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A novel scheme is developed for mitigating measurement biases in agile-beam polarimetric phased array weather radar. Based on
the orthogonal Huygens source dual-polarized element model, a polarization measurement basis for planar polarimetric phased
array radar (PPAR) is proposed. The proposed polarization basis is orthogonal to itself after a 90◦ rotation along the array’s
broadside and can well measure the characteristics of dual-polarized element. With polarimetric measurements being undertaken
in this polarization basis, the measurement biases caused by the unsymmetrical projections of dual-polarized element’s fields onto
the local horizontal and vertical directions of radiated beam can be mitigated. Polarimetric variables for precipitation estimation
and classification are derived from the scattering covariance matrix in horizontal and vertical polarization basis. In addition, the
estimates of these parameters based on the time series data acquired with the new polarization basis are also investigated. Finally,
autocorrelation methods for both the alternate transmission and simultaneous reception mode and the simultaneous transmission
and simultaneous reception mode are developed.

1. Introduction

The theory and application of polarimetric radar for weather
sensing have been developed for decades [1, 2]. Theoretically,
any orthogonal polarization basis (e.g., horizontal and
vertical linear, right hand and left hand circular, and +45◦

and−45◦ slant linear) can be used for fully polarimetric mea-
surement. However, depending on the shape, size, and mean
canting angle of hydrometeors, the linear H/V (horizontal
and vertical) polarization basis is the most common choice
for current polarimetric weather radars with mechanically
steered antenna, since it offers simpler, more direct, and
accurate quantitative measurements of precipitations [3, 4].
Polarimetric variables (e.g., the differential reflectivity ZDR,
the total differential phase φDP, the copolar cross-correlation
coefficient ρhv, and the linear depolarization ratio LDR)
for precipitation estimation and classification have also
been derived from the scattering covariance matrix in H/V
polarization basis [1–3]. The radar data acquired with other
orthogonal polarization states need to be transformed to the
H/V polarization basis for the estimates of these parameters
[5, 6].

Basically, there are two popular measurement modes for
implementing the linear polarization basis. One is the simul-
taneous transmission and simultaneous reception (STSR)
mode, while the other is the alternative transmission and
simultaneous reception (ATSR) mode. Unless some orthog-
onal signal coding methods are used [7, 8], only copolar
elements in scattering covariance matrix can be measured in
the STSR mode. But there are indeed some benefits such as
reduced statistical fluctuations, and no need to account for
Doppler shifts and simplification of hardware, which made
the STSR mode to be a common choice of recent polarimetric
weather radar [3].

Polarimetric variables account for the differences of the
H and V polarized fields which are reflected by or propagate
through the hydrometeors. Since the shape of most hydrome-
teors is nearly spherical, the differences are usually very small.
Accurate measurement of polarimetric variables is required
to provide reliable information. There are many factors of
biases in polarimetric measurement. One of the most critical
factors comes from the nonideal polarization characteristics
of an antenna, such as the mismatching of copular radiation
and the limited isolation of cross-polar radiation. These
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effects were first examined in [9] for the ATSR mode. The
requirements on the cross-polar isolation of antennas were
investigated in [10], for both the ATSR and the STSR modes.
More recent efforts reported in [11, 12] have considered the
different cross-polar patterns of an antenna and given out
compact forms of biases induced by the cross-polar radiation
patterns and the unmatched copolar patterns.

In recent years, phased array radar technology has
attracted wide attentions in weather radar community [13–
15]. Phased array antenna becomes an inevitable choice
for next generation multifunction weather radar, due to its
superiorities of faster scan speed, simultaneous multibeam,
and adaptive beam forming. However, accurate polarimetric
measurement with phased array antennas is still challenging
[16]. The polarization characteristics of dual-polarized ele-
ments in phased array will vary in terms of beam-steering
angle, which has been modeled theoretically by using orthog-
onal current sheets [17] and crossed infinitesimal dipoles
[16, 18]. The cross-polar radiation of phased array antenna
has been derived theoretically in [18] and has been validated
with measurements in [19]. As pointed out in [18], when
beam is directed away from the broadside of planar phased
array antenna, the misprojections of dual-polarized radia-
tion fields onto the local H and V directions of the radiated
beam would cause undesirable measurement biases, which
are much larger than the intrinsic values of polarimetric
variables. The solutions for correcting these biases have
been discussed in [20], and two schemes by simultaneously
adjusting the amplitude and phase of dual-polarized ele-
ments have been proposed. In order to achieve azimuth
scan-invariant and high-accuracy weather measurements, a
cylindrical configuration for polarimetric phased array radar
has been proposed in [21]. Based on the interleaving sparse
array (ISA) concept, an economical way of making pro-
jection corrections for planar phased array radar operated
in alternate transmit-alternate receive (ATAR) mode has
been proposed in [22]. The correction matrix approach
proposed in [16, 18] has been generalized in [23–25] for the
calibration of practical polarimetric phased array systems,
where the imbalances and cross-couplings in transmitter and
receiver (T/R) modules, the cross-coupling between antenna
elements, and the polarization characteristics of practical
antenna elements are included.

The existing schemes for mitigating measurement biases
aimed at mimicking the polarimetric state of a mechani-
cally steered beam in conventional H/V polarization basis
by simultaneously adjusting the feeding voltages of dual-
polarized elements [18, 20]. However, accurately adjusting
transmitting power needs a highly linear power amplifier
in the T/R module, which is difficult to implement and
will cause very low power efficiency. In contrast, a novel
polarization basis for PPAR is proposed in this paper to fulfill
polarimetric measurement. The proposed polarization basis
has a superiority that is rotational symmetry along the array’s
broadside. The radiated fields of dual-polarized element can
be projected symmetrically in the new polarization basis
through the whole scan volume. Thereby, the synthesized
polar beam pattern can be easily matched in all beam-
steering directions, and the adjustments to the amplitudes
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Figure 1: Illustration of y, z plane located planner phased array
antenna comprising dual-polarized radiation elements.

and phases of the feeding voltages to the dual-polarized
elements can be avoided. However, as polarimetric variables
for precipitation estimation and classification are derived
from the scattering covariance matrix in conventional H/V
polarization basis, in order to retrieve these parameters based
on the time series data acquired with the new polarization
basis, autocorrelation methods for both the ATSR and the
STSR modes are also investigated.

The rest of this paper is organized as follows. In Section 2,
a new polarization measurement basis for planar phased
array antenna is introduced based on the orthogonal Huy-
gens source dual-polarized element model, and the benefits
of this new basis for fulfilling polarimetric measurement are
analyzed. The methods of retrieving scattering covariance
matrix and polarimetric variables based on the time series
data in the proposed polarization basis are investigated in
Sections 3 and 4, respectively. Section 3 focuses on the ATSR
mode, while Section 4 focuses on the STSR mode. Conclu-
sions and perspectives are presented in Section 5.

2. Theory Development

As shown in Figure 1, a planar phased array antenna is
located in the y, z plane in the coordinate system. Each dual-
linear-polarized radiation element in the array has two ports
named as port 1 and port 2, respectively. From the polari-
metric measurement viewpoint, the purpose of this array
design is to radiate orthogonal polarized fields throughout
a scan volume, one from each port. However, in practice,
the orthogonality of radiation fields excited by the two ports
often cannot always be maintained through the whole scan
volume. In order to measure this nonorthogonality and
undertake polarimetric measurement, a predefined orthog-
onal polarization basis (i.e., two unit polarized vectors
which are orthogonal to each other) needs to be selected
in advance. Polarimetric radars often use the horizontal (φ
direction for taking the x, y plane as ground plane) and so-
called “vertical” (negative θ direction which is only vertical
at 0 elevation angle) polarization states for atmospheric
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observations. The H/V polarization basis works well to
radars with mechanically steered antennas, since the beam
is always at the boresight, where the copolar patterns can be
easily designed to match well and the cross-polar patterns
are commonly at enough low level. However, in the case
of planar dual-polarized phased array antennas, as most
dual-linear-polarized elements have rotation symmetrical
radiation characteristic with respect to the two feeding ports
(i.e., the antenna radiates the same field when excited from
port 1 as when excited from port 2 except that it is rotated 90◦

about the broadside direction), the H/V polarization basis
cannot measure this symmetry since the θ or φ direction
is not orthogonal to itself after a 90◦ rotation along the
array’s broadside (i.e., normal to the array face). Conse-
quently, when beams are steered away from the broadside,
unsymmetrical projections of the electric fields excited by the
two ports onto the local horizontal and vertical directions
of radiated beam are induced. The measurement biases
caused by these misprojections can be much larger than
the intrinsic values of polarimetric variables [18]. On the
other hand, if polarimetric measurements can be undertaken
in a new polarization basis which is rotational symmetry
about the array’s broadside and can well measure the
polarization characteristics of dual-polarized element, then
the measurement biases can be mitigated. Thereby, the point
is weather a new polarization basis can be defined from an
“ideal” dual-polarized element, which radiates orthogonal
fields in the whole scan volume when excited by two ports.

2.1. Orthogonal Huygens Source Element Model. Theoret-
ically, a Huygens source can be modeled by a pair of
crossed infinitesimal electrical and magnetic current sources
(dipoles), which are taken to be at the same location and
with the same radiation intensity [26, 27]. A dual-polarized
element comprising two Huygens sources is located at origin
with the PPAR array face in the y, z plane, shown in Figure 2.
One Huygens source is composed of a y-directed electrical
current source (Ie1 = âyIe1l) and a z-directed magnetic
current source (Im1 = âzIm1l), while another one is com-
posed of a z-directed electrical current source (Ie2 = âzIe2l)
and a negative y-directed magnetic current source (Im2 =
−âyIm2l). The length of these current sources is infinitesimal,
and λ is the radar wavelength. They are considered to be
orthogonal since these two Huygens sources have a relation
of 90◦rotation around x-axis.

The radiation fields of electrical and magnetic current
sources can be solved with the aid of auxiliary potential
functions [28, Ch3]. The electric fields radiated by Huygens
source comprising Ie1 and Im1 and Huygens source compris-
ing Ie2 and Im2 are

E1 = − jk0ηM1

4πr
e− jk0r

[

âφ
(

sin θ + cosφ
)

+ âθ cos θ sinφ
]

,

(1)

E2 = jk0ηM2

4πr
e− jk0r

[

−âφ cos θ sinφ + âθ
(

sin θ + cosφ
)

]

,

(2)
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Figure 2: Spherical coordinate system for electric fields radiating
form orthogonal Huygens sources.

where k0 = 2π/λ, and η is the intrinsic impedance of the

radiation medium and equals
√

μ/ε. ε, and μ are the per-
mittivity and permeability of the radiation medium. The
radiated fields of electrical and magnetic current sources in
one Huygens source should have the same magnitude and
phase [26, 27]. Thereby, M1 = Ie1l = Im1l/η and M2 = Ie2l2 =
Im2l2/η.

From (1) and (2), it can be verified that

E1 · E2 = 0, (3)

where “·” denotes the scalar product. Equation (3) is suitable
for any values of θ, φ. It indicates that electric fields radiated
by the orthogonal Huygens sources are orthogonal in any
beam direction. Therefore, we can think that the orthogonal
Huygens source is an “ideal” dual-polarized element for
polarimetric measurement.

In order to classify different hydrometeors species, pola-
rimetric weather radar often uses the horizontally (âh = âφ)
and so-called “vertically” (âv = −âθ) polarized directions as
orthogonal polarization measurement basis. Substituting âh
for âφ and âv for−âθ in (1) and (2), respectively, the radiation
fields of orthogonal Huygens source in H/V polarization
basis are represented as

E1 = Et1
[−âh

(

sin θ + cosφ
)

+ âv cos θ sinφ
]

,

E2 = Et2
[−âh cos θ sinφ − âv

(

sin θ + cosφ
)]

,
(4)

where

Etq =
jk0ηMq

4πr
e− jk0r , (5)

is the electric field intensity transmitted along the direction
of array broadside (θ = 90◦,φ = 0◦). The subscript q(1 or 2)
denotes the qth Huygens source.



4 International Journal of Antennas and Propagation

2.2. New Orthogonal Polarization Basis. As E1 and E2 are
orthogonal at any far-field position, two new unit polariza-
tion vectors âl and âm can be defined as

âl = 1
Nor

[−âh
(

sin θ + cosφ
)

+ âv cos θ sinφ
]

, (6)

âm = 1
Nor

[−âh cos θ sinφ − âv
(

sin θ + cosφ
)]

, (7)

where

Nor = Nor
(

θ,φ
) =

√

(

sin θ + cosφ
)2 + cos2θsin2φ (8)

is the normalized coefficient. âl and âm are also orthogonal
and composing a new polarization basis. We denote this basis
as L/M polarization basis compared with the conventional
H/V polarization basis. The relation between the unit L/M
polarization and the unit H/V polarization vectors can be
expressed via a transform matrix

[

âl
âm

]

= Uy−z

[

âh
âv

]

, (9)

where

Uy−z = 1
Nor

[

−(sin θ + cosφ
)

cos θ sinφ
− cos θ sinφ −(sin θ + cosφ

)

]

(10)

is the polarization basis rotation matrix for planar array
located in the y, z plane. It has the property of

UT
y−z = U−1

y−z. (11)

2.3. Backscattering Matrix. Substituting (6) into (1) and
(7) into (2), respectively, electric fields radiated by two
orthogonal Huygens sources in L/M basis are

E1 = Eil âl = Et1Norâl,

E2 = Eimâm = Et2Norâm,
(12)

where Eil and Eim denote the âl and âm polarized incident field
intensities at the hydrometeors. The relationship between the
incident field intensities and the exciting currents can be
expressed in matrix form as

[

Eil
Eim

]

= Nor

[

Et1
Et2

]

= Nor
jk0η

4πr
e− jk0r

[

M1

M2

]

. (13)

Nor in (13) is the normalized copolar field radiation pattern
of Huygens source in L/M polarization basis, and the cross-
polar pattern of “ideal” Huygens source in L/M polarization
basis is always zero.

The backscattering field (Es) by hydrometeors can be
expressed as

Es =
[

Esl
Esm

]

= S(b)
lm

[

Eil
Eim

]

, (14)

where S(b)
lm is the intrinsic backscatter matrix of hydrometeors

in L/M polarization basis

S(b)
lm =

[

s(b)
ll s(b)

lm

s(b)
ml s(b)

mm

]

. (15)

Since the scattering medium is reciprocal, the off-diagonal

terms in (15) are equal. The transform between S(b)
lm and the

intrinsic backscatter matrix in H/V polarization basis (S(b)
hv )

can be expressed as

S(b)
lm = Uy−zS(b)

hv U−1
y−z = Uy−zS(b)

hv UT
y−z

= Uy−z

[

s(b)
hh s(b)

hv

s(b)
vh s(b)

vv

]

UT
y−z.

(16)

The scattered field Esl can be completely received by one
Huygens source as they share the same polarization state,
while the scattered field Esm can also be completely received
by the other one. So electric fields received by two Huygens
sources can be expressed as

[

Erl
Erm

]

= e− jk0r

r

[

Esl
Esm

]

= e− jk0r

r
S(b)
lm

[

Eil
Eim

]

= Nor
e− jk0r

r
S(b)
lm

[

Et1
Et2

]

.

(17)

2.4. Propagation and Cross-Polarization Effects. The discus-
sion so far deliberately ignored propagation effects. In
practice, when electromagnetic waves propagate through
precipitation, there could be differential attenuations and
differential phase shifts between the two differential polar-
ized waves. Both attenuations and phases shifts along propa-
gation path affect the received fields. Therefore, corrections
for these factors are necessary [1–4]. Accounting to the
propagation effects, (17) should be generalized as

[

Erl
Erm

]

= Nor
e− jk0r

r
TT
lmS(b)

lm Tlm

[

Et1
Et2

]

, (18)

where

Tlm =
[

Tll Tlm
Tml Tmm

]

, (19)

is the transmission matrix in L/M polarization basis. The
relation between Tlm and the transmission matrix in H/V
polarization basis (Thv) is

Tlm = Uy−zThvU−1
y−z = Uy−zThvUT

y−z. (20)

Since most hydrometeors have an axis of symmetry near
vertical, H or V linearly polarized waves practically remain
in the same pure polarization state as they propagate through
precipitation, and there is no depolarization of H and V
waves [3]. The transmission matrix accounting for the extra
phase shift and attenuation induced by the hydrometeors is a
diagonal matrix

Thv =
[

Thh 0
0 Tvv

]

. (21)
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It indicates that the H and V components of the wave prop-
agate independently. For weather radar operating at long
wavelengths (e.g., 10 cm), attenuation is rather small and is
usually negligible [3]. Consequently, (21) is simplified as

Thv =
[

Thh 0
0 Tvv

]

=
[

e− jkhr 0
0 e− jkvr

]

, (22)

where kh and kv are the “perturbation” component of the
free space propagation constant (i.e., k0) due to the presence
of the medium. One of the most important polarimetric
variables for rainfall estimation is the specific differential
phase [1], which is defined as KDP = kh − kv. The two-way
differential propagation phase is defined as φdp = 2KDPr,
which denotes the two-way propagation phase difference of
H and V polarized waves along a distance of r.

Substituting (16) and (20) into (18) and using the
equations UT

y−z = U−1
y−z and Thv = TT

hv, the electric fields
received by two Huygens sources are

[

Erl
Erm

]

= Nor
e− jk0r

r
Uy−zTT

hvUT
y−zUy−zS(b)

hv

×U−1
y−zUy−zThvU−1

y−z

[

Et1
Et2

]

= Nor
e− jk0r

r
Uy−zThvS(b)

hv ThvUT
y−z

[

Et1
Et2

]

= Nor
e− jk0r

r
Uy−zS′hvUT

y−z

[

Et1
Et2

]

,

(23)

where S′hv denotes the combined backscattering and trans-
mission matrix in H/V polarization basis [18]. It links the
forward- and back-propagating dual-polarized electric fields
in H/V polarization basis at the location of the antenna, and
it is given by

S′hv = ThvS(b)
hv Thv

=
[

T2
hhs

(b)
hh ThhTvvs

(b)
hv

ThhTvvs
(b)
vh T2

vvs
(b)
vv

]

=
[

s′hh s′hv
s′vh s′vv

]

.

(24)

The off-diagonal terms of S′hv are equal (s′hv = s′vh). Equation
(23) is very important, since it shows theoretically that it
is not necessary to remove the propagation effects before
polarization basis transformation [6]. So the transform from
S′hv to the combined backscattering and transmission matrix
in L/M polarization basis (S′lm) is

S′lm =
[

s′ll s′lm
s′ml s

′
mm

]

= TT
lmS(b)

lm Tlm = Uy−zS′hvUT
y−z. (25)

2.5. Receiving Voltage Equation. Electric fields received by an
antenna are transformed by receivers into baseband voltages.

If the relative gains and the phase difference of dual polariza-
tion receivers are calibrated, baseband voltages received and
transformed by two Huygens sources can be represented as

[

Vr
l

Vr
m

]

= N2
orS′lm

[

Et1
Et2

]

= N2
orUy−zS′hvUT

y−z

[

Et1
Et2

]

,

(26)

where Vr
l and Vr

m are the received baseband voltages of L
and M polarized signals, respectively. N2

or in (26) is the nor-
malized copolar power radiation pattern of Huygens source
antenna in L/M polarization basis. It is used to account the
antenna’s gain decreasing when the beam’s direction is away
from the array’s broadside.

Furthermore, (26) indicates that S′hv can be fully recov-
ered without any bias if S′lm can be accurately measured. The
transform from S′lm to S′hv is straightforward

S′hv = UT
y−zS′lmUy−z. (27)

However, the returned signal from a radar resolution volume
filled with hydrometeors often fluctuates with time, which
can be described in terms of the Doppler velocity spectrum
of the scatterers [1, 2]. Equation (27) is valid only if one
can carry out simultaneous measurements of the four time
series, s′ll, s

′
ml, s

′
mm and s′lm. When radar system operates at the

ATSR mode, the pair s′ll, s
′
ml, and pair s′mm, s′lm are measured

at alternative pulse repetition intervals, and the coupling
between the Doppler and the polarimetric effect prevents
directly using (27) to retrieve S′hv. This coupling issue will
be discussed and resolved in Section 3. In contrast, the
Doppler and polarimetric effects are not coupled in the STSR
mode. This mode is based on the approximation that the
intrinsic scattering matrix is diagonal, which is valid for most
meteorological conditions in H and V linear polarization
observations. However, when STSR mode measurements are
undertaken in the proposed L/M linear polarization basis,
the off-diagonal terms of S′lm would have nonzero value in
most observing directions even if S′hv is diagonal, and the
four terms in S′lm cannot be measured separately. Only with
the assumption that S′hv is diagonal, diagonal terms of S′hv
can be recovered by postprocessing the L and M polarization
received signals. This issue will be discussed in Section 4.

2.6. Practical Antenna Element Consideration. Although
orthogonal Huygens source is a theoretically dual-polarized
element model, the design and realization of electrically
small antennas which have similar radiation characteristics
as Huygens source have been studied recently [27, 29]. If this
kind of antenna is used as radiation element of planar PPAR,
polarimetric measurements can be undertaken in the pro-
posed L/M polarization basis without obvious measurement
biases.

For some popular antenna elements such as dual-
polarized microstrip antennas [30], the proposed orthogo-
nal polarization basis is also suitable. As aforementioned,
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when polarimetric planar phased array composed of dual-
polarized elements is designed to radiate orthogonal polar-
izations throughout a scan volume, the radiation characteris-
tics of antenna element are often symmetrical with respect to
the two feeding ports. In order to measure the orthogonality
of the polarizations from the two ports, the logical choice
of orthogonal polarization basis for describing copolar and
cross-polar radiation patterns is the basis which is orthog-
onal to itself after a 90◦ rotation about array broadside.
The proposed L/M polarization basis belongs to this case,
while the H/V polarization basis does not. The matching of
copolar radiation characteristics (i.e., the copolar radiation
patterns should have the same main-beam shape, and the
orthogonal copolar radiation fields excited by each port
with equal power should have the same intensity) is very
important for highly accurate polarimetric measurement.
However, when H/V polarization basis is used for planar
phased array, in order to keep the transmit H and V fields
to be the same as fields from mechanically steering beam, the
voltage (power) fed to each port needs to be adjusted as a
function of beam directions [20, 24, 25]. If antenna element
of planar phased array has rotation symmetrical radiation
characteristic, the copolar radiation pattern in the proposed
L/M polarization basis can match well, which would make
the calibration process more straightforward.

With the electric and magnetic currents composing
orthogonal Huygens sources placed along the x-, y-axes, the
analogous polarization basis for planer array located in the x,
y plane can be represented as

[

âco

âcross

]

=
[

cosφ sinφ
− sinφ cosφ

][

âφ
âθ

]

= Ux−y

[

âφ
âθ

]

,

(28)

where Ux−y is the polarization basis rotation matrix for
planar array located in the x, y plane. The âco and âcross

unit vectors are exactly the Ludwig’s III definition of linear
reference and cross-polarization, which have already been
proposed in the Ludwig’s classical paper for describing
polarization purity of antenna patterns [31]. Since this
definition was formulated mathematically in 1973, its usage
had become commonplace in antenna measurement com-
munity to measure and describe the copolar and cross-
polar patterns of linear polarized antennas [32]. When using
this kind of predefined polarization basis as the orthogonal
transmitting/receiving polarization states of planar PPAR,
the radiation characteristics of dual-polarized element can
be well described, and the measurement biases caused by the
misprojection of the copolar and cross-polar fields onto the
local H and V directions of the radiated beam [18] can be
mitigated. If mutual couplings between elements in a phased
array are modeled with active (embedded) element patterns
[33], the relative cross-polar level of synthesized beam is just
the relative cross-polar level of active element patterns in the
same beam direction, which is the primary reason for the
polarization measurement errors by the antenna.

As described in [20], in order to produce a desired H or
V polarized beam independent of direction, the transmitting

fields of each polarization by dual-polarized element need
to be adjusted simultaneously. Since each copolar radiation
fields in the new polarization basis can be considered to be
only corresponding with one of the element’s feeding ports,
all the matter of nonideal polarization can be reduced to the
cross-polarized radiation fields. If the cross-polar pattern’s
maximal level in the whole scan volume is low enough to
produce negligible measurement biases, each polarization
can be synthesized individually, which is another benefit of
the proposed polarization basis. The cross-polarized fields
of conventional dual-polarized element (e.g., dual-polarized
microstrip antenna) in the new polarization basis can reach
its maximum in the diagonal far-field planes. If these fields
are strong enough and need to be taken into account in
polarization beam synthesis, then the ISA technique [22] can
be used here to cancel the cross-polarization of the main
beam since each polarization is individually controlled.

The proposed polarization basis provides a new choice of
accurate polarimetric measurement for planer phased array.
The estimating methods for these polarimetric variables by
the new polarization measurement will be discussed in next
two sections.

3. Polarimetric Variables Measurement at
ATSR Mode

The methods of retrieving scattering covariance matrix
and polarimetric variables based on the new polarization
measurements in ATSR mode are presented in this section.
The definition of polarimetric variables for meteorological
research and some approximation of backscatter and propa-
gation characteristics of hydrometeors are reviewed at first.
Then two ways of polarimetric variables measurement are
discussed.

3.1. Scattering Covariance Matrix and Polarimetric Variables.
Since meteorological targets are composed of an ensemble of
reshuffling hydrometeors that are located randomly in space,
the total return from a radar resolution volume fluctuates
with time [6]. The mean scattering matrix is no longer
sufficient to completely characterize this scattering medium.
Thereby, the scattering covariance matrix is necessary. The
definition of the scattering covariance matrix [1, 2, 34] is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

〈
∣

∣

∣s(b)
hh

∣

∣

∣

2
� 〈
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hv s

(b)
hh

∗� 〈
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vv s

(b)
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hh s

(b)
hv

∗� 〈
∣

∣

∣s(b)
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∣

∣

∣

2
� 〈

s(b)
vv s

(b)
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∗�

〈

s(b)
hh s

(b)
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∗� 〈

s(b)
hv s

(b)
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∗� 〈

∣

∣

∣s(b)
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∣

∣

∣

2
�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (29)

where s(b)
xy (x, y = h, v) is the term of intrinsic backscatter

matrix in H/V polarization basis, and the angle brackets
denote ensemble averaging.

Most terms of the covariance matrix have been used by
themselves or in combination with others to infer properties
of the scattering hydrometeors. The popular polarimet-
ric variables that are derived from the covariance are ZDR,



International Journal of Antennas and Propagation 7

ρhv, and LDR. The definitions of these polarimetric variables
are

ZDR = 10 log
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⎜
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,
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∣
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∣

∣
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,

LDRh = 10 log
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⎜
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,

LDRv = 10 log

⎛
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〈
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∣

∣
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〈
∣
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∣s(b)
vv

∣

∣

∣
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(30)

As the Rayleigh-Gans scattering theory is valid for
hydrometeors at long wavelength (e.g., 10 cm), the differ-
ences of backscattering phase angles by most hydrometeors
are usually very small [35]. These phase differences are
negligible, and the off-diagonal terms of (29) are considered
to be real numbers. When propagation effects are taken into

account, s′xy needs to be substituted for s(b)
xy (x, y = h, v) in

(30). Attenuation along propagation path in most precip-
itation media is rather small and can also be neglected at
long wavelength [3], Thereby, the values of ZDR and LDR
with propagation effects will not be changed. Due to the
differential propagation phase shift of H andV polarization
waves, the copolar cross-correlation coefficient with propa-
gation effects can be represented as

ρ′hv(0) =
〈

s′vvs
′
hh
∗〉

√

〈
∣

∣

∣s′hh
∣

∣

∣

2
�

〈
∣

∣s′vv
∣

∣
2
〉

= e jφDPρhv(0), (31)

where φDP is the two-way differential propagation phase
which has been introduced before.

Due to the relative motion and random wobbling of
hydrometeors in the radar resolution volume, there are
Doppler phase shift and spectral broadening in the correla-
tion of different time sampled echoes [1, 2]. Since the relative
motions and positions of scatterers are independent of their
sizes and shapes at low elevation angles, various correlation
coefficients between components of either polarization at
one sample time and components at another sample time
can be expressed as a product of coefficients due to Doppler
spread and due to polarization effects [36]. For radar with
alternating transmit polarization, s′vv and s′hh are measured

at alternate pulse repetition intervals. The copolar cross-
correlation coefficient can be expressed as

ρ′hv(Ts) =
〈

s′vv(2i + 1)s′hh
∗(2i)

〉

√

〈
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〈
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∣
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〉
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∣
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hh
∗〉

√

〈
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∣s′hh
∣

∣

∣

2
�

〈
∣

∣s′vv
∣

∣
2
〉

= e j(ωdTs+φDP)
∣

∣ρ(Ts)
∣

∣ρhv(0),

(32)

where Ts is the pulse repetition time, i is an integer implicitly
multiplying Ts, and ρ(Ts) is the correlation coefficient at lag
Ts due to the Doppler spread. ωdTs is the mean Doppler
phase shift, which corresponds the mean velocity (v̂) of
hydrometeors in the radar resolution volume with ωdTs =
−2Tsk0v̂.

Since most weather echoes have Gaussian shape corre-
lation coefficients (Doppler spectrum), the magnitude of
Doppler spectrum satisfy

∣

∣ρ(Ts)
∣

∣ = (∣

∣ρ(2Ts)
∣

∣

)0.25, (33)

where ρ(2Ts) is the correlation coefficient at lag 2Ts due to
the Doppler spread. Also, there may be some differences in
Doppler phase/spectrum of various polarization correlations
at the same lag [35], which will be ignored in this paper.

3.2. Polarimetric Variables Measurement by Estimates of
Instantaneous Scattering Matrices. Consider the ATSR mode
and two consecutive times defined with indices 2i and 2i+ 1,
where i is an integer implicitly multiplying the pulse repeti-
tion time Ts. At time 2i, a pure L polarized field is transmitted
followed by a pureM polarized field at time 2i+1. From (26),
the received baseband voltage alternates as follows.

At time (2i)

[

Vr
l (2i)

Vr
m(2i)

]

= N2
orS′lm(2i)

[

Et1
0

]

= N2
orUy−zS′hv(2i)UT

y−z

[

Et1
0

]

.

(34)

At time (2i + 1)

[

Vr
l (2i + 1)

Vr
m(2i + 1)

]

= N2
orS′lm(2i + 1)

[

0
Et2

]

= N2
orUy−zS′hv(2i + 1)UT

y−z

[

0
Et2

]

.

(35)

Substituting S′lm, S′hv, and Uy−z into (34) and (35), these
voltages can be expressed as follows.
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At time (2i)

Vr
l (2i) = N2

ors
′
ll(2i)Et1

= N2
or

[

a2s′hh(2i) + b2s′vv(2i)− 2abs′hv(2i)
]

Et1,
(36)

Vr
m(2i) = N2

ors
′
ml(2i)Et1

= N2
or

[

abs′hh(2i)− abs′vv(2i) +
(

a2 − b2)s′hv(2i)
]

× Et1.
(37)

At time (2i + 1)

Vr
l (2i + 1) = N2

ors
′
lm(2i + 1)Et2

= N2
or

[

abs′hh(2i + 1)− abs′vv(2i + 1)

+
(

a2 − b2)s′hv(2i + 1)
]

Et2,

(38)

Vr
m(2i + 1) = N2

ors
′
mm(2i + 1)Et2

= N2
or

[

b2s′hh(2i + 1) + a2s′vv(2i + 1)

+2abs′hv(2i + 1)
]

Et2,

(39)

where the constants a and b are a = (sin θ + cosφ)/Nor,
b = (cos θ sinφ)/Nor. a and b are the diagonal and off-
diagonal terms of Uy−z and have a relation of a2 + b2 = 1.
The time series s′ll(2i), s′ml(2i), s′lm(2i + 1), and s′mm(2i + 1)
can be directly calculated from (36), (37), (38), and (39),
respectively. Since these time series are not measured at
the same time, they cannot make up of the instantaneous
combined backscattering and transmission matrix in L/M
polarization basis. Therefore, (27) cannot be used directly.

The question here is whether an instantaneous scattering
matrix can be estimated from such alternate time series. This
problem has been discussed in [6], and we represent here
for completeness. If the pulse repetition time Ts is within
half of the correlation threshold time as defined in [6], the
instantaneous combined backscattering and transmission
matrix ˜S′lm can be constructed accurately and has a form as

˜S′lm =
[

s̃ ′ll(2i + 1) s′lm(2i + 1)
s̃ ′ml(2i + 1) s′mm(2i + 1)

]

, (40)

where s̃ ′ll(2i + 1) and s̃ ′ml(2i + 1) are interpolated copolar and
cross-polar terms at time 2i + 1. By invoking reciprocity for
the case of backscatter, the cross-polar term s̃ ′ml(2i+1) can be
estimated immediately as

s̃ ′ml(2i + 1) = s
′
lm(2i + 1). (41)

The estimation problem is to determine the amplitude and
phase of s̃ ′ll(2i + 1). The amplitude of s̃ ′ll(2i + 1) can be
estimated by a simple interpolation as

∣

∣

∣s̃ ′ll(2i + 1)
∣

∣

∣ =
∣

∣

∣s′ll(2i)
∣

∣

∣ +
∣

∣

∣s′ll(2i + 2)
∣

∣

∣

2
. (42)

The phase of s̃ ′ll(2i + 1) can be estimated as

arg
[

s̃ ′ll(2i + 1)
]

= arg
[

s′mm(2i + 1)
]

+ ψLC(2i + 1), (43)

whereψLC(2i+1) is the total copolar differential phase of L and
M polarization states at time 2i + 1, and it can be estimated
as

ψLC(2i + 1)

= 1
2

arg
{

[

s′ll(2i + 2)s′mm
∗(2i + 1)

][

s′mm(2i + 1)s′ll
∗(2i)

]∗}
.

(44)

Equation (44) is just the ith estimate according to the well
known estimator for total mean copolar differential phase
(ψLC), as given in [6],

ψLC = arg
(

RLC1
∗
RLC2

)

, (45)

where

RLC1 =
1
N

N−1
∑

i=0

s′ll
∗(2i)s′mm(2i + 1),

RLC2 =
1

N − 1

N−2
∑

i=0

s′ll(2i + 2)s′mm
∗(2i + 1),

(46)

are the two estimates of cross-copolar covariance at lag 1.
Assuming that the relative phase difference between dual

polarized transmitting and receiving channel of the radar
are calibrated (or accounted), the instantaneous combined
backscattering and transmission matrix can then be con-
structed as

˜S′lm(2i + 1)

=
[
∣

∣

∣s̃ ′ll(2i + 1)
∣

∣

∣e jψ
L
C(2i+1)earg[s′mm(2i+1)] s′lm(2i + 1)

s′lm(2i + 1) s′mm(2i + 1)

]

.

(47)

This matrix can be transformed by (27) to the H/V polariza-
tion basis. Polarimetric variables for precipitation estimation
can then be calculated.

3.3. Polarimetric Variables Measurement by Estimates of Pow-
ers and Correlations. In this subsection, we will demonstrate
how polarimetric variables can be calculated by operating
on estimates of powers and correlations of the L and M
polarization echoes. Assuming that an alternate sequence of
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2N + 1 pulses is transmitted and received, according to (36)–
(39), the power estimates from the even sequence (subscript
e) 2i are
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(48)
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and the correlation estimate is

Rl,me = 1
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The power estimates form the odd sequence (subscript o) 2i+
1 are

Plo = 1
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(51)

and the correlation estimate is

Rl,mo = 1
N

N−1
∑

i=0

Vr
l
∗(2i + 1)Vr

m(2i + 1)

= N4
or|Et2|2

1
N
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〈
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〉
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(52)

The two cross-correlations of the even and odd sequences are

Rle,mo = 1
N

N−1
∑

i=0

Vr
l
∗(2i)Vr

m(2i + 1)

= N4
orE

∗
t1Et2

1
N

N−1
∑

i=0

s′ll
∗(2i)s′mm(2i + 1),

(53)

Rmo,le = 1
N

N−1
∑

i=0

Vr
m
∗(2i + 1)Vr

l (2i + 2)

= N4
orEt1E

∗
t2

1
N

N−1
∑

i=0

s′mm
∗(2i + 1)s′ll(2i + 2).

(54)

The subscripts le, mo in (53) denote that the correlation of
L polarization received even voltage sequence with M polar-
ization receiving odd voltage sequence, where the sequence
corresponding to the subscript before comma is always
conjugated and having leading time in the correlation. With
the same notation, other cross-correlations (i.e., Rle,lo, Rlo,le,
Rme,mo, Rmo,me, Rme,lo, and Rlo,me) can be similarly defined.
As indicated before, N2

or is the normalized copolar power
radiation pattern of Huygens source antenna, and Etq (q =
1, 2) is the electric field transmitted along array broadside.
For practical antenna elements, the measured (or computed)
copolar active power radiation pattern in L/M polarization
basis should be substituted for N2

or in (48) and (54).
Assuming that the relative gains and the phase differences
of two receivers are calibrated and removed from baseband
voltages, the magnitude and phase imbalances of Et1 and Et1
need to be measured by some calibration processing. Then
the following power and correlations can be derived:
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pme = 1
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N
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∑
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(
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)∗(
Vr
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)

= Rl,mo
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∑
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Vr
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)∗(
Vr
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N2

orEt2

)

= Rle,mo
N4

orE
∗
t1Et2
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N

N−1
∑

i=0

s′ll
∗(2i)s′mm(2i + 1)

≈
〈

s′ll
∗s′mm

〉
∣

∣ρ(Ts)
∣

∣e jωdTs ,

(61)

rme,lo = 1
N

N−1
∑

i=0

(

Vr
m(2i)
N2

orEt1

)∗(
Vr
l (2i + 1)

N2
orEt2

)

= Rme,lo
N4

orE
∗
t1Et2

= 1
N

N−1
∑

i=0

s′ml
∗(2i)s′lm(2i + 1)

≈
〈

s′ml
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〉
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∣ρ(Ts)
∣

∣e jωdTs ,

(62)

where (61), (62) have included the approximation that the
Doppler effects and the polarization effects can be separated
at low elevation angles. Other cross-correlations (i.e., rle,lo,
rme,mo, rmo,le, rlo,le, rlo,me, and rmo,me) can also be calculated.

With reciprocity condition (s′ml = s′lm), the following equa-
tions can be derived:

pme =
〈
∣
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∣s′ml
∣

∣

∣

2
�

=
〈
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∣s′lm
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2
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= plo, (63)

rme,lo =
〈

s′ml
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〉
∣

∣ρ(Ts)
∣

∣e jωdTs

=
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∣ρ(Ts)
∣

∣e jωdTs

= pme
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∣ρ(Ts)
∣

∣e jωdTs .

(64)

If there is enough power in the cross-polar receiving channel,
(64) can be used to estimate the Doppler spread and
the mean Doppler velocity. The magnitude of correlation
coefficient can be estimated as

∣

∣ρ(Ts)
∣

∣ =
∣

∣rme,lo
∣

∣

pme
. (65)

The mean Doppler phase shift can be estimated as

ωdTs = arg
(

rme,lo
)

(66)

and the ambiguity of ωdTs corresponds to the sampling at
time Ts.

Another method for estimating |ρ(Ts)| and ωdTs is using
the correlation of either the odd or even copolar sequence at
lag 2Ts. For the copolar even sequence, we have

rle(2Ts) = 1
N − 1

N−2
∑

i=0

(

Vr
l (2i)

N2
orEt1

)∗(
Vr
l (2i + 2)

N2
orEt1

)

= 1
N − 1

N−2
∑

i=0

s′ll
∗(2i)s′ll(2i + 2)

= ple
∣

∣ρ(2Ts)
∣

∣e j2ωTs .

(67)

For the Gaussian-shaped Doppler spectrum, |ρ(Ts)| can be
estimated as

∣

∣ρ(Ts)
∣

∣ = (∣

∣ρ(2Ts)
∣

∣

)0.25 =
[

|rle(2Ts)|
ple

]0.25

(68)

and ωdTs can be estimated as

ωdTs = 1
2

arg[rle(2Ts)] (69)

with an ambiguity corresponding to the sampling at 2Ts.
Furthermore, we will demonstrate how polarimetric

variables defined in (30) can be estimated from the powers
and correlations of (55)–(62). Two types of precipitation
media are considered. One is a medium that has off-diagonal
backscattering terms, while the other does not.

3.3.1. Nondiagonal Backscattering Matrix. The transform
from S′lm to S′hv has been given in (27), we rewrite it here with
expansions
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[

s′hh s′hv
s′vh s′vv

]

=
[

Uy−z
]T[

S′lm
][

Uy−z
]

=
[

a2s′ll + abs′ml + abs′lm + b2s′mm −abs′ll − b2s′ml + a2s′lm + abs′mm
−abs′ll + a2s′ml − b2s′lm + abs′mm b2s′ll − abs′ml − abs′lm + a2s′mm

]

.

(70)

With the approximation that Doppler effects and polar-
ization effects are separated, the four covariance elements
〈|s′hh|2〉, 〈|s′vv|2〉, 〈|s′vh|2〉, and 〈s′hh∗s′vv〉 can be calculated
from power and correlations defined in (55)–(62) as
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(71)

where the reciprocity of scattering matrix (s′ml = s′lm) is
used several times in these equations. The estimates of
correlation coefficient (|ρ(Ts)|) and mean Doppler phase
shift (ωdT) have been given before. When the attenuation
along propagation path is ignored, ZDR, LDR, and ρ′hv can
be computed as
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⎛

⎜

⎜

⎝

〈
∣

∣

∣s(b)
hh

∣

∣

∣

2
�

〈
∣

∣

∣s(b)
vv

∣

∣

∣

2
�

⎞

⎟

⎟

⎠

= 10 log

⎛

⎜

⎜

⎝

〈
∣

∣

∣s′hh
∣

∣

∣

2
�

〈
∣

∣s′vv
∣

∣
2
〉

⎞

⎟

⎟

⎠

, (72)

LDRh = 10 log

⎛

⎜

⎜

⎝

〈
∣

∣

∣s(b)
vh

∣

∣

∣

2
�

〈
∣

∣

∣s(b)
hh

∣

∣

∣

2
�

⎞

⎟

⎟

⎠

= 10 log

⎛

⎜

⎜

⎝

〈
∣

∣

∣s′vh
∣

∣

∣

2
�

〈
∣

∣

∣s′hh
∣

∣

∣

2
�

⎞

⎟

⎟

⎠

, (73)

ρ′hv = e jφDPρhv(0) =
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Equation (74) can be used to estimate φDP and ρhv(0). With
the approximation that all elements in backscattering matrix
have the same phase angles, φDP can be estimated as

φDP = arg
[〈

s′vvs
′
hh
∗〉], (75)

and ρhv(0) can be estimated as
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3.3.2. Diagonal Backscattering Matrix. When observing at
low elevation angles, the off-diagonal terms of intrinsic
backscattering matrix is very small (can be ignored) for most
meteorological conditions in H and V linear polarization
observations. Although the methods presented in last sub-
section are also suitable for this case, some simple but more
effective methods for the estimates of polarimetric variables
are presented here.

Since the off-diagonal terms of S′hv are considered to be
zero (s′hv = s′vh = 0), the received baseband voltages are at
time (2i)

Vr
l (2i) = N2

ors
′
ll(2i)Et1

= N2
or

[

a2s′hh(2i) + b2s′vv(2i)
]

Et1,
(77)

Vr
m(2i) = N2

ors
′
ml(2i)Et1

= N2
or

[

abs′hh(2i)− abs′vv(2i)
]

Et1,
(78)

and at time (2i + 1)

Vr
l (2i + 1) = N2
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′
lm(2i + 1)Et2

= N2
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[

abs′hh(2i + 1)− abs′vv(2i + 1)
]

Et2,
(79)

Vr
m(2i + 1) = N2

ors
′
mm(2i + 1)Et2

= N2
or

[

b2s′hh(2i + 1) + a2s′vv(2i + 1)
]

Et2.
(80)

We can solve the s′hh(2i) and s′vv(2i) from (77) and (78)

s′hh(2i) = aVr
l (2i) + bVr

m(2i)

aN2
orEt1

=
[

as′ll(2i) + bs′ml(2i)
]

a
,

(81)

s′vv(2i) = bVr
l (2i)− aVr

m(2i)

bN2
orEt1

=
[

bs′ll(2i)− as′ml(2i)
]

b
,

(82)

and s′hh(2i + 1) and s′vv(2i + 1) from (79) and (80)

s′hh(2i + 1) = aVr
l (2i + 1) + bVr

m(2i + 1)

bN2
orEt2

=
[

as′lm(2i + 1) + bs′mm(2i + 1)
]

b
,

(83)

s′vv(2i + 1) = −bV
r
l (2i + 1)− aVr

m(2i + 1)

aN2
orEt2

= −
[

bs′lm(2i + 1)− as′mm(2i + 1)
]

a
.

(84)

Precipitation observation is often taken at low elevation
angles, where the value of θ is approach 90◦. Thereby, the
coefficient b = cos θ sinφ/Nor in (81) and (84) is very small.
As b is in denominator of (82) and (83), only (81) and (84)
can be used here to avoid computational errors.

From the power estimates of (81) and (84), the covari-
ance 〈|s′hh|2〉 and 〈|s′vv|2〉 can be derived as
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(86)

Then ZDR can be estimated by substituting (85) and (86) into
(72).

The two cross-correlations of (81) and (84) can be calcu-
lated as
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.

(88)
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As indicated in [37], the argument of Ra (87) equals the
sum of the differential phase φDP and the Doppler shift ωdTs,
whereas the argument of Rb (88) is −φDP + ωdTs. So the φDP

can be estimated using arg(RaR∗b )/2. The magnitudes of Ra
and Rb can be represented as

|Ra(Ts)| =
∣

∣
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∣ρ(Ts)
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Although (89) and (90) are equal in mean, both of them
would be estimated and averaged to reduce errors in practice.
So |〈s′hh∗s′vv〉| can be estimated as

∣
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∗s′vv
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∣ = |Ra(Ts)| + |Rb(Ts)|
2
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∣ρ(Ts)
∣
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, (91)

and ρhv(0) can be computed by substituting (85), (86), and
(91) into (76).

4. Polarimetric Variables Measurement in
STSR Mode

STSR mode is based on the approximation that the propa-
gation and backscattering matrices in H/V polarization basis
are diagonal. In this mode, radars with mechanically steered
beams simultaneously transmit and receive both horizontal
and vertical polarization states, and only reflectivity, dif-
ferential reflectivity, differential phase, and copolar cross-
correlation coefficient can be estimated.

However, when the L/M polarization basis is used, the
propagation and backscattering matrices are not diagonal,
and the four terms of S′lm cannot be measured separately
at STSR mode. Assuming the same time index (i) and with
s′hv = s′vh = 0, the simultaneously received baseband voltages
in STSR mode can be derived from (26)

Vr
l (i) = N2

or

[

s′ll(i)Et1 + s′lm(i)Et2
]

= N2
or

[
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Et1

+N2
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(92)

Vr
m(i) = N2
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[

s′ml(i)Et1 + s′mm(i)Et2
]

= N2
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[

abs′hh(i)− abs′vv(i)
]

Et1

+N2
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[

b2s′hh(i) + a2s′vv(i)
]

Et2.

(93)

s′hh(i) and s′vv(i) can be directly solved from the linear equa-
tions (92) and (93)

s′hh(i) = aVr
l (i) + bVr

m(i)

N2
or(aEt1 + bEt2)

,

s′vv(i) =
bVr
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N2
or(bEt1 − aEt2)

.

(94)

So the simultaneous time series of s′hh(i) and s′vv(i) can
be solved upon each return, and conventional polarimetric

variables estimate methods of STSR mode can be used [2,
ch6].

The more efficient procedure is using the following pow-
ers and correlations of received baseband voltages:
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The three elements 〈|s′hh|2〉, 〈|s′vv|2〉, and 〈s′hh∗s′vv〉 can be
directly obtained from (95)–(97)
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b2Pl + a2Pm − 2abRe
(
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)
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〈
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= 1
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or

ab(Pl − Pm)− a2R∗l,m + b2Rl,m

(aEt1 + bEt2)∗(bEt1 − aEt2)
. (100)

As aforementioned, the magnitudes and phase differences
of Et1 and Et1 need to be carefully measured and calibrated
to successfully retrieve these covariance elements. The three
polarimetric variables ZDR, φDP and ρhv(0) can then be
computed by substituting (98), (99), and (100) into (72),
(75), and (76), respectively.

5. Summary and Conclusion

This paper focuses on the accurate measurement of polari-
metric variables in phased array weather radar. A new scheme
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of polarimetric measurement was proposed for the planar
PPAR to mitigate the measurement biases in polarimetric
variables caused by the misprojections of dual-polarized
element’s fields onto the local H and V directions of elec-
tronically steered beam. There are some differences between
the proposed scheme and the projection correction scheme
proposed in [18, 20]. The basic ideal of [20] is based on
simultaneously adjusting two polarized feeding voltages of
array elements so that the H and V polarized fields in all
beam directions are similar with that generated by mechan-
ically steered antenna. The misprojection problem was
considered in this paper by constructing a new polarization
basis based on the orthogonal Huygens sources element
model. The dual-polarized element’s fields are symmetrically
projected in the new polarization basis. Thereby, the copolar
synthesized beam in the new basis can match well, and
the measurement biases are only caused by the cross-polar
radiations of element in new basis. Another benefit from
the new basis is that each polarization can be synthesized
individually, which would make polarized beam synthesizing
process more flexible and straightforward.

The measured time series data in the new polarization
basis need to be transformed to the conventional H/V polar-
ization basis so that polarimetric variables can be estimated.
Both the ATSR and the STSR modes were considered, and
two methods of estimating polarimetric variables have been
developed. The first way is to transform the measured
scattering matrix in new basis to the scattering matrix inH/V
basis. The scattering conversion matrix and polarimetric
variables can then be computed by using the same procedure
as radars with mechanically steered antenna. Another way is
to directly compute the powers and correlation of measured
data, and polarimetric variables can then be estimated with
the developed formulas.

The basic theories and methods of polarimetric mea-
surement in the new polarization basis have been developed.
Further practical issues such as bias tolerances caused by
attentions in propagation path and by the canting of drops
need to be analyzed, and the tolerable cross-polarization
in the new basis for reliable precipitation estimation also
needs to be reinvestigated. The ongoing work in our team is
to develop an 8 × 8 small array comprising dual-polarized
balance feed microstrip elements, which will be used for
further validation.
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