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The transition density function plays an important role in understanding and explaining the dynamics of the stochastic process. In
this paper, we incorporate an ergodic process displaying fast moving fluctuation into constant volatility models to express volatility
clustering over time. We obtain an analytic approximation of the transition density function under our stochastic process model.
Using perturbation theory based on Lie–Trotter operator splitting method, we compute the leading-order term and the first-order
correction term and then present the left and right skew scenarios through numerical study.

1. Introduction

The multivariate log-normal distribution is a widely used
stochastic model in social sciences. What is the probability
of the sum or difference of log-normal random variables?
The solution to this question has wide applications in many
fields such as finance [1, 2], actuarial science [3, 4], and
physics [5]. Especially, in physics, examples include wave
transmittance in random media, dissipation rate of turbu-
lence energy, and temporal fluctuations of some nonlinear
systems. However, to the best of the author of this paper’s
knowledge, almost nothing is known about the question yet.
So, finding analytical approximations to it is as important as
an alternative approach (see [6] for details).Themain advan-
tage of the analytical approximation approaches compared to
other numerical methods is that in general the first ones are
much faster and precise at least under certain model param-
eter regime. In addition, analytic approximation formulas
retain qualitative model information and preserve an explicit
dependence of the results on the underlying parameters.
Many approximatemethods can be categorized by their scope
into three classes: generally correlated [7–10], independent
[11–14], and independent and identically distributed [15, 16].
The probability density function of the correlated log-normal
especially is carried out to propose various approximations of
the sum distribution. These approximations can be divided

into two categories. The first method is approximated by
another log-normal random variable. For example, the log-
normal parameters are obtained by moment matching [7],
the mean and the variance are computed recursively [17], and
the shifted log-normal distribution [18]. A second method of
these methods is introduced to construct efficient numerical
integrations techniques such as a steepest-descent integration
[19] and a Smolyak’s algorithm [20].

In option pricing theory, it is well-known that constant
volatility for the stock price in the Black-Scholes model
[21] can hardly capture the accumulated empirical evidence
in financial markets since the parameters contained in the
model actually change over time. A main drawback in the
assumption of this model lies in the flat implied volatility
surface, which is contradictory to empirical results that the
implied volatilities of the equity options exhibit the smile or
skew curve, in particular, from the 1987 crash onward.Among
those several methods of overcoming the above drawback
and relaxing the assumption of the Black-Scholes constant
volatility model, a variety of stochastic volatility models have
been suggested to incorporate the volatility skew. Fast mean
reversion especially is one of the notable features of volatility.
For example, Fouque et al. [22] estimated that its volatility
reverts to the mean with characteristic time about 1.5 days
in high-frequency S&P 500 index data. Also, Engle [23]
and Bollerslev [24] introduced the family of autoregressive
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conditional heteroskedasticity and generalized autoregressive
conditional heteroskedasticity, respectively, to describe the
evolution of the volatility of the stock price in discrete time
setting and showed that econometric tests of these models
reject the assumption of constant volatility and find evidence
of volatility clustering over time.

Based on these observations together with the renowned
contribution of stochastic volatility formula to option pricing,
we propose the following fast mean-reverting (FMR) model
in which asset prices are conditionally log-normal and the
volatility process is a positive increasing function of a FMR
process:

𝑑 (𝑋1 ± 𝑋2)
= (𝑓1 (𝑌) ± 𝑓2 (𝑌)) (𝑋1 ± 𝑋2) 𝑑 (𝑊1 ±𝑊2) , (1)

𝑑𝑌 = 𝛼 (𝑚 − 𝑌) 𝑑𝑡 + 𝛽𝑔 (𝑌) 𝑑𝑊𝑌, (2)

where 𝑋1 and 𝑋2 are log-normal random variables and𝑊1,𝑊2, and 𝑊𝑌 are standard Brownian motions correlated as
follows:

𝑑 ⟨𝑊1,𝑊2⟩𝑡 = 𝜌12𝑑𝑡,
𝑑 ⟨𝑊1,𝑊𝑌⟩𝑡 = 𝜌1𝑌𝑑𝑡,
𝑑 ⟨𝑊2,𝑊𝑌⟩𝑡 = 𝜌2𝑌𝑑𝑡

(3)

with −1 ≤ 𝜌12, 𝜌1𝑌, 𝜌2𝑌 ≤ 1. Here, the parameter 𝛼 measures
the rate at which the ergodic Markov process 𝑌 reaches its
long-term mean value 𝑚, 𝑔 is a function, 𝛽 is a constant,
and the correlations 𝜌1𝑌 and 𝜌2𝑌 control the slope of the
skew of each underlying. We assume that 𝛼 is large so that
volatility is sufficiently fast mean-reversion when looked
over the time scale of options Fouque et al. [22]. We do
not specify the concrete forms of 𝑓1, 𝑓2, and 𝑔 since they
will not play an essential role in the perturbation theory
performed in this paper but the functions must satisfy a
sufficient growth condition to avoid some kind of bad cases
such as nonexistence of themoments of𝑌.This generalization
is a clear advantage of this model in that the FMR model
encompasses the models which reflect stylized facts such as
a feedback effect between volatility and volatility of volatility.

2. Asymptotic Analysis

2.1. Problem Formulation. Now we will denote 𝑥1 ± 𝑥2
and 𝑥10 ± 𝑥20 as 𝑥± and 𝑥±0 , respectively, for simplicity.
The probability distribution of the sum or difference of the
two correlated log-normal distributions can be obtained by
calculating the integral

𝑢± (𝑡, 𝑥±; 𝑡0, 𝑥±0 ) = ∫∞
0
∫∞
0
𝑑𝑥1𝑑𝑥2

⋅ 𝑢 (𝑡, 𝑥1, 𝑥2; 𝑡0, 𝑥10, 𝑥20)
⋅ 𝛿 (𝑥± − 𝑥±0 ) ,

(4)

where 𝑢 is the joint probability distribution of the two log-
normal random variables and 𝛿(𝑥± − 𝑥±0 ) is the Dirac delta

function. Unfortunately, a closed-form representation for this
probability distribution still does not exist.

FMR volatility enables us to make good use of perturba-
tion theory. To end this, we use the small positive parameter𝜖, which denotes the inverse of the rate of mean-reversion 𝛼
(which is assumed to be large). We suppose 𝛽 = ]√2/√𝜖,
where the variance ]2 of the invariant distribution of 𝑌 is a
constant with respect to 𝜖. If rewriting (2) in terms of 𝜖, we
have

𝑑𝑌 = 1𝜖 (𝑚 − 𝑌) 𝑑𝑡 + ]√2√𝜖 𝑔 (𝑌) 𝑑𝑊𝑌. (5)

This gives a singular perturbation problem with respect to
the small parameter 𝜖, which furnishes us with analytic
tractability. We define the scaled FMR (SFMR) model as the
FMR model used with an first-order asymptotic method in
this paper.

If we compare the Heston model [25], one of represen-
tative stochastic volatility models, with the SFMR model, we
can get some strengths.TheHestonmodel has five parameters
required to be estimated from market data while the SFMR
model has two. In addition, the Heston model has certain
restrictions on the volatility functions 𝑓1, 𝑓2, and 𝑔 whereas
the SFMR model does not have any.

2.2. Perturbation Theory Based on Lie–Trotter Operator Split-
ting Method. Perturbation theory as developed by Fouque et
al. [22] is a methodology utilized to find an approximated
solution when the original problem is difficult to solve by
separating it into more easily solvable, simple parts. If we
apply the Feynman-Kac formula, we find that 𝑢𝜖± satisfies the
following Kolmogorov backward equation:

L
𝜖𝑢𝜖± (𝑡, 𝑥1, 𝑥2, 𝑦1; 𝑡0, 𝑥10, 𝑥20, 𝑦0) = 0, 𝑡 < 𝑇, (6)

L
𝜖 fl

1𝜖L0 + 1√𝜖L1 +L2,
𝑢𝜖± (𝑡, 𝑥1, 𝑥2, 𝑦1; 𝑡0 󳨀→ 𝑡, 𝑥10, 𝑥20, 𝑦0) = 𝛿 (𝑥± − 𝑥±0 ) ,

(7)

where

L0 = (𝑚 − 𝑦0) 𝜕𝜕𝑦0 + ]2𝑔2 (𝑦0) 𝜕2𝜕𝑦20 ,

L1 = ]√2𝑓1 (𝑦0) 𝑥10𝑔 (𝑦0) 𝜌1𝑌 𝜕2
𝜕𝑥10𝜕𝑦0

+ ]√2𝑓2 (𝑦0) 𝑥20𝑔 (𝑦0) 𝜌2𝑌 𝜕2
𝜕𝑥20𝜕𝑦0 ,

(8)

L2 = 𝜕𝜕𝑡0 +
12𝑥210𝑓21 (𝑦0) 𝜕2

𝜕𝑥210 +
12𝑥220𝑓22 (𝑦0) 𝜕2

𝜕𝑥220
+ 𝑥10𝑥20𝜌12𝑓1 (𝑦0) 𝑓2 (𝑦0) 𝜕2

𝜕𝑥10𝜕𝑥20 .
(9)

Here, L0 is the infinitesimal generator of the SFMR process𝑌. L1 contains the mixed partial derivatives due to the
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correlations of the two Brownian motions 𝑊1 and 𝑊𝑌 and𝑊2 and𝑊𝑌, respectively. L2 is the operator of a generalized
version of the two-dimensional standard Brownian motion
at the volatility levels 𝑓1(𝑦0) and 𝑓2(𝑦0) instead of constant
volatilities, respectively.

Before we solve problem (6), we write a useful lemma
about the centering (or solvability) condition on the Poisson
equation related to the operatorL0 as follows.

Lemma 1. If 𝜓(𝑦) ∈ 𝐶2(R) which is a solution to the Poisson
equation

L0𝜒 (𝑦) + 𝜓 (𝑦) = 0 (10)

exists, then the centering condition ⟨𝜓⟩ = ∫𝜓(𝑦)(1/√2𝜋]2) exp[−(𝑦 − 𝑚)2/2]2] = 0 must be satisfied, where the
notation ⟨⋅⟩ is the average (or expectation) with respect to the
invariant distribution (namely,N(𝑚, ]2)) of𝑌.Then, solutions
of (10) are given by the form

𝜒 (𝑦) = ∫∞
0

E
𝑦 [𝜓 (𝑌) | 𝑌 = 𝑦] 𝑑𝑡. (11)

Proof. See Fouque et al. [22].

Using the resultant partial differential equation (PDE) (6)
and expanding 𝑢𝜖± in powers of √𝜖, one can approximate 𝑢𝜖±
to the sum of the leading term 𝑢(0)± and the first correction
term√𝜖𝑢(1)± as follows:

𝑢𝜖± ≈ 𝑢(0)± + √𝜖𝑢(1)± . (12)

Since we focus on the first-order correction term for 𝑢𝜖±, we
reset (12) with respect to √𝜖𝑢(1)± and denote it by 𝑢̃(1)± . Using
perturbation theory based on Lie–Trotter operator splitting
method, 𝑢(0)± and 𝑢̃(1)± must satisfy the following PDEs with
boundary conditions, respectively:

⟨L2⟩ 𝑢(0)± (𝑡, 𝑥1, 𝑥2; 𝑡0, 𝑥10, 𝑥20) = 0 (13)

with (𝑡, 𝑥1, 𝑥2; 𝑡0 󳨀→ 𝑡, 𝑥10, 𝑥20) = 𝛿 (𝑥± − 𝑥±0 ) , (14)

L2𝑢̃(1)± (𝑡, 𝑥1, 𝑥2; 𝑡0, 𝑥10, 𝑥20)
= ⟨L1L−10 (L2 − ⟨L2⟩)⟩ 𝑢(0)±

(15)

with 𝑢̃(1)± (𝑡, 𝑥1, 𝑥2; 𝑡0 󳨀→ 𝑡, 𝑥10, 𝑥20) = 0 (16)

and then one obtains the solutions 𝑢(0)± and 𝑢̃(1)± of the PDEs,
respectively,

𝑢(0)± = 1
𝑥±√2𝜎̃2±𝜋 (𝑡 − 𝑡0)

⋅ exp[
[
−{ln (𝑥±/𝑥±0 ) + (1/2) 𝜎̃2± (𝑡 − 𝑡0)}

2

2𝜎̃2± (𝑡 − 𝑡0) ]
]
,

𝑢̃(1)± = − (𝑇 − 𝑡) [𝑉1 𝜕3𝜕𝑥310 + 𝑉2
𝜕3
𝜕𝑥320 + 𝑉12

𝜕3
𝜕𝑥10𝑥220

+ 𝑉21 𝜕3
𝜕𝑥210𝑥20] 𝑢

(0)
± ,

(17)

where

⟨L2⟩ = 𝜕
𝜕𝑡0 +

1
2𝑥210𝜎1

𝜕2
𝜕𝑥210 +

1
2𝑥220𝜎2

𝜕2
𝜕𝑥220

+ 𝜎1𝜎2𝜌𝑥10𝑥20 𝜕2
𝜕𝑥10𝜕𝑥20 ,

𝜎1 fl √⟨𝑓21 ⟩,
𝜎2 fl √⟨𝑓22 ⟩,
𝜌 fl

𝜌12 ⟨𝑓1𝑓2⟩𝜎1𝜎2 ,

𝜎̃+ fl √𝜎21 + 𝜎22 + 2𝜎1𝜎2𝜌2 ,
𝜎̃− fl 𝜎21 − 𝜎22

2√𝜎21 + 𝜎22 − 2𝜎1𝜎2𝜌

(18)

and the constant parameters 𝑉1, 𝑉2, 𝑉12, and 𝑉21 are defined
as follows:

𝑉1 = ]𝜌1𝑌√𝜖𝑥310√2 ⟨𝑓1𝑔𝜃󸀠1⟩ ,

𝑉2 = ]𝜌2𝑌√𝜖𝑥320√2 ⟨𝑓2𝑔𝜃󸀠2⟩ ,

𝑉12 = ]𝜌1𝑌√𝜖𝑥10𝑥220√2 ⟨𝑓1𝑔𝜃󸀠2⟩
+ ]√2𝜖𝜌12𝜌2𝑌𝑥10𝑥220 ⟨𝑓2𝑔𝜃󸀠12⟩ ,

𝑉21 = ]𝜌2𝑌√𝜖𝑥210𝑥20√2 ⟨𝑓2𝑔𝜃󸀠1⟩
+ ]√2𝜖𝜌12𝜌1𝑌𝑥210𝑥20 ⟨𝑓1𝑔𝜃󸀠12⟩ .

(19)

See the Appendix for the relevant technique.
As a result, the distributions of the sum and difference

of correlated log-normal random variables under SFMR
model are shown to follow combining a shifted log-normal
distribution with mixed partial derivatives of it. Also, all the
original parameters are absorbed in the group parameters𝑉1,𝑉2, 𝑉12, and 𝑉21 and the present level 𝑦 of the hidden process𝑌 driving the fast time-scale volatility needs not be specified
in the present approximation.
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Figure 1: Sum of probability density function: 𝑥10 = 110, 𝑥20 = 100, 𝜎1 = 0.25, 𝜎2 = 0.15, 𝜌 = −0.5, and 𝑡 − 𝑡0 = 1.

2.3. Numerical Experiment. In this subsection, we illustrate
the effectiveness of our result (12) by showing numerical
results.

Several parameter sets are obtained from Lo except for
group parameters. Figure 1(a) depicts log-normal distribu-
tion (leading-order term or Lo’s result) and log-normal distri-
butions under SFMR model with positive or negative group
parameters (leading-order term plus first-order correction
term), respectively. The solid line denotes the shifted log-
normal distribution and the dash lines show combining
the shifted log-normal distribution and the first correction
term, respectively. Figure 1(b) depicts the errors calculated
by subtracting the log-normal distributions with positive or
negative group parameters from the log-normal distribution,
respectively.We also apply the same result to the difference of
the probability density function in Figure 2. Our numerical
results show that the left and right skew scenarios are
presented through first-order correction term and the major
discrepancies appear around the peak of the probability
density function. These pictures are sensitive to the choice
of the involved parameters and give a lot of flexibility to the
shape of the transition densities.

3. Final Remarks

Stochastic processes are popular in modeling various eco-
nomics and financial variables. The transition density func-
tion especially plays a key role in the analysis of continuous-
time diffusion models. In this paper, we obtained an analytic
approximation of correlated log-normal random variables
under SFMR model.

This paper offers various possible directions for further
development. Our result can be applied to pricing and
hedging spread options and is to incorporate a slowly varying
volatility-driving process into the SFMR model. Also, this
result can provide a very useful guide for credit risk manage-
ment (see [26, 27]). We leave these issues as future research
topics.

Appendix

Perturbative Analysis

Now, we delineate the derivations of the PDEs (13) and (15).
We expand 𝑢𝜖± in powers of √𝜖 in order to apply the

perturbation theory to the PDE problem (6):

𝑢𝜖± = 𝑢(0)± + √𝜖𝑢(1)± + 𝜖𝑢(2)± + 𝜖√𝜖𝑢(3)± + ⋅ ⋅ ⋅ . (A.1)

Substituting (A.1) into (6), we reorganize the formula as
follows:

1𝜖L0𝑢(0)± + 1√𝜖 (L0𝑢(1)± +L1𝑢(0)± )
+ (L0𝑢(2)± +L1𝑢(1)± +L2𝑢(0)± ) + ⋅ ⋅ ⋅ = 0.

(A.2)

For (A.2) to hold for any 𝜖 > 0, each term of the equation
must be zero. From the 1/𝜖-order term, we obtain

L0𝑢(0)± = 0. (A.3)

Since the operator L0 is the infinitesimal generator of
the SFMR process 𝑌, the solution 𝑢(0)± of the PDE must
be a constant with respect to the variable 𝑦; 𝑢(0)± =𝑢(0)± (𝑡, 𝑥1, 𝑥2; 𝑡0, 𝑥10, 𝑥20). From 1/√𝜖-order term,

L0𝑢(1)± +L1𝑢(0)± = 0. (A.4)

Since each term of the operatorL1 contains 𝑦-derivative, the𝑦-independence of 𝑢(0)± yields L1𝑢(0)± = 0. The PDE (A.4)
then reduces toL0𝑢(1)± = 0, so that 𝑢(1)± is also independent of𝑦; 𝑢(1)± = 𝑢(1)± (𝑡, 𝑥1, 𝑥2; 𝑡0, 𝑥10, 𝑥20). Namely, the two terms 𝑢(0)±
and 𝑢(1)± do not depend on the current level 𝑦 of the process𝑌
driving the fast scale volatility. One can continue to eliminate
the terms of order 1,√𝜖, 𝜖, and so on. From the constant order
terms, we have

L0𝑢(2)± +L1𝑢(1)± +L2𝑢(0)± = 0. (A.5)
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Figure 2: Difference of probability density function: 𝑥10 = 110, 𝑥20 = 100, 𝜎1 = 0.25, 𝜎2 = 0.15, 𝜌 = −0.5, and 𝑡 − 𝑡0 = 1.

This PDE becomes

L0𝑢(2)± +L2𝑢(0)± = 0 (A.6)

due to the 𝑦-independence of 𝑢(1)± as seen above. The PDE
(A.6) can be considered as a Poisson equation (see Lemma 1).
From the centering condition with 𝜓 = L2𝑢(0)± , the leading-
order 𝑢(0)± has to satisfy

⟨L2⟩ 𝑢(0)± = 0, (A.7)

where

⟨L2⟩ = 𝜕𝜕𝑡0 +
12𝑥210𝜎1

𝜕2
𝜕𝑥210 +

12𝑥220𝜎2
𝜕2
𝜕𝑥220

+ 𝜎1𝜎2𝜌𝑥10𝑥20 𝜕2
𝜕𝑥10𝜕𝑥20 ,

𝜎1 fl √⟨𝑓21 ⟩,
𝜎2 fl √⟨𝑓22 ⟩,
𝜌 fl

𝜌12 ⟨𝑓1𝑓2⟩𝜎1𝜎2 ,

𝜎̃+ fl √𝜎21 + 𝜎22 + 2𝜎1𝜎2𝜌2 ,
𝜎̃− fl 𝜎21 − 𝜎22

2√𝜎21 + 𝜎22 − 2𝜎1𝜎2𝜌
.

(A.8)

Then 𝑢(0)± solves the PDE (A.7).
Next, we derive the first correction term 𝑢(1)± . From the√𝜖-order term, we have

L0𝑢(3)± +L1𝑢(2)± +L2𝑢(1)± = 0. (A.9)

Applying the centering condition with respect to 𝑦 to (A.9),
we have

⟨L1𝑢(2)± +L2𝑢(1)± ⟩ = 0. (A.10)

From (9) and (A.7), we get

L2𝑢(0)± =L2𝑢(0)± − ⟨L2𝑢(0)± ⟩ (A.11)

= 12𝑥210 (𝑓21 − ⟨𝑓21 ⟩) 𝜕2𝑥10𝑥10𝑢(0)±
+ 12𝑥220 (𝑓22 − ⟨𝑓22 ⟩) 𝜕2𝑥20𝑥20𝑢(0)±
+ 𝑥10𝑥20𝜌12 (𝑓1 (𝑦) 𝑓2 (𝑦) − ⟨𝑓1𝑓2⟩) 𝜕2𝑥10𝑥20𝑢(0)± .

(A.12)

Substituting (A.12) into (A.6), we reorganize the form as
follows:

𝑢(2)± = −L−10 L2𝑢(0)± (A.13)

= −12𝑥210L−10 (𝑓21 − ⟨𝑓21 ⟩) 𝜕2𝑥10𝑥10𝑢(0)± − 12
⋅ 𝑥220L−10 (𝑓22 − ⟨𝑓22 ⟩) 𝜕2𝑥20𝑥20𝑢(0)±
− 𝑥10𝑥20𝜌12L−10 (𝑓1 (𝑦) 𝑓2 (𝑦) − ⟨𝑓1𝑓2⟩)
⋅ 𝜕2𝑥10𝑥20𝑢(0)± = −12𝑥210 (𝜃1 (𝑦) + 𝑎 (𝑡, 𝑥1, 𝑥2))
⋅ 𝜕2𝑥10𝑥10𝑢(0)± − 12𝑥220 (𝜃2 (𝑦) + 𝑏 (𝑡, 𝑥1, 𝑥2))
⋅ 𝜕2𝑥20𝑥20𝑢(0)± − 𝑥10𝑥20𝜌12 (𝜃12 (𝑦) + 𝑐 (𝑡, 𝑥1, 𝑥2))
⋅ 𝜕2𝑥10𝑥20𝑢(0)±

(A.14)

for arbitrary finite-valued functions 𝑎(𝑡, 𝑥1, 𝑥2), 𝑏(𝑡, 𝑥1, 𝑥2),
and 𝑐(𝑡, 𝑥1, 𝑥2)where the functions 𝜃1 : R→ R, 𝜃2 : R→ R,
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and 𝜃12 : R → R are solutions of the Poisson equations,
respectively:

L0𝜃1 = 𝑓21 − ⟨𝑓21 ⟩ ,
L0𝜃2 = 𝑓22 − ⟨𝑓22 ⟩ ,
L0𝜃12 = 𝑓1𝑓2 − ⟨𝑓1𝑓2⟩ .

(A.15)

From (A.11) and (A.13), we get

𝑢(2)± = −L−10 (L2 − ⟨L2⟩) 𝑢(0)± . (A.16)

Plugging (A.16) into (A.10), a PDE for 𝑢(1)± is given by

⟨L2⟩ 𝑢(1)± = ⟨L1L−10 (L2 − ⟨L2⟩)⟩ 𝑢(0)± . (A.17)

Since we focus on the first-order correction term for 𝑢𝜖±, we
reset (A.17) with respect to√𝜖𝑢(1)± and denote it by 𝑢̃(1)± so that
the fast scale correction 𝑢̃(1)± satisfies the following PDE:

⟨L2⟩ 𝑢̃(1)± = A𝑢(0)±
A fl √𝜖⟨L1L−10 (L2 − ⟨L2⟩)⟩ .

(A.18)

Here, the operatorA is expressed as

A = 𝑉1𝜕3𝑥10𝑥10𝑥10 + 𝑉2𝜕3𝑥20𝑥20𝑥20 + 𝑉12𝜕3𝑥10𝑥20𝑥20
+ 𝑉21𝜕3𝑥10𝑥10𝑥20 ,

(A.19)

where the constant parameters𝑉1,𝑉2,𝑉12, and𝑉21 are defined
as follows:

𝑉1 = ]𝜌1𝑌√𝜖𝑥310√2 ⟨𝑓1𝑔𝜃󸀠1⟩ ,

𝑉2 = ]𝜌2𝑌√𝜖𝑥320√2 ⟨𝑓2𝑔𝜃󸀠2⟩ ,

𝑉12 = ]𝜌1𝑌√𝜖𝑥10𝑥220√2 ⟨𝑓1𝑔𝜃󸀠2⟩
+ ]√2𝜖𝜌12𝜌2𝑌𝑥10𝑥220 ⟨𝑓2𝑔𝜃󸀠12⟩ ,

𝑉21 = ]𝜌2𝑌√𝜖𝑥210𝑥20√2 ⟨𝑓2𝑔𝜃󸀠1⟩
+ ]√2𝜖𝜌12𝜌1𝑌𝑥210𝑥20 ⟨𝑓1𝑔𝜃󸀠12⟩ .

(A.20)

It can be checked directly that 𝑢̃(1)± is given by

𝑢̃(1)± = − (𝑇 − 𝑡)A𝑢(0)± . (A.21)
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