrained
case, the control input𝑀 sign(𝑐𝑥

1
+𝑥
2
) imposes disturbance-

independent sliding motions on system (9) thus specified to
slide along the linear surface 𝑐𝑥

1
+𝑥
2
= 0, provided that only

matched disturbances are admitted with an upper bound on
their magnitude not exceeding the control gain 𝑀.

The aim of this section is to demonstrate that the so-
called first-order sliding mode controller 𝑀 sign(𝑐𝑥

1
+ 𝑥
2
),

while driving the above system, is capable of not only
rejecting matched uniformly bounded disturbances, but also
attenuating restitution uncertainties and unbounded distur-
bances, including mismatched ones. For this purpose, the
continuous-time output (6) is further specified to consist of
the position deviation and the sliding variable 𝑠 = 𝑐𝑥

1
+ 𝑥
2
,

thus taking the form

z = h (x) = [𝑥1 𝑠]
𝑇

, (46)

whereas the discrete output (8) remains the same. To summa-
rize, the underlying continuous-time system is represented as
follows:

ẋ = [

𝑥
2
+ 𝑑
1
𝑤
1
(𝑡)

𝑢 + 𝑑
2
𝑤
2
(𝑡)

] , (47)

and it is driven by

𝑢 = −𝑀 sign (𝑠) , (48)

where the switching surface is governed by

𝑠 = 𝑐𝑥
1
+ 𝑥
2
= 0. (49)

Once the reset surface 𝑥
1

= 0 is achieved, the instantaneous
state transition is given by

𝑥
1
(𝑡
+
) = 𝑥
1
(𝑡
−
) ,

𝑥
2
(𝑡
+
) = −𝑒𝑥

2
(𝑡
−
) + 𝜖𝑤

𝑑
,

(50)

whereas the discrete output is

𝑧
𝑑

𝑡
= 𝑥
2
(𝑡
+
) . (51)

It is well known [34] that the collision-free system (47),
(48) is globally asymptotically stablewith the state-dependent
controller gain𝑀 = 𝑀(x) > 𝑐|𝑥

2
|+𝑑
2
sup
𝑡≥0

|𝜔
2
(𝑡)|whenever

𝑑
1
= 0 (no unmatched disturbances 𝜔

1
affect the system) and

𝑐 > 0.
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3.2. Verification of Hypotheses

3.2.1. Verification of Hypothesis (H1). Given 𝛾 > √2𝜖, relation
(25) is straightforwardly verified. Thus, under a fixed resti-
tution uncertainty factor 𝜖, Hypothesis (H1) imposes a lower
estimate on an admissible disturbance attenuation level. Since
the system in question is not capable of counteracting impact
dynamics instantaneously such an attenuation level cannot
be made arbitrarily small and its estimate relies on the
uncertainty factor at the collision instants. The smaller the
uncertainty factor is during the collisions, the better the
collision uncertainty is attenuated.

3.2.2. Verification of Hypothesis (H2) with the Hamilton-
Jacobi Inequality beyond the Switching Surface. Let us first
demonstrate that beyond the switching manifold (49) the
positive definite function

𝑉 = 𝑥
2

1
+ |𝑠| (52)

satisfies the Hamilton-Jacobi inequality (22). Indeed, substi-
tuting (44)–(46), (52) into the left-hand side of (22), one has

H = 2𝑥
1
𝑥
2
+ 𝑐𝑥
2
sign (𝑠) + [𝑀 −

1

4𝛾
2
(𝑐
2
𝑑
2

1
+ 𝑑
2

2
)]

+
1

𝛾
2
𝑑
2

1
𝑥
2

1
+

1

𝛾
2
𝑐𝑑
2

1
𝑥
1
sign (𝑠) + 𝑥

2

1
+ 𝑆
2
,

(53)

where the HamiltonianH stands for the left-hand side of the
Hamilton-Jacobi inequality (22). Then, taking into account
the fact that 𝑠 = 𝑐𝑥

1
+ 𝑥
2
and using straightforward

manipulations, involving the well-known inequality 2𝑥
1
𝑥
2
≤

𝑥
2

1
+ 𝑥
2

2
, it follows that

H ≤ −[𝑀 −
1

4𝛾
2
(𝑐
2
𝑑
2

1
+ 𝑑
2

2
)]

+ 𝑅
2
(4 +

1

𝛾
2
𝑑
2

1
+ 2𝑐
2
) + 𝑐𝑅(1 +

1

𝛾
2
𝑑
2

1
) < 0.

(54)

Within the ball

B
𝑅

= {x : ‖x‖ ≤ 𝑅} (55)

of radius 𝑅, inequality (54) is simplified to

H ≤ −𝑀 + 𝜂
2
𝑅
2
+ 𝜂
1
𝑅 + 𝜂
0
, (56)

where

𝜂
0
=

1

4𝛾
2
(𝑐
2
𝑑
2

1
+ 𝑑
2

2
) ,

𝜂
1
= 𝑐(1 +

1

𝛾
2
𝑑
2

1
) ,

𝜂
2
= (4 +

1

𝛾
2
𝑑
2

1
+ 2𝑐
2
) .

(57)

So, the HamiltonianH proves to be negative definite within
ball (55) provided that the controller gain 𝑀 is chosen
according to

𝑀 > 𝜂
2
𝑅
2
+ 𝜂
1
𝑅 + 𝜂
0
. (58)

Thus, under condition (58), the Hamilton-Jacobi inequality
(22) is shown to hold outside the switching surface (49),
locally within the regionB

𝑅
.

3.2.3. Verification of Hypothesis (H2) with the Hamilton-
Jacobi Inequality on the Switching Surface. The sliding mode
equation, governing the system dynamics on the switching
surface (49), is obtained by applying the equivalent control
method.Thus, if confined to the switching manifold (49), the
double integrator (47) reduces to the first-order system

�̇�
1
= −𝑐𝑥

1
+ 𝑑
1
𝜔
1 (59)

and its output (46) is then specified to

z = [𝑥1 0]
⊤

. (60)

In turn, the positive definite function (52) on the sliding
modes 𝑠(𝑥) = 0 is simplified to

𝑉 = 𝑥
2

1
. (61)

Let us now demonstrate that the Hamilton-Jacobi inequality
(24), while being specified for the sliding mode equation
(59), is solved with the positive definite function (61). By
substituting (61) into the Hamilton-Jacobi inequality (24),
thus specified, one derives

H = −(2𝑐 −
1

𝛾
2
𝑑
2

1
− 1)𝑥

2

1
< 0 (62)

provided the surface parameter is chosen according to

𝑐 >
1

2
(

1

𝛾
2
𝑑
2

1
+ 1) . (63)

The validity of the Hamilton-Jacobi inequality (24) is thus
straightforwardly verified on the switching surface (49)
subject to parameter choice (63).

3.2.4. Verification of Hypothesis (H3). For the Lyapunov
function (52) and function 𝜇(x), given by (43), condition (26)
of Hypothesis (H3) is specified to |𝑥

2
| ≥ |𝑒𝑥

2
|. Since the

restitution parameter 𝑒 ∈ (0, 1) the validity of this hypothesis
is thus guaranteed.

3.3. L
2
-Gain Analysis of the Overall System. Due to deriva-

tions of Sections 3.2.1–3.2.4, Theorem 5 becomes applicable
to the impacting double integrator (46)–(51). By applying
Theorem 5, the following result is established.

Theorem 7. Given arbitrary 𝛾 > √2𝜖 and radius 𝑅 > 0, let
the sliding mode controller parameters 𝑀 and 𝑐 be chosen to
ensure that inequalities (58) and (63) are satisfied. Then the
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Figure 1: Dynamics of the undisturbed closed-loop system.

disturbance-free system (47)–(50) with 𝑤
1
= 𝑤
2
= 0 and 𝑤

𝑑

𝑡
=

0 is asymptotically stable and its perturbed version possesses
L
2
-gain less than 𝛾 with respect to outputs (46), (51) locally

within the ballB
𝑅
of radius 𝑅.

It is important to remark that tuning of the controller
synthesis in the form (48) is greatly simplified for second-
order systems once the disturbance gains 𝑑

1
and 𝑑

2
and the

region 𝑅 of interest are a priori fixed. This simplicity can be
conserved for a system with several degrees of freedom, if
there exists a prefeedback control input such that the original
stabilization problem is decoupled to the stabilization of
several double integrators, controlled independently. An
example of such a decoupling technique applied to the finite-
time stabilization of an underactuated biped robot is found
in [35]; however, such a generalization is beyond the scope of
the present investigation. For systems with many degrees of
freedom, the verification of Hypothesis (H3) does not appear
to be straightforward, and online adaptation of the reference
trajectory is in order to enforce this hypothesis [36].

3.4. Numerical Performance Analysis. The performance of
the hybrid system (47)–(50) is numerically tested under the
parameter values 𝑑

1
= 𝑑
2

= 1 in the presence of the
unmatched and matched disturbances

𝑤
1
= 0.5𝑥

2
,

𝑤
2
= 1.8 sin (2𝑡) ,

𝑤
𝑑
= −0.25𝑥

2
.

(64)

In the simulation runs, the initial conditions were set to
𝑥
1
(0) = 0.05 and 𝑥

2
(0) = −0.48, and the numerical study
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Figure 2: Dynamics of the closed-loop system affected by
unmatched and matched disturbances (64).

was confined to the ball B
𝑅
of radius 𝑅 = 0.5. Specifying

the desired attenuation level with 𝛾 = 5, and the controller
parameter 𝑐 = 0.6, thus complying with (63), the auxiliary
variables (57) are found, 𝜂

0
= 0.0136, 𝜂

1
= 0.624, and 𝜂

2
=

5.24. Therefore, by setting the controller parameter 𝑀 = 1.7,
all the conditions of Theorem 7 were satisfied.

Figure 1 illustrates the asymptotic stability of the
disturbance-free system (𝑤

1
= 𝑤
2

= 𝑤
𝑑

= 0). With the
preselected initial conditions, there appears to be just one
impact approximately at 𝑡 = 0.12 s, which corresponds to the
vertical line in 𝑥

2
plot, and then the trajectory attains the

sliding surface 𝑠 = 0 approximately at 𝑡 = 0.29 s and stays
there forever. While the sliding variable remains at its zero
value, the trajectory approaches the origin asymptotically, as
predicted by the theory.

The system behavior when affected by both matched
and unmatched disturbances, including uncertainties in the
restitution law, is illustrated in Figure 2. It is observed that
the sliding motion along the surface 𝑠 = 0 is no longer in
force due to the presence of the unmatched disturbances.
Although the disturbed trajectory does not escape to zero
anymore, the state variables remain bounded and small, so
that good performance is presented despite the disturbances,
also causing additional impacts. The desired disturbance
attenuation is thus concluded from Figure 2.

In order to illustrate the advantages of the proposed
design on the disturbance attenuation in the closed-loop
system, the obtained results were compared against a con-
troller (48), (49) with a choice of 𝑀 = 1.2 and 𝑐 = 0.4

such that inequalities (58) and (63) are not satisfied anymore.
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Figure 3: Comparison of the position errors of the closed-loop
system using different values of𝑀 and 𝑐, affected by unmatched and
matched disturbances (64).
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Figure 4: Comparison ofL
2
norms of the closed-loop system using

different values of 𝑀 and 𝑐, affected by unmatched and matched
disturbances (64).

The comparison results are presented in Figures 3 and 4,
clearly showing that the performance of the closed-loop
system is greatly improved once the controller parameters are
properly tuned in accordance withTheorem 7.

4. Conclusion

In this paper, L
2
-gain analysis is developed for hybrid

mechanical systems, admitting sliding modes and collision
phenomena. Sufficient conditions for such a hybrid system

to be internally asymptotically stable and to possessL
2
-gain

less than an a priori given disturbance attenuation level are
carried out beyond and on the slidingmanifold.The resulting
conditions are properly unified in terms of appropriate
solvability of aHamilton-Jacobi partial differential inequality.
Effectiveness of the proposed analysis is illustrated in the
numerical study of an impacting double integrator, driven
by a sliding mode controller. It is shown that the desired
disturbance attenuation level is satisfactorily achieved in the
presence of external disturbances and impact uncertainties.

Bipedal robots constitute a popular benchmark of
mechanical systems operating under unilateral constraints
where a desired orbit to follow between impacts should
be attained at a sufficiently rapid rate before the next
contact occurs between the swing leg and the ground [37].
Since bipedal robots represent complex mechanical systems
with many degrees of freedom, flexibility instants, and ill-
identified physical parameters such as inertia moments,
masses, frictions, and velocity restitution coefficients (see
[38]), robust control of a bipedal robot remains an active
research area. A potentially interesting application of the
present results to bipedal robots is among challenging prob-
lems, calling for further investigation.
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