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One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-
designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-
stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as
feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection,
respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted
by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final
classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-
Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and
NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a
significant classification accuracy improvement over all state-of-the-art references.

1. Introduction

Aerial scene classification is a key problem in aerial image
understanding, which aims to automatically assign a seman-
tic label to each aerial image in order to know which category
it belongs to [1, 2]. Aerial scene classification has important
application value in military and civil areas such as disaster
monitoring, weapon guidance, and traffic supervision [3, 4].
Aerial images not only have rich space and texture features
but also contain a large number of scene semantic informa-
tion. However, since the composition of the scene is compli-
cated, it is difficult to obtain the scene information of interest
directly from the massive image data [5, 6].

In order to understand and identify the scene information
in aerial images, many scene classification methods are pro-
posed; they generally can be divided into two categories:
methods with low-level scene features and methods with
midlevel scene features.The commonly used low-level meth-
ods include Scale Invariant Feature Transform (SIFT) [7],
Local Binary Pattern (LBP) [8], Color Histogram (CH) [9],
and GIST [10]. The midlevel methods represent a scene by
coding the low-level local feature descriptors. The midlevel

coding methods include Bag of Visual Words (BoVW) [11],
Spatial Pyramid Matching (SPM) [12], Locality-Constrained
Linear Coding (LLC) [13], Probabilistic Latent Semantic
Analysis (PLSA) [14], Latent Dirichlet Allocation (LDA) [15],
Improved Fisher Kernel (IFK) [16], and Vector of Locally
Aggregated Descriptors (VLAD) [17].

In recent years, the deep learning methods have a break-
through in computer vision tasks, such as image classifica-
tion, object recognition, and face recognition [18–20]. Con-
volutional neural network (CNN) is one of the most success-
ful deep learning algorithms. Recently, CNNmodels, such as
CaffeNet [21] and GoogLeNet [22], achieve better perfor-
mance on aerial scene classification than that of low-level and
midlevel methods.

A typical architecture of CNN usually contains many
layers to automatically extract useful features and exploit the
logistic regression for classification. However, this classifier
cannot reach a satisfactory prediction performance. To solve
this problem, CNN-SVM [23] was proposed. This architec-
ture is a combination of CNN and support vector machine
(SVM), which uses pretrained CNN as feature extractor
and SVM as a classifier. Inspired by its success, some new
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combination architectures were proposed, such as CNN-BPR
[24].

Extreme learning machine (ELM) is a learning algorithm
based on single-hidden layer feedforward neural network
(SLFN) [25]. According to its creators, this model is able to
produce good generalization performance and learn thou-
sands of times faster than networks trained using backprop-
agation. In [26], it also shows that the ELM can outperform
SVM. In [27], the authors have confirmed that theCNN-ELM
outperforms CNN-SVM in the area of high-resolution aerial
scene classification. Therefore, ELM with CNN-learned fea-
tures can perform excellently.

In this paper, we propose a new aerial scene classifica-
tion framework that combines the fused deep convolutional
features learned by CNNs with the ELM classifier. First, two
pretrained CNNs are used as feature extractor to learn deep
features from the original aerial image and the processed
aerial image through saliency detection, respectively. Second,
these two sets of features extracted by the original RGB
stream and the saliency stream are fused to one set of features.
Finally, the ELM classifier is used for final classification with
the fused features. Experimental results on four datasets
illustrate that the proposed architecture outperforms the sate-
of-the-art methods.

The contributions of this paper are concluded as follows.(1) We employ a two-stream deep architecture to extract
features from the original aerial image and the processed
aerial image through saliency detection, respectively. Thus,
we can get two different types of deep convolutional features
which contain the appearance information and prominent
information.(2)To the best of our knowledge, it is the first to fuse these
two different types of deep convolutional features extracted
by the original RGB stream and the saliency stream, which
can get a good representation of the aerial images.(3)Weuse the extreme learningmachine as a classifier for
final classification with the fused features.

The rest of this paper is organized as follows. Section 2
introduces the related works including convolutional neural
networks and extreme learning machine. Section 3 describes
the proposed two-stream deep fusion architecture in detail.
Section 4 evaluates the performance of the proposed architec-
ture on four different benchmark datasets andmakes compar-
isons with several state-of-the-art methods. The conclusions
are drawn in Section 5.

2. Related Works

2.1. Convolutional Neural Networks. As a branch of machine
learning, deep learning is a calculation model consisting of
multiple processing layers. Much attention has been paid to
deep learning for its great breakthrough in fields including
image classification, voice understanding, and video analysis.

Deep convolutional neural network is an important
algorithm in field of deep learning. It is based on the classical
convolution neural network devised by LeCun [28].

In general, DCNN (deep convolutional neural network)
consists of two major parts (see Figure 1). The first part is
feature extraction, which contains alternating convolutional

and pooling layers. A convolutional layer consists of two
sublayers: convolutional filter layer and feature mapping
layer. Descriptions of the layers are given as follows.

(1) Convolutional Filter Layer. Convolution is a kind of linear
operation. Noise reduction and characteristic enhancement
can be achieved by using the layer for extraction of character-
istics. Local characteristics can be extracted by the connection
between the input of each neuron and local receptive field
of the previous layer. Assume the input image 𝐼 is a two-
dimensional image with size of 𝑟 × 𝑟; an output with size of((𝑟−𝑤)/𝑠+1)×((𝑟−𝑤)/𝑠+1) can be obtained by the convolu-
tional operation of a trainable filter set 𝐾 with size of 𝑤 × 𝑤:

𝑦�푖 = 𝑏�푖 + ∑
�푖

𝑘�푖�푗 ∗ 𝑥�푖, (1)

where ∗ denotes convolutional operation, 𝑥�푖 denotes the
input of convolutional layer, 𝑘�푖�푗 is the parameter of convolu-
tional kernel, 𝑏�푖 is the bias, and 𝑠 represents step length; each
filter is related to a certain feature.

(2) Feature Mapping Layer. A nonlinear activation function
is used for mapping of results obtained from filter layer, thus
generating feature graph 𝐹.

𝑓�푠 = 𝜎(𝑏�푖 + ∑
�푖

𝑘�푖�푗 ∗ 𝑥�푖) , (2)

where 𝜎 is a nonlinear activation function. Traditional acti-
vation functions include tanh, sigmoid, and softplus. ReLU
(Restricted Linear Units) is the closest one to the activation
model of stimulated biological neuron, thus gradually being
used as activation function of neural networks.

(3) Pooling Layer. This layer is used for elimination of
redundant data. After dividing the feature graph 𝐹 into 𝑚 ×𝑚 nonintersectional areas, pooling features 𝑃 with size of{((𝑟 − 𝑤)/𝑠 + 1)/𝑚} × {((𝑟 − 𝑤)/𝑠 + 1)/𝑚} can be obtained
based on statistical mean value (or maximum value) of the
separate regions. Dimensions of the feature can be greatly
reduced after the pooling procedure, thus avoiding overfitting
and enabling the models to be robust.

Acting as a combined effort to extract features of the input
image, convolutional filter layer, feature mapping layer, and
pooling layer are considered as one layer in the DCNN. After
several layers of convolution and pooling, the input image is
represented by some learned features.

The second part is classifier. The learned features can be
put into the logistic regression classifier for classification.The
logistic regression classifier uses softmax as its output-layer
activation function.

The network parameters are trained by BP (backpropaga-
tion) algorithm [29]with SGD (StochasticGradientDescent).
Dropout strategy [30] is applied to avoid overfitting and
enhance the generalization ability of the networks. The
dropout strategy is usually used in fully connected layers.

2.2. Extreme Learning Machine. Extreme learning machine
consists of three layers: input layer, hidden layer, and output
layer. The structure of the ELM is shown in Figure 2.
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Figure 2: The structure of the ELM.

With regard to 𝑁 different samples (𝑥�푖, 𝑡�푖), 𝑥�푖 = [𝑥�푖1, 𝑥�푖2,. . . , 𝑥�푖�푛]�푇 denotes the 𝑖th sample and 𝑡�푖 = [𝑡�푖1, 𝑡�푖2, . . . , 𝑡�푖�푚]�푇
denotes the actual label of the 𝑖th sample. The number of
input nodes 𝑛 is the dimension of each sample; the number of
output nodes𝑚 is total number of categories. Given 𝐿 hidden
nodes and activation function 𝑔(𝑥), there must exist a set
of parameters 𝑤�푗, 𝑏�푗, and 𝛽�푗, which can make this network
approach these 𝑁 different samples.

�퐿∑
�푗=1

𝛽�푗𝑔 (𝑤�푗𝑥�푖 + 𝑏�푗) = 𝑡�푖, 𝑖 = 1, 2, . . . , 𝑁, (3)

where𝑤�푗 = [𝑤�푗1, 𝑤�푗2, . . . , 𝑤�푗�푛]�푇 is the weight vector that con-
nects the 𝑗th hidden node with the input nodes, 𝛽�푗 = [𝛽�푗1, 𝛽�푗2, . . . , 𝛽�푗�푚]�푇 is the weight vector that connects the 𝑗th hidden
node with the output nodes, and 𝑏�푗 is the bias of the 𝑗th
hidden node.

Equation (3) can be simplified as matrix form,

𝐻𝛽 = 𝑇, (4)

where 𝐻 is the output matrix of the hidden layer and the 𝑗th
row of𝐻 is the output of the 𝑗th hidden node with respect to
the input samples 𝑥1, 𝑥2, . . . , 𝑥�푁.

𝐻(𝑤1, . . . , 𝑤�퐿, 𝑏1, . . . , 𝑏�퐿, 𝑥1, . . . , 𝑥�푁)

= [[[[
[

𝑔 (𝑤1𝑥1 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (𝑤�퐿𝑥1 + 𝑏�퐿)... ...
𝑔 (𝑤1𝑥�푁 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (𝑤�퐿𝑥�푁 + 𝑏�퐿)

]]]]
]

𝛽 = [[[[
[

𝛽�푇1...
𝛽�푇�퐿

]]]]
]�퐿×�푚

𝑇 = [[[[
[

𝑡�푇1...
𝑡�푇�푁

]]]]
]�푁×�푚

.

(5)

In ELM algorithm, the input weights and the hidden
layer biases of SLFN need not be adjusted at all and can be
arbitrarily given. With regard to the fixed input weights and
the hidden layer biases, we just need to find a least-squares
solution 𝛽 of the linear system 𝐻𝛽 = 𝑇:

󵄩󵄩󵄩󵄩󵄩𝐻 (𝑤1, . . . , 𝑤�퐿, 𝑏1, . . . , 𝑏�퐿) 𝛽 − 𝑇󵄩󵄩󵄩󵄩󵄩
= min
�훽

󵄩󵄩󵄩󵄩𝐻 (𝑤1, . . . , 𝑤�퐿, 𝑏1, . . . , 𝑏�퐿) 𝛽 − 𝑇󵄩󵄩󵄩󵄩 . (6)

The minimum norm least-squares solution of the linear
system 𝐻𝛽 = 𝑇 is

𝛽 = 𝐻†𝑇, (7)

where𝐻† is theMoore-Penrose generalized inverse of matrix𝐻.

3. Proposed Architecture

In this section, we propose an effective and efficient two-
stream deep fusion architecture for aerial scene classification.
The first stream is called original RGB stream, which can
capture the appearance information by using original RGB
images as input to the network. The second stream is called
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Figure 3: The proposed two-stream deep fusion architecture.

saliency stream, which can capture the prominent informa-
tion by using the processed images through saliency detec-
tion as input to the network. This two-stream framework
uses two same deep convolutional neural networks as feature
extractor to describe the original aerial image and the pro-
cessed aerial image through saliency detection, respectively.
Then, we use two famous strategies to fuse the extracted two
sets of features. Finally, the fused features are fed into the
ELMclassifier for aerial scene classification.Theoverall frame-
work of our proposed method is shown in Figure 3. As de-
scribed in Figure 3, our proposed architecture includes the
following four parts.(1) Preprocessing the aerial images based on unsuper-
vised saliency detection.(2) Using the original RGB stream and the saliency
stream to extract features from the two kinds of aerial image.
These two streams use deep convolutional neural networks to
extract features.(3) Fusing the extracted two sets of features.(4)Using the ELM classifier for aerial scene classification.

3.1. Saliency Detection. When facing visual scenes, human
visual system is capable of quickly focusing our eyes on
some distinctive visual regions and ignoring plain ones. The
selective visual attention mechanism can help human beings
observe, think, and make decision quickly and efficiently.
The saliency detection model [47] emulated human visual
attention can make our architecture more intelligent. By use
of saliency detection, we can get more informative features
which could dominate the category of the image. However,
saliency detection is not suitable for all aerial images. Thus,
we adopt the fusion model, which can make good use of each
strength.

This method includes two sections. One section is the
global perspective which can get a global distribution of
visual properties. In this section, a visual vocabulary for the
aerial scene is built. Each visual word serves as a single
element in depicting the aerial scene.The representation form
is the histogram of visual word occurrence.

𝐼 = {f rq (𝑊�푓
�푘
)} , 𝑊�푓

�푘
∈ Ω

Ω = {𝑊�푓
�푘
}

= {[𝑊color
1 , . . . ,𝑊color

�푁color] ; [𝑊texture
1 , . . . ,𝑊texture

�푁texture ]} ,
(8)

where 𝑓 ∈ 𝐹, 𝐹 = {color, texture}. f rq(𝑊�푓
�푘
) indicates the fre-

quency of occurrence of the visual word𝑊�푓
�푘
. Then, a weight-

ed factor 𝜑�푓
�푘
for each visual word is introduced according to

the “repetition suppression principle.”

𝜑�푓
�푘

= 1
f rq (𝑊�푓

�푘
) . (9)

The other section in this method is the local perspective.
The representation for patch 𝐼�푚 (𝐼�푚 ∈ 𝐼) is obtained using
the histogram of visual word occurrence. Finally, the saliency
value of patch 𝐼�푚 is computed by

sal (𝐼�푚) = ∑
�푓∈�퐹

�푁𝑓∑
�푘=1

f rq�푚 (𝑊�푓
�푘
) ⋅ 𝜑�푓
�푘
, (10)

where frq�푚(𝑊�푓
�푘
) indicates the frequency of occurrence of the

visual word𝑊�푓
�푘
for patch 𝐼�푚.𝑁�푓 denotes the number of color

and texture feature words.

3.2. Feature Extraction. In recent years, CNN models can
get higher classification accuracy than that of low-level and
midlevel methods on aerial scene classification. The impres-
sive results of CNNs indicate that the features extracted by
CNNs are more typical and representative. Therefore, we
select some of the most popular CNN models as feature
extractor in our original RGB stream and saliency stream.
Three selected CNN architectures are presented in Figure 4.
We describe the characteristics of eachmodel in the following
part. At the same time, we specify the source of the features
for one specific model.

3.2.1. CaffeNet. Caffe (Convolutional Architecture for Fast
Feature Embedding) [21] is one of the most popular libraries
for deep learning, which is developed by the Berkeley Vision
and Learning Center.The network, whose architecture can be
seen in Figure 4(a), is almost a replication of AlexNet [48].
However, its training process has no data argumentation and
its order of normalization and pooling layers is switched.The
architecture of CaffeNet includes five convolutional layers,
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Figure 4: The architectures of different CNNs used in our work.

some of which are followed by max-pooling layers, and three
fully connected layers with a softmax. In our architecture, we
use CaffeNet as a feature extractor by extracting features from
the second fully connected layer, which can get features of
4096 dimensions.

3.2.2. VGG-Net-16. VGG-Net [49] achieves the state-of-the-
art accuracy on ILSVRC classification and localization tasks.
Due to the use of very small (3 × 3) convolution filters in
all layers, the depth of the network can be increased easily
by adding more convolutional layers. The authors give five
configurations of VGG-Net, whose depth of weight layers is
from 16 to 19. In our work, we use the VGG-Net-16 model,
whose architecture can be seen in Figure 4(b). This network
includes thirteen convolutional layers, five pooling layers,
and three fully connected layers with a softmax. In our
architecture, we use VGG-Net-16 as a feature extractor by
extracting features from the second fully connected layer,
which can get features of 4096 dimensions.

3.2.3. GoogLeNet. GoogLeNet [22], proposed by Szegedy et
al., is the 22-layer CNN architecture that won the ILSVRC14
competition. The architecture of this network can be seen in
Figure 4(c). Its main characteristic is the use of the inception
modules, which is derived from the idea of “network in
network.”The utilization of the inception modules can make
GoogLeNet have two main advantages: (1) in the inception
module, the size of filters at the same layer is different, which
can get more accurate multiscale spatial information; more-
over (2) the design of this module can reduce the number
of parameters of the network, which makes the network less

prone to overfitting and allows it to be deeper. In fact, the
22-layer GoogLeNet with more than 50 convolutional layers
distributed inside the inception modules has approximately
five millions of parameters, which is 12 times fewer than
that of CaffeNet. In our architecture, we use GoogLeNet as a
feature extractor by extracting features from the last pooling
layer, which can get features of 1024 dimensions.

3.3. Features Fusion. For the original aerial image and the
processed aerial image through saliency detection, we use
the CNN model pretrained on ImageNet to extract features
from the specified layers in the original RGB stream and
the saliency stream. The fused features which contain rich
information of the image scene can contribute to the process
of classification. How to fuse the two different sets of features
is becoming an important issue.

Some methods have been proposed for feature fusion
[50–52]. We select two classical methods for fusing the two
different types of features, in aim to get more informative and
significant features to represent the input image.(1) Serial feature fusion strategy is just to concatenate the
two sets of features. The dimension of the fused features is
equal to the summation of the dimensions of the two sets of
features.(2) Parallel feature fusion strategy is to combine the
two sets of features. Each input image 𝐼 generated two sets
of features, that is, 𝐹1 and 𝐹2 representing the two sets of
features. The final fused feature representation is formulated
as

𝐹�푓 (𝐼) = 𝐹1 (𝐼) + 𝑖𝐹2 (𝐼) , (11)
where 𝑖 is the imaginary unit.
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Figure 5: Class representatives of the UC-Merced dataset.

4. Experiments and Analysis

We use the NVIDIA Titan X Pascal GPU (with a 12GBmem-
ory) and 2.0GHz Intel Xeon CPU E5-2683v3 in this exper-
iment. The proposed architecture is tested on four differ-
ent datasets. Firstly, we give the description of the four data-
sets. Secondly, the setup in our experiments is given. Finally,
the classification performance of the proposed architecture is
compared with the state-of-the-art in the literature.

4.1. Datasets. The first dataset is the well-known UC-Merced
Land Use dataset [31], which consists of 2100 high-resolution
remote sensing images of 21 classes. The size of each image
scene is 256 × 256 pixels. The class samples are shown in
Figure 5. There are some highly overlapped classes, such as
“dense residential,” “medium residential,” and “sparse resi-
dential,” which make this dataset difficult for classification.
This dataset has been widely used to evaluate different aerial
scene classification methods. For more information, visit
http://vision.ucmerced.edu/datasets.

The second dataset is WHU-RS dataset [53], which is
collected from Google Earth imagery. There are 950 high-
spatial resolution imageswith 600× 600 pixels divided into 19
classes. The class samples are shown in Figure 6. The images
in this dataset are collected from different regions all over
the world, which creates more challenges because of its high
diversity. This dataset has also been widely used to evaluate
different aerial scene classification methods. For more infor-
mation, visithttp://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html.

The third dataset named AID (a new large-scale aerial
image dataset), which is collected fromGoogle Earth imagery
[41]. There are a number of 10000 (600 × 600) pixel images
within 30 classes in the AID dataset. Compared with other
remote sensing image datasets, the AID dataset has some
properties which include high intraclass variations, small
interclass dissimilarity, and relative large-scale. Figure 7
shows a sample image for each class included in this dataset.

For more information, visit http://www.lmars.whu.edu.cn/
xia/AID-project.html.

The fourth dataset is NWPU-RESISC45 dataset, which
contains 31500 images and covers 45 scene classes with 700
images in each class [46]. Figure 8 shows a sample image for
each class included in this dataset. For more information,
visit http://www.escience.cn/people/JunweiHan/NWPU-RE-
SISC45.html. The AID dataset and the NWPU-RESISC45
dataset are more challenging datasets, which have been used
for testing some high performance aerial scene classification
methods.

4.2. Experimental Setup. For feature extractor selection, we
use CaffeNet, VGG-Net-16, andGoogLeNet as feature extrac-
tor, respectively. These three networks are all pretrained
on ImageNet [54]. After that, we use two fusion strategies
to combine among the extracted features. In classification
section, we use the extreme learning machine.

With regard to training set generation, we adopt two
different settings. For the UC-Merced dataset, the ratio of the
number of training set is set to be 50% and 80%, respectively,
and the left for testing. For theWHU-RSdataset, the ratios are
set to be 40% and 60%, respectively. For the AID dataset, the
ratios are set to be 20% and 50%, respectively. For theNWPU-
RESISC45 dataset, the ratios are fixed at 10% and 20%,
respectively. Considering that CNN requires a predefined size
for the input image, all images are resized according to the size
of the receptive field of the selected CNN model.

In this paper, we use the overall accuracy to evaluate the
methods.The evaluation procedure is repeated ten times for a
reliable performance comparison.Thefinal results are report-
ed as the mean and standard deviation over the ten runs. In
this section, we do not make comparisons with the results of
some fine-tuned networks because our architectures only use
the pretrained networks, which is for the sake of fair compari-
son.

http://vision.ucmerced.edu/datasets
http://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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Figure 6: Class representatives of the WHU-RS dataset.

4.3. UC-Merced Dataset. With regard to the UC-Merced
dataset, we first analyze the influence of different features
extractors and fusion strategies on the classification perfor-
mance. The experimental results are shown in Table 1. In
Table 1, we can see that the two-stream architectures provide
superior performance compared to the single CNNs without
fusion, which illustrates that data fusion is helping the system
to increase its accuracy. The serial feature fusion strategy
based architectures provide inferior performance compared
to the parallel feature fusion strategy based architectures
with the same CNN feature extractor. At the same time,
we also see that the features extracted by VGG-Net-16 are
more representative and discriminative. In this dataset, our
best classification accuracy rates are 96.97% and 98.02%,
using 50% and 80% training ratios, respectively. These best
results are achieved by the architecture that uses VGG-Net-
16 network and parallel feature fusion strategy.

We also make a comparison of the proposed architec-
ture against several state-of-the-art aerial scene classification
methods on this dataset, as shown in Table 2. As we can see
from Table 2, our architecture outperforms all other aerial

scene classification methods, with an increase in overall
accuracy of 1.08% and 0.60% over the second best model
using 50% and 80% training ratios, respectively. The good
performance of our method mainly benefits from the fusion
of two different types of deep convolutional features and the
extreme learning machine.

4.4. WHU-RS Dataset. On the WHU-RS dataset, to evaluate
the influence of different features extractors and fusion
strategies on the classification performance, we do the same
experiments discussed above for UC-Merced dataset. The
results are shown in Table 3. The classification results in
Table 3 once again prove that the parallel feature fusion
strategy is better than the serial feature fusion strategy. On the
40% training ratio, VGG-Net-16 is the best feature extractor,
while CaffeNet is the best one on the 60% training ratio.

Table 4 shows the comparison of the classification accu-
racies between our proposed architecture and the other state-
of-the-art methods. As we can see from Table 4, TEX-Net-LF
and DCA by addition are the most competitive approaches.
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Figure 7: Class representatives of the AID dataset.

Table 1: Classification performance of the proposedmethod on theUC-Merced dataset using different feature extractors and fusion strategies.

Different architectures Feature size Training ratios
50% 80%

Without fusion (CaffeNet(RGB)) 4096 94.60 ± 0.63 95.69 ± 0.91
Without fusion (CaffeNet(saliency)) 4096 92.62 ± 0.74 94.04 ± 0.88
Without fusion (VGG-Net-16(RGB)) 4096 94.77 ± 0.73 95.91 ± 1.41
Without fusion (VGG-Net-16(saliency)) 4096 92.82 ± 0.91 94.31 ± 0.99
Without fusion (GoogLeNet(RGB)) 1024 93.31 ± 0.71 94.99 ± 0.78
Without fusion (GoogLeNet(saliency)) 1024 91.32 ± 0.98 93.30 ± 0.55
Fusion strategy 1 (CaffeNet) 8192 95.79 ± 0.52 96.83 ± 0.91
Fusion strategy 2 (CaffeNet) 4096 96.74 ± 0.49 97.80 ± 0.88
Fusion strategy 1 (VGG-Net-16) 8192 96.02 ± 0.77 97.05 ± 1.00
Fusion strategy 2 (VGG-Net-16) 4096 96.97 ± 0.75 98.02 ± 1.03
Fusion strategy 1 (GoogLeNet) 2048 94.46 ± 0.60 96.17 ± 0.90
Fusion strategy 2 (GoogLeNet) 1024 95.41 ± 0.58 97.12 ± 0.96
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Figure 8: Class representatives of the NWPU-RESISC45 dataset.

TEX-Net-LF is the method described in [43], which con-
structed an architecture where fusing the features obtained
from the texture coded mapped image and the standard RGB
image. DCA by addition is also a fusion method, which used
the first and second output fully connected layers of the net-
work and employed the DCA to fuse the two sets of features
[44]. The final experimental results clearly demonstrate that
our architecture achieves the highest classification accuracy
rate than other state-of-the-art methods.

4.5. AID Dataset. On the AID dataset, Table 5 shows the
influence of different features extractors and fusion strategies
on the classification performance. As we can see fromTable 5,
the parallel feature fusion strategy is the best fusion method
in our architecture. Moreover, using CaffeNet and VGG-Net-
16 as feature extractors achieves competitive performance
compared to GoogLeNet.

Table 6 shows the classification performance comparison
of our architecture compared to the state-of-the-art methods.
Our best architecture outperforms all other methods, with
an increase in overall accuracy of 1.45% and 1.62% over the
second best model using 20% and 50% training ratios,
respectively.

4.6. NWPU-RESISC45 Dataset. On the NWPU-RESISC45
dataset, Table 7 shows the influence of different features
extractors and fusion strategies on the classification perfor-
mance. Table 8 shows the classification performance com-
parison of our architecture compared to the state-of-the-art

methods. Our best architecture uses CaffeNet as its feature
extractor and employs the parallel feature fusion strategy,
which achieves remarkable classification results.

From the classification results on all datasets, we can note
that VGG-Net-16 andCaffeNet have the similar performance,
while GoogLeNet performs slightly worse. The CaffeNet has
only 8 layers, which is much simpler than the VGG-Net-16
and the GoogLeNet with 16 and 22 layers, respectively. From
this phenomenon, we can conclude that simpler network
performs better. However, we should note that all networks
we used are trained on ImageNet whose images are all natural
images. Thus, the deeper network (GoogLeNet) is more suit-
able for processing natural images, which may not be good
at processing aerial scenes.

5. Conclusion

In this letter, we propose a novel two-stream deep fusion
framework for aerial scene classification on high-resolution
remote sensing images. In this framework, we firstly use
pretrained convolutional neural networks as feature extractor
to learn features from the original aerial image and the pro-
cessed aerial image through saliency detection. Then, the
two sets of deep features extracted from the original RGB
stream and the saliency stream are fused to one set of features.
Finally, the ELM classifier is used for final classification with
the fused features. We test our architecture on four challeng-
ing datasets. In contrast with other state-of-the-art methods,
our proposed architecture can achieve better classification
results.
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Table 2: Comparison with the state-of-the-art methods on the UC-Merced dataset.

Methods Training ratios
50% 80%

SCK [31] - 72.52
SPCK [32] - 73.14
BoVW [33] - 76.81
BoVW + SCK [31] - 77.71
BRSP [34] - 77.80
SIFT + SC [35] - 81.67 ± 1.23
SSEA [36] - 82.72 ± 1.18
MCMI [37] - 88.20
OverFeat [38] - 90.91 ± 1.19
VLAD [39] - 92.50
VLAT [39] - 94.30
MS-CLBP + FV [40] 88.76 ± 0.79 93.00 ± 1.20
CaffeNet [41] 93.98 ± 0.67 95.02 ± 0.81
GoogLeNet [41] 92.70 ± 0.60 94.31 ± 0.89
VGG-VD-16 [41] 94.14 ± 0.69 95.21 ± 1.20
CNN-ELM [27] - 95.62
salM3LBP-CLM [42] 94.21 ± 0.75 95.75 ± 0.80
TEX-Net-LF [43] 95.89 ± 0.37 96.62 ± 0.49
Fusion by addition [44] - 97.42 ± 1.79
Ours 96.97 ± 0.75 98.02 ± 1.03

Table 3: Classification performance of the proposed method on theWHU-RS dataset using different feature extractors and fusion strategies.

Different architectures Feature size Training ratios
40% 60%

Without fusion (CaffeNet(RGB)) 4096 95.79 ± 1.37 96.87 ± 0.66
Without fusion (CaffeNet(saliency)) 4096 93.21 ± 1.55 95.86 ± 0.50
Without fusion (VGG-Net-16(RGB)) 4096 96.09 ± 0.56 96.64 ± 1.08
Without fusion (VGG-Net-16(saliency)) 4096 93.75 ± 0.86 95.55 ± 0.89
Without fusion (GoogLeNet(RGB)) 1024 93.77 ± 0.79 95.32 ± 1.92
Without fusion (GoogLeNet(saliency)) 1024 91.22 ± 0.78 94.10 ± 1.19
Fusion strategy 1 (CaffeNet) 8192 96.78 ± 1.02 98.00 ± 0.59
Fusion strategy 2 (CaffeNet) 4096 97.74 ± 0.98 98.92 ± 0.52
Fusion strategy 1 (VGG-Net-16) 8192 97.28 ± 0.62 97.81 ± 0.87
Fusion strategy 2 (VGG-Net-16) 4096 98.23 ± 0.56 98.79 ± 0.99
Fusion strategy 1 (GoogLeNet) 2048 94.78 ± 0.77 96.34 ± 1.09
Fusion strategy 2 (GoogLeNet) 1024 95.72 ± 0.87 97.29 ± 1.20

Table 4: Comparison with the state-of-the-art methods on the WHU-RS dataset.

Methods Training ratios
40% 60%

Bag of SIFT [45] - 85.52 ± 1.23
MS-CLBP + BoVW [40] - 89.29 ± 1.30
GoogLeNet [41] 93.12 ± 0.82 94.71 ± 1.33
VGG-VD-16 [41] 95.44 ± 0.60 96.05 ± 0.91
CaffeNet [41] 95.11 ± 1.20 96.24 ± 0.56
salM3LBP-CLM [42] 95.35 ± 0.76 96.38 ± 0.82
TEX-Net-LF [43] 97.61 ± 0.36 98.00 ± 0.52
DCA by addition [44] - 98.70 ± 0.22
Ours 98.23 ± 0.56 98.92 ± 0.52
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Table 5: Classification performance of the proposed method on the AID dataset using different feature extractors and fusion strategies.

Different architectures Feature size Training ratios
20% 50%

Without fusion (CaffeNet(RGB)) 4096 87.57 ± 0.32 90.22 ± 0.42
Without fusion (CaffeNet(saliency)) 4096 84.45 ± 0.28 87.21 ± 0.48
Without fusion (VGG-Net-16(RGB)) 4096 87.24 ± 0.18 90.60 ± 0.31
Without fusion (VGG-Net-16(saliency)) 4096 84.25 ± 0.11 87.62 ± 0.56
Without fusion (GoogLeNet(RGB)) 1024 84.18 ± 0.53 87.15 ± 0.69
Without fusion (GoogLeNet(saliency)) 1024 81.12 ± 0.55 84.28 ± 0.67
Fusion strategy 1 (CaffeNet) 8192 92.26 ± 0.52 94.36 ± 0.29
Fusion strategy 2 (CaffeNet) 4096 92.32 ± 0.41 94.42 ± 0.33
Fusion strategy 1 (VGG-Net-16) 8192 92.04 ± 0.28 94.53 ± 0.18
Fusion strategy 2 (VGG-Net-16) 4096 92.11 ± 0.31 94.58 ± 0.25
Fusion strategy 1 (GoogLeNet) 2048 89.15 ± 0.45 91.25 ± 0.59
Fusion strategy 2 (GoogLeNet) 1024 89.21 ± 0.39 91.31 ± 0.49

Table 6: Comparison with the state-of-the-art methods on the AID dataset.

Methods Training ratios
20% 50%

BoVW [42] - 78.66 ± 0.52
MS-CLBP + FV [42] - 86.48 ± 0.27
GoogLeNet [41] 83.44 ± 0.40 86.39 ± 0.55
CaffeNet [41] 86.86 ± 0.47 89.53 ± 0.31
VGG-VD-16 [41] 86.59 ± 0.29 89.64 ± 0.36
salM3LBP-CLM [42] 86.92 ± 0.35 89.76 ± 0.45
Fusion by addition [44] - 91.87 ± 0.36
TEX-Net-LF [43] 90.87 ± 0.11 92.96 ± 0.18
Ours 92.32 ± 0.41 94.58 ± 0.25

Table 7: Classification performance of the proposed method on the NWPU-RESISC45 dataset using different feature extractors and fusion
strategies.

Different architectures Feature size Training ratios
10% 20%

Without fusion (CaffeNet(RGB)) 4096 77.34 ± 0.32 80.54 ± 0.22
Without fusion (CaffeNet(saliency)) 4096 75.06 ± 0.51 78.20 ± 0.33
Without fusion (VGG-Net-16(RGB)) 4096 77.10 ± 0.14 80.45 ± 0.31
Without fusion (VGG-Net-16(saliency)) 4096 74.94 ± 0.23 78.09 ± 0.48
Without fusion (GoogLeNet(RGB)) 1024 76.87 ± 0.45 79.12 ± 0.23
Without fusion (GoogLeNet(saliency)) 1024 74.67 ± 0.52 77.04 ± 0.19
Fusion strategy 1 (CaffeNet) 8192 80.15 ± 0.23 83.08 ± 0.21
Fusion strategy 2 (CaffeNet) 4096 80.22 ± 0.22 83.16 ± 0.18
Fusion strategy 1 (VGG-Net-16) 8192 79.95 ± 0.12 82.96 ± 0.19
Fusion strategy 2 (VGG-Net-16) 4096 80.03 ± 0.19 83.02 ± 0.14
Fusion strategy 1 (GoogLeNet) 2048 79.69 ± 0.47 81.46 ± 0.22
Fusion strategy 2 (GoogLeNet) 1024 79.75 ± 0.41 81.52 ± 0.28
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Table 8: Comparison with the state-of-the-art methods on the NWPU-RESISC45 dataset.

Methods Training ratios
10% 20%

GIST [46] 15.90 ± 0.23 17.88 ± 0.22
LBP [46] 19.20 ± 0.41 21.74 ± 0.18
Color histograms [46] 24.84 ± 0.22 27.52 ± 0.14
BoVW + SPM [46] 27.83 ± 0.61 32.96 ± 0.47
LLC [46] 38.81 ± 0.23 40.03 ± 0.34
BoVW [46] 41.72 ± 0.21 44.97 ± 0.28
GoogLeNet [46] 76.19 ± 0.38 78.48 ± 0.26
VGGNet-16 [46] 76.47 ± 0.18 79.79 ± 0.15
AlexNet [46] 76.69 ± 0.21 79.85 ± 0.13
Ours 80.22 ± 0.22 83.16 ± 0.18
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