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Information technology (IT) systems are present in almost all fields of human activity, with emphasis on processing, storage, and
handling of datasets. Automated methods to provide access to data stored in databases have been proposed mainly for tasks related
to knowledge discovery and data mining (KDD). However, for this purpose, the database is used only to query data in order to find
relevant patterns associated with the records. Processes modelled on IT systems should manipulate the records to modify the state
of the system. Linear genetic programming for databases (LGPDB) is a tool proposed here for automatic generation of programs
that can query, delete, insert, and update records on databases. The obtained results indicate that the LGPDB approach is able to
generate programs for effectively modelling processes of IT systems, opening the possibility of automating relevant stages of data
manipulation, and thus allowing human programmers to focus on more complex tasks.

1. Introduction

Information technology (IT) systems have become the basis
of process management of today’s successful enterprises. We
can find this kind of system in virtually all fields of activities
and inside corporations of any size. The intensive adoption
of IT systems has promoted the emergence of an entire
ensemble of technologies and services to supply a wide range
of demands.

Similar to what happens in other areas of product
development, methodologies, processes, and tools have been
enhanced over the years in order to improve the development
of software products, which are going to promote increasing
productivity and reduced costs. The first methodologies
were inspired by principles found in other areas of product
development, like manufacturing. However, the dynamic
environment involved in software development is fostering
a continuous improvement and customization of method-
ologies to embrace inevitable uncertainties and necessary
redefinition of the product specification, resulting in an
iterative and evolutionary process [1].

The need for more agile methodologies is promoting
the development of enhanced tools and techniques, more

notably in the field of code and design reuse. Approaches
to automate entire modules of the software development
or to support decision on software engineering have been
explored. However, the automated generation of computer
algorithms still remains restricted to the scientific field.
Knowledge discovery and data mining (KDD) applications
are associated with many different approaches to extract
relevant patterns from datasets, including solutions based
on programs generated automatically. However, since the
most common representation of data in the academic field
is the linear dataset, due to its simplicity, the majority of
works have been focusing on this representation. Using
this type of data organization, genetic programming was
employed to a wide range of applications, for instance,
financial market analysis [2], cancer molecular classification
[3], and bankruptcy prediction [4]. Nevertheless, large
databases normally used on IT systems do not store records
linearly. A more sophisticated framework is necessary to
organize records in advanced structural configurations, as
found on relational or object-oriented databases. Freitas [5]
has proposed a framework for applying GP for classification
and rule induction using relational databases. Ryu and Eick
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[6] have used MASSON to induce programs that show
commonalities between objects stored in an object-oriented
database, and to derive queries with the purpose of extracting
intentional information [7].

These works on KDD and query generation use the
database only to organize and retrieve information, so that
the programs do not modify the records. This limitation is
not a problem since the objective is to find patterns in static
data. On the other hand, aiming at modelling processes of
IT systems, the capability to modify records is mandatory for
the generated programs, since most processes are inherently
conceived to change the state of a set of entities in the system.
In the case of a library management system, for instance,
the process of borrowing a book change the state of the
system, associating a user and a book with a loan. By the
same reasoning, in the case of a financial IT system, a process
devoted to money transferring modifies the records related to
the accounts involved. The modelling of these two examples
are considered as case studies in this work.

To implement these kinds of processes, programs have to
be able to find the proper associations among information
stored in distinct data structures (tables or objects) and
manipulate them in a correct manner. This work proposes
linear genetic programming for databases (LGPDB), a tool
for automatic generation of programs that can query,
delete, insert, and update records in relational databases,
and shows experiments that illustrate the feasibility of the
proposed approach for automating the development of data
management algorithms in IT systems. A preliminary version
of LGPDB was presented in Archanjo and Von Zuben [8].

The paper is organized as follows. Section 2 presents
an overview of the evolution of software development,
covering three fields: methodologies, tools, and search-
based software engineering. linear genetic programming
for databases (LGPDB), a tool for automatic generation of
data management algorithms for IT systems, is described in
Section 3. An experiment for generating computer programs
to provide features for a simple library system is described
in Section 4. Section 5 introduces new instructions and a
method for inducing more complex programs. The influence
of records without consistent relationship on the evolution-
ary process is addressed in Section 6. Finally, in Section 7,
concluding remarks and future prospects are outlined.

2. Evolution of Software Development

Just like the development of any other product, many
methodologies, tools, and principles for software develop-
ment have been created over the years, aiming at cost reduc-
tion, quality improvement, and increasing productivity.

2.1. Methodologies. When a product is under development,
the sequence of steps from conception to the final product
should be carefully conceived, focusing on high levels of
productivity and quality, as long as low levels of cost and risk.
In the 1970s, the first methodology for software development
was denoted the Waterfall model [9], which specifies a
sequence of phases, from requirements to operations, to
deliver a software product.

Some mistakes in the first version of the project
requirements is probably associated with misleading decision
making. In the earlier stages of a project, it is common that
even customers or the product managers do not know every
specific detail of the project. Therefore, software prototyping
was proposed to address this problem. Using this method-
ology, a software prototype is developed to answer open
questions in the requirements that could only be managed by
means of some experimentation. In this case, the client or any
other person responsible for the software specification can
interact with the prototype to check whether or not the most
influential aspects of the project were properly addressed.
This process can be repeated, producing multiple prototypes,
until starting the product engineering.

Following the same idea of reducing risks and increasing
interaction with experts who have the final assessment of
the project, Boehm [10] has proposed the spiral model. In
that model, phases like risk analysis, prototype development,
and requirements are distributed over multiple cycles and,
at the end of each one, the result is validated by people
responsible for outlining the project. Extending these ideas,
in the last decade, a new software development paradigm
has gained attention, the agile software development (ASD)
[11], in which iterative and evolutionary processes are the
core idea. ASD breaks the project into multiple small cycles
with constant analysis and customer feedback to reduce
uncertainties surrounding the development of the product,
decreasing costs, improving quality, and delivering products
in the desired time range.

2.2. Tools and Techniques. Continuous software development
and improvement, a core principle embraced by modern
and more agile methodologies, require initiatives to increase
productivity and to minimize the impact caused by frequent
revisions in the software product, prevalent during the
development phase. Although some tools presented in this
section were proposed before the last revolution in the
software development methodologies, they have gained more
importance in software projects after the adoption of more
agile methods.

Considering the high demand for IT systems, it is
inevitable that multiple systems share similar features.
Software engineers and programmers involved in system
development across different project domains solve the
same or similar problems during the development. These
scenarios naturally promote the emergence of techniques
to reuse software solutions. The most well-known strategies
include the identification of high demanded features and
the creation of a set of customizable software components,
known as frameworks [12]. Currently, there are frameworks
for almost everything, from user authentication to optical
character recognition. Since frameworks add significant
value to software development products, their creation is
commercially exploited. Consequently, there are software
companies that focus solely on developing frameworks.
Software algorithms are not the only element that can be
reused. Taking into account the importance of software
architectural design, it was proposed the concept of design
pattern [13] which is a catalogue of designs matured and
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validated in real-world applications, organized to be reused.
Other notable strategy for software reuse has emerged with
the success of the Internet. Instead of providing features via
frameworks that have to be tightly coupled to applications,
the features are provided as web services [14]. The rise of
hardware and software services for broad integration of tools,
features, and purposes, available on the web, has created
a new computational concept, known as cloud computing
[15].

Nowadays, in order to store and manage information
about its processes, IT systems use a relational database
which represents the information in a scalar and struc-
tured fashion. On the other hand, this kind of system is
usually developed using object-oriented (OO) programming
languages or similar programming paradigms that manage
information in a nonscalar fashion, using composite vari-
ables like arrays and lists, hash maps, records, and objects.
Therefore, both the database format and the algorithm that
load and store information from the database should obey
some consistency rules, so that changes promoted in one of
them will be followed by corresponding changes in the other.
Since this requisite must be handled by most IT systems, a
technique called object-relational mapping (ORM) [16, 17]
was proposed to minimize the amount of effort allocated to
this task. In one instance of these approaches, instead of pro-
moting pairwise changes in format and algorithm for each
situation, an XML file is used to store the mapping between
objects and database tables. A generic purpose framework
does the conversion using that XML file. Thus, to change the
mapping, it is only necessary to change the XML file.

Other issue that impacts productivity and costs in
software development involves quality assurance processes.
Methods to automate parts of the software test were pro-
posed to improve testing procedures. One of the most-well
known techniques is the automated unit testing that uses
assertions to test if a source unit (i.e., the smallest testable
part of the software) is working properly. For each unit, it is
created a test case. A tool for this purpose, like JUnit [18], is
used to run all tests and generate a report automatically. This
testing strategy is receiving more and more attention, being
employed as the core concept of a software development
methodology called test-driven development [19].

2.3. Search-Based Software Engineering. In virtually all
human activities, there are problems in which the objective
is to find out the best decision, given different choices
and problem restrictions. This kind of situation can be
modelled mathematically and solved applying mathematical
optimization techniques, like classical optimization methods
or metaheuristics. Search-based software engineering (SBSE)
is a research field that embodies optimization methods
in software engineering tasks [20]. For example, in the
case of software effort estimation, a dataset containing
attributes of finished software projects (e.g., number of
transactions and entities, complexity, team experience) and
the necessary effort was used in [21] to provide estimations
for new projects. Neural networks, k-nearest neighbor, and
genetic programming were employed to map the relationship
between those attributes and the necessary effort. Moreover,

SBSE has been applied to many other problems in software
engineering, for instance, software testing [22], requirements
[23], automated maintenance [24], and quality assurance
[25]. The SBSE is a growing research field with a clear
tendency of being incorporated into the next generation of
real-world commercial software.

3. Linear Genetic Programming for
Databases (LGPDB)

Section 2 has shown the evolution of software development,
mainly by means of reusing solutions and automating pro-
cesses. However, the task of transforming ideas, architecture
designs, and processes into algorithms are predominantly
being made by human programmers. Thus, an automatic
method to generate this kind of algorithms is desired to
improve the software development process and also to alle-
viate the burden usually assigned to human programmers.

The field of automated generation of computer programs
is not new. In 1975, Holland [26] suggested the possibility of
evolving genetic algorithm representations more similar to
computer programs. In 1985, Cramer [27] evolved programs
by means of genetic operators and natural selection. Finally,
at the beginning of the 1990s, Koza [28] formalized the
genetic programming (GP) as an extension of genetic
algorithms designed specifically for program evolution. GP
has been used for generating computer programs devoted
to a wide range of applications, from robotics [29] to
electrical circuit synthesis [30]. GP is an effective method to
generate computer programs automatically. However, even
with the extensive list of applications of GP, the usage of this
approach on the IT environment is narrow and practically
devoted exclusively to SBSE and KDD. It is important to
mention the existence of other approaches for the automatic
generation of computer programs with some restrictions.
In the case of automatic programming [31], the objective
is the generation of computer programs from a high level
representation, specified by a human engineer, which models
the solution. There are also many approaches for evolution-
ary programming where only the program parameters are
optimized and not its structure. Finally, there are approaches
that model solutions by combining automatically selected
and parameterized algorithms [32]. However, in the case
of this work, the capability of optimizing the parameters
and the program structure in the level of instructions, using
genetic programming, seems more appropriate for providing
a general purpose tool for data manipulation.

Another relevant issue is the data representation since
most works do not use a structured method. Generally,
the datasets are composed of a sequence of attribute
vectors. Nevertheless, IT systems usually have to organize
information in more complex structures, involving multiple
entities or objects. IT systems generally use a relational
database to organize information. In [5], it was proposed a
method for query generation, using a fixed query structure
combined with a genetic program, to model relationships
present in a relational database. However, in that work, the
correct association among tables is fixed and it is informed
a priori. Thus, the genetic program does not need to model
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the correct path associating records stored in distinct tables,
as it will be implemented in this work. Instead of using a
relational database, Ryu and Eick [6, 7] have used an object-
oriented database and a domain knowledge base to generate
queries using MASSON. The relationship and interactions
among objects in the database are also defined a priori. The
use of an object-oriented database is also a barrier since it is
not a common approach for IT system development.

This work proposes a method to automate the devel-
opment of algorithms capable of manipulating records
for information technology systems. A commonly used
architectural approach for this type of systems is the MVC
(model-view-controller) [33] in which the application is
divided into three layers. The model layer is responsible for
data representation and management, for instance, creating
methods to store and request information from the database
and to convert database representations into programming
language representations. The controller is responsible for
modelling processes that manipulate data, sometimes called
“business logic.” Finally, the view creates an interface from
user interaction to the controller layer. Regarding this
architectural approach, the LGPDB programs implement the
layers, controller, and model.

In order to induce computer programs to manipulate
entities stored in a database, LGPDB is composed of a
simple relational database management system (DBMS) and
a programming induction module based on linear genetic
programming (LGP). The LGPDB architecture is illustrated
in Figure 1. The program induction module (PIM) is the core
of the system. It is responsible for evolving the candidate
solutions. For each candidate program in the population
at the current generation, it is executed fitness cases,
scripts with the desired outcome for the target algorithm.
The program execution environment is used by PIM to
execute candidate solutions, operating on the database. PIM
compares the outcome provided by the candidate program
with the outcome provided by the scripts in the fitness cases.
Thus, it is possible to measure the quality of a candidate
solution, a necessary step in the evolutionary process. In the
case of inducing programs that modify records, the solutions
have to address three issues: (i) relate multiple tables on the
database in order to associate the input attributes with the
target records, (ii) filter the target records using the input
attributes, (iii) modify the target records using the input
attributes. In the case of programs for querying, only the
first two issues have to be addressed. The entire process,
from modelling a system to generating computer programs
automatically, is addressed in detail in the next sections.

3.1. Database Management System. This module provides,
for users and programs, interface to set up the database
and manage the records stored on it. In comparison with
traditional DBMS like PostgresSQL or MySQL, this module
provides a smaller set of features. On the other hand, it was
developed exclusively for program induction. Therefore, it
combines some features for this purpose.

(i) In-memory database: since the induction process may
involve thousands of candidate programs running

Program execution
environment
(interpreter)

Fitness
cases 

Program induction module
  (genetic programming)

OperateOperate

Use Execute

Access

Database

Figure 1: LGPDB architecture.

at each generation, each one performing multiple
operations on the database, it is important to make
the operations as simple as possible. In this case,
features for recovering from adverse situations are
unnecessary since the induction process can be
repeated after such situation. Most importantly, the
database operates entirely on the RAM memory,
reducing the access time for the records on the
database [34].

(ii) Database comparison: when evaluating candidate
solutions, it is important to know if the correct
records were manipulated and the desired state of
the database was achieved. Therefore, this module
provides a feature for database comparison, returning
the set of different records between the outcome
provided by the candidate programs and the outcome
provided by the validation scripts (fitness cases).

(iii) Weakly typed: to reduce the amount of concepts
that candidate programs have to capture from data
to model an information manipulation process, the
database fields and program variables are weakly
typed. Thus, numerical, categorical, and textual data
are stored in a generic representation that can be
accessed and modified by programs through a unique
interface.

Another important feature provided by the DBMS is
the concept of transaction, in which multiple operations
can be executed atomically and reversed if desired, or in
the case of errors [35], using the command rollback(). This
command is extensively used in the induction process to
restore the state of the database. After the evaluation of each
candidate solution, the command rollback() is executed, then
all candidate programs start operating the database at the
same state.

3.2. Software Induction Environment. This module is devoted
to generating computer algorithms automatically by employ-
ing an inductive learning approach with genetic program-
ming. Having the database configured and the desired
features modelled, it is specified a set of input variables
and the desired outcome for each feature. In the induction
process, programs compete with each other to solve the
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problem. Mapping the relationship between the input and
the outcome, genetic programs can model processes for
information management.

3.3. Program Representation. Computer program can be
interpreted as a set of instructions that tell a computer
how to perform a task. Instructions can access and operate
upon information stored in memories. Loops and condi-
tional branches can be created using conditional and jump
functions. These elements, present on low-level machine
program representations like assembly, are also present in
some sense in the majority of other representations, from
C language to the ones used in GP. In the case of LGPDB,
the program representation was adapted for information
management tasks. Therefore, the first notable difference
is on the instruction set, defined exclusively to manipulate
information in a relational database, as listed below.

(i) Select(Table tb, ResultSet rs). Select all records in tb
and put them in rs. Before this process, the result set
is cleared, therefore, any existent information stored
before is deleted.

(ii) Filter(ResultSet rs, Attribute attr, Rule r, InputValue
v). Filter the result set rs using the rule r and the input
value v for the attribute attr.

(iii) Related(ResultSet rs1, ResultSet rs2). For each record
in rs1, if there is no foreign key associating it with a
record in rs2, remove it.

(iv) UnRelated(ResultSet rs1, ResultSet rs2). For each
record in rs1, if there is a foreign key associating it
with a record in rs2, remove it.

(v) Delete(Table tb, ResultSet rs). Delete all records in tb
with the same id of the records in rs. By definition for
our problem, every entity has an attribute id.

(vi) CreateRelation(Table tb, ResultSet rs1, ResultSet rs2).
If there is a foreign key associating records in rs2 with
table tb, insert records in table tb associating them
with the records in rs2 and store these records in rs1.

(vii) SetRelation(ResultSet rs1, ResultSet rs2). If there is a
foreign key associating records in rs2 with records in
rs1, set the association in the records in rs1 using the
id’s of the records in rs2, and update the records in
rs1 on the database.

As can be seen, the LGPDB instructions do not operate
using memory addresses or a generic type of variable.
The LGPDB uses a strongly typed genetic programming
representation [36] in which instruction parameters have
a specific type and all programs in the population have
instructions well parameterized, consequently reducing the
search space. Each type of parameter has a specific purpose.
Table represents the database tables. ResultSet is a data
structure for database record management. Attribute is the
possible attributes of a given ResultSet considering its table.
Rule is used to compare two variables, given a comparison
criteria such as “equal,” “not equal,” “greater,” and “less.”
InputValue is any information specified by the user.

There are different program structures that might be used
for GP programs such as tree, graph, and linear array. The
program structure affects execution order, use and locality
of memory, and the application of genetic operators [37].
In the case of LGPDB, instructions have many parameters
and the data manipulated by programs are in the database
or in global variables. The linear structure representation
[38] has been chosen because of the use of memory
and the similarity with imperative programming languages.
Therefore, LGPDB programs can be interpreted by human
programmers easily. Conditions and loops are implicitly
available by means of the instruction Filter. Depending on
the rule and the input value, it is determined whether a set
of records should be kept or not inside the data structure
ResultSet. Every instruction that manipulates a ResultSet also
implements a loop to access each record inside that data
structure. Compared with the program representation used
by programming languages for general purpose, LGPDB
representation is more restrictive. However, since LGPDB
programs are generated automatically, the expressiveness of
the language affects the size of the search space of solutions.
In order to reach feasibility for the target problems, it was
necessary to create a representation with restrictions and
highly specific functions.

3.4. Evolutionary Process. As in any type of genetic algorithm,
candidate solutions are evolved by means of natural selec-
tion. Candidate solutions compete, in an iterative process,
generation after generation, to solve a problem. At each gen-
eration, solutions more adapted to solve the problem, given
an evaluation criterion, are selected with more probability,
to produce offspring to the next generation. Using this strat-
egy, programs evolve along the generations until possibly
reaching the desired solution. The first step in this process
is the generation of the initial random population, given
the maximum initial program size and the initial population
size. The size of the program determines its complexity and
the computational cost of its execution. The maximum size
of a program can be increased along the generations, thus
allowing more complex candidate solutions to be proposed
in advanced stages of the evolutionary process. After the
initialization, the iterative process that selects and creates a
new population of candidate solution begins.

A selection strategy is necessary to implement the
concept of survival of the fittest, so that individuals with
the better fitness have a higher probability of being selected.
LGPDB only selects the best individuals to generate offspring
for the next generation, known as elitist strategy. The
degree of adaptation of an individual for a given problem
(fitness) is used to measure how far individuals are from
the best solution. Since LGPDB employs a supervised and
inductive learning strategy, the fitness of an individual is
estimated based upon a set of examples containing input
variables and the expected outcome, or simply fitness cases.
In the induction database, the fitness cases are executed
and the desired outcome is recorded. Candidate programs
operate the induction database aiming at finding the cor-
rect sequence of instructions that changes the state of
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the database in order to arrive at the same state of the
database obtained with the fitness cases. Comparing the
desired outcome, provided by the fitness cases, and the
outcome provided by each candidate program, it is possible
to determine how distant the candidate program is from
achieving the correct solution.

In LGPDB, the fitness function F(p), for a given distance
D(p) and a program p, returns 1 if the individual has solved
the problem completely or a positive value smaller than 1 for
partial solutions, as shown in:

F
(
p
) = 1

1 + D
(
p
) . (1)

LGPDB programs can manipulate records by means of
four basic database operations: query, deletion, insertion,
and updating. The desired outcome presented by the fitness
cases determines which type of operations candidate solu-
tions can perform and the distance measure used by the
fitness function, since distinct distance measures are used
depending on the type of manipulation. For querying, it is
provided a set of examples E containing input information
and the expected result. In the evaluation, it is considered
the distance between the result provided by this set and the
result provided by the program, stored in the ResultSet rs0 by
default. As shown in (2), for querying, the number of false
negatives FN between the expected result set and the result
set provided by a candidate solution is more penalized, using
a constant α > 1, than the number of false positives FP. At
the beginning, it is better to query all the data than to query
a subset possibly missing the desired information. Thus, the
solution is improved by filtering the entire dataset along the
generations. This strategy is also used in [6, 7] and has the
objective of stimulating the evolution of filtering techniques:

Dquery
(
p
) =

E∑

i=0

(FNi ∗ α + FPi). (2)

Instruction Delete() deletes records passed in a ResultSet
as a parameter, therefore, the problem of inducting a
program to delete records can be seen as a querying problem.
If the desired records to be deleted are in the parameter
ResultSet, like the correct records in rs0 for querying
problems, the deletion operation is performed correctly.
However, by this reasoning, the distance estimation must
prioritize the false negatives. At the beginning, solutions
tend to delete all records. The correct set of records to
be deleted emerges adding filtering instructions throughout
the evolution of the programs. The distance estimation for
deletion is presented, as follows:

Ddelete
(
p
) =

T∑

i=0

(FNi + FPi ∗ α). (3)

Querying and deletion operations manipulate entire
records. All attributes of the target records are necessarily
involved in the operation, hence, it is only necessary to
check whether or not a record is presented in the result for
comparison. In the case of insertion and updating, records

are not totally inserted or updated in a single operation. In
the case of insertion, for instance, one instruction creates an
initial record (CreateRelation) and another set the value of
individual attributes (SetRelation), one at a time. Therefore,
in order to determine a distance for two database states
with inserted or updated records, it is necessary to compare
them in the level of attributes. Before the induction process,
the database states are compared, then inserted or modified
records are listed. Therefore, when comparing the program
outcome and the desired one, two elements are considered: if
the program has manipulated the correct records, in the case
of updating, and the Hamming distance (HD) between the
two results. The HD is calculated using attributes of records
to be compared. If all attributes are equal in the two records,
the distance is zero, otherwise, it is given by the number
of different attributes. The total distance between the two
results is the sum of the HD between each compared pair of
records. In the case of updating, records listed to be altered
have their HD multiplied by α, penalizing programs that have
not manipulated them.

After selecting interesting candidate solutions, based on
the evaluation method, the next step is the creation of a
new population of solutions. For this purpose, conventional
genetic operators for mutation and crossover are applied.
Given an individual, the reproduction operator generates x
new individuals with the same genome. In the case of this
work, it generates new programs with the same instructions
and parameters. Then, given a probability for each operator,
crossover and mutation take place to promote variation in
the individuals. The crossover operation is used to combine
blocks or sections of good solutions to generate new ones.
LGPDB uses linear crossover in which, given two individuals,
a segment is randomly selected in each individual and then
exchanged. Mutation simply promotes a small variation in
an individual. In the case of LGPDB, one of the following
mutation operations is selected given a probability: (1)
change instruction type, (2) change instruction parameter,
(3) add an instruction in a random position, (4) change the
instruction position, and (5) remove an instruction from a
random position.

The steps above are combined to form the evolutionary
process, shown in the flowchart presented in Figure 2. In
the first step, a copy of the original database is created to
be used in the induction process. Then, the initial random
population is generated. In the next step, the iterative
process is started and each individual is evaluated. Since all
individuals start operating the database in the same state,
after the evaluation of an individual, a rollback() operation
is performed to recover the state of the database for the
next individual. After the evaluation of all individuals, the
selection process takes place. If the problem has not yet been
solved by any individual in the population at the current
generation or the maximum number of generations has
not been achieved, the genetic operators are employed to
generate a new population of individuals from the selected
individuals and the process proceeds to the evaluation step.
This iterative process is repeated until the satisfaction of
the stopping criteria. When a candidate program succeeds
in solving the problem, a final step removes unnecessary
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Figure 2: Flowchart of the LGPDB evolutionary process.

instructions, called introns. The presence of introns does
not affect the outcome of the program. However, it might
consume significant computational resources. Aiming at
removing introns, it is verified whether or not the execution
of each instruction of a program affects the program
outcome. Instructions that overwrites unused variables or
manipulates variables not associated with the program
outcome should be discarded. Moreover, programs without
introns are more parsimonious and easier to be interpreted
by humans. The interpretability is relevant in scenarios in
which human programmers interact with the tool to validate
the automatically generated programs or even to adapt them
so that they become capable of performing similar tasks.

4. Experiment with a Library System

The induction of features for a library system was the first
application of LGPDB [8]. It was used to validate the main
concepts and to identify weak points for improvements.

In this experiment, it was modelled a simple library
management system containing the entities User, Author,
Book, Periodical, Paper, Publisher, Tag, and Message. The
relationship between these entities is intuitive, like user

Table 1: A subset of the database tables for a library system. The
attributes in italic are primary or foreign keys.

Table Fields

user id, name, email, user, password

author id, name

book id, publisher id, title, pages, isbn

paper id, title

periodical id, publisher id, year, volume, issue, isbn

publisher id, name

tag id, value

message id, message

bookLoan id, book id, user id

periodicalLoan id, periodical id, user id

authorBookRel author id, book id

authorPaperRel id, author id, paper id

tagRel id, book id, paper id, tag id

messageRel id, message

borrows books and periodicals that have authors and pub-
lishers. The entity-relationship diagram (ERD) [39] showing
entities, attributes, and the relationships is presented in
Figure 3.

The next step was to set up the relational database using
the previously presented ERD to define the tables, attributes,
and keys, as shown in Table 1. The database is composed of
14 tables, one for each entity and others to map many-to-
many relationships among entities, like book and author, so
that a book can be associated with multiple authors and vice
versa.

After the initial setup, the database was populated with
records, part of them is real data obtained on the Internet
and others are hypothetical, used to simulate interesting
relationships. Moreover, a few records without consistent
relationships such as a book without author or a periodical
without paper were inserted to promote the exploration of
entity relationships by candidate solutions.

Finally, having defined and configured the database, the
next step was the definition of which features have to be
provided by the system, listed in Table 2.

As mentioned in Section 3.4, the LGPDB programs
are evaluated under a set of fitness cases containing the
input attributes and desired outcome for a given problem.
Therefore, for each feature in Table 2, it is created a set of
fitness cases. Table 3 shows an example of fitness case for the
querying task Q4. The input is a tag previously inserted on
the database, and the outcome is a set of books associated
with that tag. Table 4 shows a fitness case for the deletion task
D3. The input is the name of an author and the outcome is
the deletion of books and papers. Table 5 shows an example
for the insertion task I1. The input is the name of a book
and a previously inserted message, and the outcome is the
insertion of the records. Finally, for the updating task U1,
Table 6 shows an example of fitness case. The input is the
name of two publishers, the current and the new one. The
outcome is the updating of the correct records.
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Figure 3: Entity-relationship diagram (ERD) for a simple library management system. Entities are drawn as rectangles, relationships as
diamonds, and attributes as ovals.

Table 2: Features for the target system.

ID Description

Q1 List books written by an author named X.

Q2
List users who borrowed books written by an author named
X.

Q3
List users who borrowed a periodical containing a paper
written by an author named X.

Q4 List books available for loan, having the tag X.

D1 Remove books published before the year X.

D2 Remove loan of a book titled X by the user Y.

D3 Remove books and papers authored by an author named X.

I1
Send the message Y to every user who borrowed a book titled
X.

I2 Add a new tag Y for a book titled X.

U1 Update book publisher from X to Y.

Table 3: Example of a fitness case for the querying task Q4.

Feature Q4

Description List books available for loan, having the tag X.

Input “Artificial Intelligence”

Type Querying

Outcome

{“0,” “Artificial intelligence: a modern approach,”
“0,” “1132,” “2009,” ”0137903952”},
{“1,” “AI Programming Paradigms,” “1,” “946,”
“1991,” “1558601910”},
{“2,” “Machine Learning,” “2,” “432,” “1997,”
“0070428077”},
{“3,” “Genetic Programming,” “3,” “840,” “1992,”
“0262111705”}

For each task, multiple fitness cases are used. The
database instructions used as outcome manipulate the
correct records, but without any association with the input
information. The desired solution has to find the association

Table 4: Example of a fitness case for the deletion task D3.

Feature D3

description
Remove books and papers authored by an author
named X.

Input “Peter Norvig”

Type Deletion

Outcome
delete(book, 0)

delete(book, 1)

delete(paper, 142)

Table 5: Example of a fitness case for the insertion task I1.

Feature I1

Description
Send the message Y to every user who borrowed a
book titled X.

Input
“Machine Learning,” “A new book is available with
similar subject”

Type Insertion

Outcome
Insert(messageRel, “2,” “7”)

Insert(messageRel, “3,” “8”)

Insert(messageRel, “4,” “9”)

Table 6: Example of a fitness case for the updating task U1.

Feature U1

Description Update book publisher from X to Y.

Input “Springer,” “Springer-Verlag”

Type Updating

Outcome
Update(book, 13, “publihser id,” “10”)

Update(book, 14, “publisher id,” “10”)

Update(book, 15, “publisher id,” “10”)

between the input data and the records manipulated by the
fitness cases, and the correct manipulations.
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Table 7: Programs induced to provide the selected features for a library system.

ID Program Genavg Genstd Genmedian NC

Q1
select(author,rs3) select(authorBookRel,rs2) filter(name,equals,x,rs3)
related(rs2,rs3) select(book,rs1) related(rs1,rs2)

75 34 79 0

Q2
select(author,rs2) filter(name,equals,x,rs2) select(authorBookRel,rs1)
related(rs1,rs2) select(book,rs3) select(bookLoan,rs2) related(rs3,rs1)
related(rs2,rs3) select(user,rs1) related(rs1,rs2)

283 161 265 0

Q3

select(author,rs3) select(paper,rs1) filter(name,equals,x,rs3)
select(authorPaperRel,rs2) related(rs2,rs3) related(rs1,rs2)
select(periodicalLoan,rs2) select(periodical,rs3) related(rs3,rs1)
related(rs2,rs3) select(user,rs1) related(rs1,rs2)

430 205 365 0

Q4
select(tag,rs4) filter(value,equals,x,rs4) select(book,rs1) select(tagRel,rs2)
related(rs2,rs4) related(rs1,rs2) select(bookLoan,rs3) unrelated(rs1,rs3)

216 134 198 0

D1 select(book,rs2) filter(date,less,x,rs2) delete(book,rs2) 28 31 14 0

D2
select(bookLoan,rs2) select(book,rs3) filter(title,equals,x,rs3)
related(rs2,rs3) select(user,rs3) filter(name,equals,y,rs3) related(rs2,rs3)
delete(bookLoan,rs2)

715 495 746 6

D3

select(paper,rs3) select(author,rs4) filter(name,equals,x,rs4)
select(authorBookRel,rs1) select(book,rs2) relate(rs1,rs4) relate(rs2,rs1)
select(authorPapelRel,rs4) select(author,rs1) delete(book,rs2)
filter(name,equals,x,rs1) relate(rs4,rs1) relate(rs3,rs4) delete(paper,rs3)

402 374 279 3

I1

select(book,rs2) filter(title,equals,x,rs2) select(bookLoan,rs3)
related(rs3,rs2) select(user,rs2) related(rs2,rs3) select(message,rs1)
createRelation(messageRel,rs3,rs2) filter(text,equals,y,rs1)
setRelation(rs3,rs1)

709 391 662 1

I2
select(tag,rs2) filter(value,equals,y,rs2) createRelation(tagRel,rs3,rs2)
select(book,rs4) filter(name,equals,x,rs4) setRelation(rs3,rs4)

80 49 69 0

U1
select(publisher,rs2) filter(name,equals,x,rs2) select(book,rs4)
select(publisher,rs3) filter(name,equals,y,rs3) related(rs4,rs3)
setRelation(rs4,rs2)

209 201 151 0

Before the induction process, the following parameters
have to be defined: number of available ResultSets nrs for
manipulation, population size popsize, maximum number of
instructions in a program maxsize, probability of crossover
pcros, and probability of mutation pmut. Using the features
Q1, I1, D1, and U1, empirical trials were performed looking
for the configuration with the faster convergence to the
correct solution, given by nrs = 4, popsize = 1000, maxsize =
20, pcros = 0.3, and pmut = 0.9. In fact, the convergence
was not affected significantly by the crossover operator.
A lower probability has been chosen in order to improve
performance.

Finally, individual programs were induced to provide
the features listed on Table 2. In Table 7, for each feature,
it is shown one of the obtained induced programs and
the average (Genavg), standard deviation (Genstd), median
(Genmedian) number of generations, and the number of
attempts without convergence (NC) to the correct solution in
20 executions within the maximum of 2000 generations. The
results indicate that LGPDB can induce very interpretable
programs to query, delete, insert, and update records in rela-
tional databases. The induction of a program to perform the
task D3 indicates that LGPDB can induce programs that alter
multiple tables. Regarding the column “no convergence”
(NC), only three tasks (D2, D3, I1), the evolutionary process

has not obtained the correct solution in all 20 executions. In
6 cases for the D2 task, 3 cases for the D3 task, and 1 case
for the I1 task, the population converged to a local optimal
candidate solution, and the genetic operators were not capa-
ble of conducting the population to more promising regions
in the search space, even increasing the maximum number
of generations of the evolutionary process. Nevertheless, for
practical applications, multiple executions, characterized by
a distinct set of randomly initialized individuals at the first
generation, can be made until the convergence to the correct
solution is reached. In the case of the applications tackled
in this work, it is important to note that partial solutions
are not acceptable. Therefore, programs have to reach the
correct solution to be useful. Usually, processes devoted to
manage information on IT systems have to achieve all goals,
otherwise, they will accumulate errors not tolerated in this
kind of application.

On the other hand, the results highlight some limitations
of LGPDB. Although it is not an objective of LGPDB to
be a high-performance classifier, given its purpose, more
powerful filtering rules are desired. The restriction of not
generating single programs that can alter information in
multiple ways, for instance, inserting and deleting, has also
to be addressed. The next section describes initial efforts to
overcome these limitations.
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5. Adding New Instructions and
Inducing More Complex Programs

The previous experiment has shown that LGPDB can induce
programs to query, delete, insert and update records in
a relational database. However, this experiment has raised
some shortcomings of the first version of LGPDB, such as its
limitation as a classifier and the impossibility to generate pro-
grams that operate multiple tables using different operations.
In order to overcome or at least alleviate these limitations,
some improvements were made.

The list below shows three new instructions added to the
LGPDB instruction set. The first two are used to combine
filtering rules, using the operators AND and OR, in order to
model associations involving more input values or attributes.
The third instruction is used to set attributes in ResultSets
using input values, passed as parameters.

(i) addRule(Operator op, Attribute attr, Rule r, Input-
Value v, RuleObject ro). Add rule r, associated with
the attribute attr and the input value v, to RuleObject
ro with the operator op.

(ii) Filter 2(ResultSet rs, RuleObject ro). Filter the
ResultSet rs using the combination of rules in the
RuleObject ro.

(iii) setValue(Attribute attr, InputValue v, Operation o,
ResultSet rs). Set the value of the attribute attr, for
the records in rs, using the operation o and the input
value v.

In fact, even without these new instructions, LGPDB can
combine filtering rules using multiple Filter instructions, for
instance, as shown in the induction of task D2. However,
using multiple dissociated Filter instructions, LGPDB cannot
model the OR operator. In order to demonstrate the
combination of filtering rules using the OR operator, a new
feature for the library system is proposed “List users who
borrowed a book written by the authors X or Y.” Fitness
cases were created and a program was induced to model this
feature, as shown in what follows:

select(author,rs3)

addRule( ,name,equals,X,rule1)

select(authorBookRel,rs2)

addRule(or,name,equals,Y,rule1)

filter 2(rs3,rule1)

select(user,rs1)

relate(rs2,rs3)

select(book,rs3)

relate(rs3,rs2)

select(bookLoan,rs4)

relate(rs4,rs3)

relate(rs1,rs4)

Beside the addition of new instructions, another
improvement allows the induction of more complex pro-
cesses, involving more tables and different operations. If

Table 8: A subset of the database tables for a financial system. The
attributes in italic are primary or foreign keys.

Table Fields

Client id, name, ssn, address, phone

Account id, number, branch, client id, balance

Saving id, number, branch, client id, balance

Transaction id, operation, account id, value, code

Table 9: Example of a fitness case for the feature F1.

Feature F1

Input 999-1, 111-1, 999-2, 111-2, 500

Outcome

database.update(account, 3002, “balance”, “1800”);

database.update(account, 3001, “balance,” “1500”);

database.insert(transaction, 4001, “send,” “3002,”
“500,” “t01”);

database.insert(transaction, 4001, “recv,” “3001,”
“500,” “t01”);

a process has multiple steps that are only dependent on
the input values, these distinct steps can be tackled by
distinct programs, induced separately. The final solution
is the concatenation of the programs. Following the same
procedures as in the experiment presented in Section 4, an
experiment is proposed here to induce a program to update
and insert records in a hypothetical financial system. The first
step was the creation of the database with tables and fields
presented in Table 8.

After setting up the database, the next step was the
insertion of hypothetical records, part of them without
consistent associations. In order to demonstrate how LGPDB
can model a more complex process combining programs,
the following task was chosen “Given the accounts A1 in the
branch B1 and A2 in the branch B2, transfer the value V, from
A1 to A2.” For this task, multiple fitness cases similar to the
one presented in Table 9 were created.

As can be seen, the outcome of the feature involves four
database operations associated with the input information,
two account updates and two transaction insertions. The first
update adds the value 500 to the balance of the account 999-
2, 111-2. On the other hand, the second update removes 500
from the balance of the account 999-1, 111-1. Finally, the
other two subprograms insert logs to the transaction. This
process is automatically divided into four induction process,
one for each step. The final program that models the entire
process is the concatenation of four LGPDB subprograms,
induced separately, as shown in Algorithm 1.

6. Influence of Records without
Consistent Relationships

Programs have to explore the relationships among different
entities in the database to filter records and access new
discriminant attributes. In order to list users who borrowed
a book, for instance, it is necessary to relate tables user and
bookLoan, thus filtering any user not associated with a loan.
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//SubProg1
01: addRule( ,number,equals,B2,rule2)
02: select(branch,rs1)
03: filter 2(rs1,rule2)
04: Select(account,rs2)
05: addRule( ,number,equals,A2,rule1)
06: filter 2(rs2,rule1)
07: relate(rs2,rs1)
08: setValue(balance,V,+,rs2)
//SubProg3
09: clearEnvironment()
10: addRule( ,number,equals,B1,rule2)
11: addRule( ,number,equals,A1,rule1)
12: select(branch,rs4)
13: filter 2(rs4,rule2)
14: select(account,rs3)
15: relate(rs3,rs4)
16: filter 2(rs3,rule1)
17: setValue(balance,V,-,rs3)
//SubProg2
18: clearEnvironment()
19: addRule( ,number,equals,B1,rule1)
20: addRule( ,number,equals,A1,rule2)
21: select(account,rs4)
22: select(branch,rs2)
23: filter 2(rs4,rule2)
24: filter 2(rs2,rule1)
25: relate(rs4,rs2)
26: createRelation(transaction,rs2,rs4)
27: setValue(operation,send,=,rs2)
29: setValue(value,V,=,rs2)
30: setValue(id,transID,=,rs2)
31: //SubProg4
32: clearEnvironment()
33: addRule( ,number,equals,A2,rule1)
34: addRule( ,number,equals,B2,rule2)
35: select(branch,rs3)
36: select(account,rs4)
37: filter 2(rs4,rule1)
38: filter 2(rs3,rule2)
39: relate(rs4,rs3)
40: createRelation(transaction,rs1,rs4)
41: setValue(operation,recv,=,rs1)
42: setValue(id,transID,=,rs1)
43: setValue(value,V,=,rs1)

Algorithm 1: Final program that model the task F1. The four
subprograms were induced separately and them concatenated.

This type of dissociation among entities is fully acceptable
considering the system modelling.

However, other types of dissociation between entities are
not expected like a book without author or a periodical
without papers. If the database does not have dissociation
of entities like that, programs are not rewarded to exploring
these relationships, since relating authors with books does
not filter any record, supposing that all authors are related
with a book. Inserting hypothetical registers without consis-
tent relationships, like a periodical without paper, programs
are rewarded to explore this relationship, hence having

access to higher levels of relationship and more discriminant
attributes.

If a program needs to find users who borrowed a
periodical containing a paper written by a specific author,
the program has to relate each entity, from user to author,
before filtering the author with the name passed as the
input, as shown in Figure 5. It is important to note that
these hypothetical registers are used only in the induction
database. The solutions obtained using this technique works
straightforwardly on databases without this kind of record
since real records are not associated with hypothetical ones,
as show in Figure 4. The nodes are records in the database.
The acronym of a node is the table of the record, as follows:
user (US), author (AU), book (BO), paper (PA), periodical
(PE), tag (TA), message (ME), bookLoan (BL), periodicalLoan
(PL), authorBookRel (AB), authorPaperRel (AP), tagRel (TR),
and messageRel (MR). The edges represent associations
among records by means of foreign keys. At the left are the
real records and at the right are the hypothetical ones. As
can be seen, there is no link between real records (green) and
hypothetical records (red).

7. Conclusion and Future Work

This paper presented linear genetic programming for
databases (LGPDB), a tool devoted to induce programs capa-
ble of manipulating records stored in a relational database.
LGPDB combines a linear genetic programming (LGP)
induction environment and a simple database management
system (DBMS). Generally, previous works on induction of
programs that manipulate databases have focused exclusively
on the use of databases as a method to organize and
query information, mainly for knowledge discovery and data
mining (KDD). This limitation is not a problem when the
objective is to find patterns in static scenarios. However, to
model processes of information technology (IT) systems,
the capability of modifying records is mandatory for the
generated programs, since most processes change the state
of the entities in the system. The experiments performed and
reported in this paper indicate that genetic programming can
be used to generate programs for record querying, deletion,
insertion, and updating.

The software engineer can select features for which he
or she knows the exact outcome a program has to produce,
given input information. For each feature of this type,
evaluation cases are created. Using these cases and a program
induction environment, LGPDB can generate programs to
provide the target features. The proposed approach is a first
step toward automating relevant and basic stages of IT system
development, which may give the opportunity for human
programmers to concentrate their efforts on more complex
tasks. To pursue this goal, a method to integrate or convert
programs in the LGPDB format into standard technologies
(programming or database languages) is desired and will be
addressed in a future work.

This work provides an initial effort on this issue and
additional efforts are required. Section 5 has shown some
improvements that have to be explored in more detail. The
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Figure 4: Association among real and hypothetical records. The nodes represent records and the edges the relationships between them by
means of foreign keys. At the left are the real records and at the right are the hypothetical ones.

generation: 1, standardized fitness: 270.0
//select all users
select(user,rs1)
generation: 15, standardized fitness: 90.0
//select all users associated with a periodical loan
select(periodicalLoan,rs2) select(user,rs1) related(rs1,rs2)
generation: 62, standardized fitness: 75.0
//select all users associated with a periodical loan—disconsider loan without an existent Periodical
select(periodicalLoan,rs2) select(periodical,rs3) related(rs2,rs3) select(user,rs1) related(rs1,rs2)
generation: 148, standardized fitness: 60.0
//select all users associated with a periodical loan—disconsider periodical without paper
select(paper,rs1) select(periodicalLoan,rs2) select(periodical,rs3) related(rs3,rs1) related(rs2,rs3)
select(user,rs1) related(rs1,rs2)
generation: 364, standardized fitness: 45.0
//select all users associated with a periodical loan—disconsider paper without author
select(paper,rs1) select(authorPaperRel,rs2) related(rs1,rs2) select(periodicalLoan,rs2)
select(periodical,rs3) related(rs3,rs1) related(rs2,rs3) select(user,rs1) related(rs1,rs2)
generation: 401, standardized fitness: 0.0
//select all users associated with a periodical loan that has a paper from author X
select(author,rs3) select(paper,rs1) filter(name,equals,x,rs3) select(authorPaperRel,rs2)
related(rs2,rs3) related(rs1,rs2) select(periodicalLoan,rs2) select(periodical,rs3)
related(rs3,rs1) related(rs2,rs3) select(user,rs1) related(rs1,rs2)

Figure 5: The impact in the evolutionary process caused by registers without consistent relationships inserted in the database.
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capability to break down a process into multiple simpler
processes seems to be promising in the sense of expanding
the methodology to deal with interrelated processes. In a
future work, we will also consider experiments to evaluate
the scalability of LGPDB, for instance, attacking problems
with more tables and deeper associations among records in
the database. In this context, local search operators may be
required to improve the search capability of the evolutionary
process.
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