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Organisms inhabiting seasonal environments are able to synchronize their life cycles with seasonal cycles of biotic and abiotic
factors. Diapause, a state of low metabolic activity and developmental arrest, is used by many insect species to cope with adverse
conditions. Sesamia nonagrioides is a serious pest of corn in the Mediterranean regions and Central Africa. It is multivoltine, with
two to four generations per year, that overwinters as mature larva in the northern of the Sahara desert. Our purpose was to compare
the response of the S. nonagrioides populations occurring in the broader circum-Mediterranean area, with particular attention to
the diapause period and the different numbers of generations per season. To this end, we tried to determine whether populations
in the area differ in their response to photoperiod and whether we can foresee the number of generations in different areas. We
present a model for predicting the occurrence of the critical photoperiod according to latitude and temperature and the spread of
S. nonagrioides in the circum-Mediterranean countries. Responses of populations to short-day length suggest that the spread of
the species is associated with a gradual loss of diapause in the southern areas, and that diapause incidence is positively correlated
with latitude.

1. Introduction

1.1. Host Plants and Distribution. The corn stalk borer, Sesa-
mia nonagrioides, is a polyphagous species with a fairly wide
range of host plants, including corn, sorghum, millet, rice,
sugar cane, grasses, melon, asparagus, palms, banana, and
the ornamental plant Strelitzia reginae [1–9]. The population
levels of this species, which has considerable potential to
establish itself in an area and become abundant, may
therefore depend on the abundance of these hosts.

The occurrence of S. nonagrioides, including S. nonagri-
oides botanephaga, has been reported in Portugal [10, 11],
Spain [12–14], the Canary Islands [15], France [16–18],
Italy [19], Greece [20, 21], Cyprus [22], Turkey [23, 24],
Morocco [25], Israel [26], Iran [27–29], Syria [30], Ethiopia
[6], Ghana [31], and several other African countries [32].
S. nonagrioides has been considered the most important
pest of maize in Spain since 1929 [12]. Nye [33] observed
that S. nonagrioides was morphologically very close to one
of the new sub-Saharan species that had been described

(Sesamia botanephaga) and indicated that Sesamia nona-
grioides nonagrioides and Sesamia nonagrioides botanephaga
should be regarded as two subspecies distributed to the
north and south of the Sahara, respectively. Esfandiari et al.
[34] stated that African S. botanephaga (or S. nonagrioides
botanephaga) do not occur in Iran and that it seems that
S. nonagrioides is native to SW Iran rather than an exotic
pest, having adopted sugarcane as a host after it began to
be cultivated there about 70 years ago. Leyenaar and Hunter
[31] reported that S. n. botanephaga can cause 63% loss in
maize yield in the coastal savanna of Ghana. In Kenya, S.
nonagrioides has been commonly recovered in maize fields
[35]. The same authors report that these species and other
stem borers that are currently restricted to wild hosts may
have the potential to shift to cultivated cereals in cases of
serious habitat fragmentation. Moyal et al. [36] recently
concluded that there is a single species of S. nonagrioides but
with three different, isolated conspecific populations: one in
East Africa, one in West Africa, and a Palearctic one in the
circum-Mediterranean countries.
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In the circum-Mediterranean countries, S. nonagrioides
has been designated as the most important pest of corn.
Many researchers have attempted to document the economic
losses that it causes in Spain, but the results are not clear
because the damage is not distinguishable from that caused
by Ostrinia nubilalis. Arias and Alvez [37] indicated that
damage caused by maize borers could range from 5% to 30%
of the yield depending on the date of sowing and the cultural
cycle of maize. In Greece, the existence of the species was
first reported by Stavrakis [38]. The pest increased steadily
in the 1980s as a result of the use of new single hybrids and
improved culture practices [21]. This increase was followed
by problems caused by S. nonagrioides, especially in the late-
sown crop (sown in early July after the harvest of small
cereals) [39]. According to a pilot survey in October 2005,
the dominant pest in sweet sorghum, Sorghum bicolor (L.)
Moench, was S. nonagrioides [40].

1.2. Number of Generations and Diapause. The number of
generations is marginally governed by the onset of diapause
at various latitudes and there are fewer generations in the
northern region than in the southern one. Three to four gen-
erations are completed per year in Greece [39]. Stavrakis [38]
reported that the pupation of the overwintering population
in Greece takes place in April-May. It seems that the fourth
generation is partial since some of the late progeny of the
third generation will not make it through [39].

In Spain and Portugal, the borer completes 2 generations
and a partial third one per year [37, 41, 42], with the third
one having a low population size in northern Spain [43].
The existence of two generations, in May and July-August,
has been reported in France [44]. In Israel, the borer is at
least a bivoltine wetland species, flying in March to July and
in October [45]. In Iran, it completes 4 generations during
the active season, with a partial 5th generation in second
plantings [46]. It has also been referred to as multivoltine,
with three to four generations per year in southern Portugal
[47] and three generations per year in the Izmir area of
Turkey [48].

Diapause of this species has been studied extensively
[20, 49–52]. Eizaguirre and Albajes [49] and Fantinou et al.
[51] reported that larval diapause is induced by the length
of photoperiod and that constant temperature modifies the
diapause response curve from type III to type I. According
to previous studies, the early induction of diapause can be
explained by the limited tolerance of insects originating in
the tropics to low temperatures, and it could be a mechanism
enabling the insect to extend its range into northern regions.
It seems that temperature plays a double role in the oc-
currence of a supplementary generation by increasing the
developmental rate and delaying the onset of diapause.
Gillyboeuf et al. [53] observed that survival of diapausing
larvae at low temperature may be related to the microclimate
of the overwintering site and not to their freeze tolerance
capacity. However, they argue that the freezing tolerance of
S. nonagrioides may be a factor favoring northern expansion.

Fantinou et al. [20] and Eizaguirre et al. [54] stated
that photoperiods longer than 12:12 h (L : D) terminate
diapause and that field-collected larvae complete diapause

spontaneously. Under a temperature similar to the natural
field temperatures, diapause terminates in approximately 4
months, ensuring that the larvae reach the middle of winter
without pupation. When diapause terminates, temperatures
in the field are very low and larvae go into quiescence,
allowing them to survive and to synchronize their cycle with
that of the host plant. The fact that the temperature thresh-
olds for diapause and postdiapause development are 3 or 4
degrees lower than that for continuous development [20, 41]
explains the phenological model of S. nonagrioides described
by López et al. [41]. Moreover, Fantinou and Kagkou
[55] reported that under natural conditions the increase
in nighttime temperature in late winter and early spring
could function as a signal eliciting diapause development.
This is ecologically important because in temperate regions
insects are exposed to daily photoperiods and thermoperiods
in which the long nights coincide with low temperatures.
The specific role of low temperature exposure in regulating
diapause development is not entirely clear, beyond the fact
that exposure to low temperatures is not a prerequisite for
diapause termination in this species [20]. The intensity of
cold stress reflected in the level of mortality occurring in
larvae suggests that the northern boundary of the species’
expansion is defined by low temperatures.

2. Key Aspects for the Existence of the Species

2.1. Latitude and Critical Photoperiod. Figure 1 shows the
latitude lines of the Mediterranean basin countries. S. non-
agrioides can be found in northern, mainly European, coun-
tries between 35◦ and 46◦ N and in southern countries, such
as Morocco, Iran, Syria, and Israel, between 31◦ and 35◦ N.
Spain is located between 36◦ and 43◦ N, whereas Greece
is located between 35◦ and 41.5◦N. In all the circum-
Mediterranean countries where S. nonagrioides has been
found, including Morocco, the species overwinters as dia-
pausing larvae [2, 21, 44, 56], but there is no evidence of
diapause in the populations of warmer and more southern
countries. The Sahara desert probably delimits the popu-
lations of the borer that diapause in the north from those
that complete development without diapause in the south.
Masaki [57] suggested that variations in the incidence of
diapause might be due to the varying threshold of external
stimuli that trigger diapause. If an insect has an extremely
low threshold, it will enter diapause in a very wide range
of environmental conditions, whereas if its threshold is
extremely high, the conditions which induce its diapause
might be nonexistent in the ordinary range of environment.
Between these extreme thresholds, there is an intergraded
series of the reaction thresholds.

According to Eizaguirre and Albajes [49], under lab-
oratory conditions the critical photoperiod (that which
induces 50% diapause) is reduced from 13 h 52 min at 18◦C
to 13 h 15 min at 25◦C; this means that a 1◦C decrease
in temperature corresponds to an increase in the critical
photoperiod of about 5.3 minutes. This range of the critical
photoperiod corresponds closely to the day length on 15
August in regions where S. nonagrioides diapauses. In these
regions, the duration of the day on 15 August, from sunrise to
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Figure 1: The latitude lines of the Mediterranean basin countries (from Google maps).

sunset, is graduated approximately from 13 h 18 min at 31◦ N
to 13 h 57 at 43◦ N, an increase in day length of approximately
3.16 minutes for each degree of latitude increase (Figure 2).

Figure 2 shows the critical photoperiod for each latitude
and temperature. In view of this, on 15 August in the north-
ern regions of Europe, the longer photoperiods induce lower
percentages of diapause, whilst the shorter ones occurring
in southern Europe induce higher percentages. These results
may seem contradictory, because in the northern regions S.
nonagrioides larvae enter diapause earlier than in the south-
ern regions, but the explanation could be that temperature
has been reported to play a significant role in diapause
induction [20, 50, 55, 58].

Estimation of the critical photoperiod by Eizaguirre
and Albajes [49] allows us to design a model that could
help to predict the occurrence of the critical photoperiod
according to the latitude and the temperature in various
countries (Figure 2). This model could help us to estimate
the percentage of the live larvae of a generation that will be
induced to diapause, the larval proportion that may develop
towards adulthood, and therefore the trend of the population
density of the next (last) generation.

Figure 3 shows the variation in the climate of 6 cities of
the area where S. nonagrioides is distributed. The critical pho-
toperiod arrival in these cities based on the data of Figure 2
corresponds to 27 August in Bordeaux, 6-7 September in
Teheran, 20 August in Milan, 31 August in Zaragoza, 20
August in Athens, and 6 September in Marrakech. Therefore,
the differences in the onset of the critical photoperiods in the
various areas do not seem to be significant.

2.2. Freezing Days and Number of Generations Per Year.
Although the differences in the critical photoperiod are
not very obvious, greater differences can be observed in
the range of prevailing temperatures in each region. Milan
is the city with most days with a mean minimum tem-
perature below −1◦C, whereas Teheran is the city with
most days with a mean minimum temperature above 10◦C

and a mean maximum temperature above 27◦C, although
temperatures below −1◦C may occur on a few days each
year. S. nonagrioides seems to be to some extent susceptible
to high temperatures in summer [56] and the endophytic
larval behavior may protect the species from the extreme
temperatures of some regions.

Figures 2 and 3 provide data on the factors affecting the
number of generations of S. nonagrioides in the different
regions of the circum-Mediterranean countries. In Northern
Italy, S. nonagrioides is not present because it is very sus-
ceptible to the low winter temperatures [13, 44, 56] and
the short period of time with mean minimum temperatures
above 10◦C (close to the threshold temperatures for the pest
[40, 59]). In contrast, in Iran the species completes 4 to 5
generations that can be attributed to the long period of time
with prevailing mean minimum temperatures above 10◦C
(Figure 3) and to the delayed onset of the critical photoperiod
in September (Figure 2). Generally, warmer temperatures
tend to be associated with a higher number of generations
of the insect. The number of generations in a region depends
on the early appearance of the first generation derived from
overwintering larvae. Galichet [44], Lopez et al. [60], and
Fantinou et al. [20] demonstrated that diapause terminates
by the end of February, so the occurrence of the first genera-
tion will depend on the prevailing temperatures throughout
March, taking into account that the threshold temperatures
for postdiapause development are lower than those for
normal larval development [54]. Once the first generation
has occurred, the accumulation of heat units, degree days,
will determine the number of generations completed per
season before the arrival of the photoperiod that initiates
diapause. The degree days (DG) necessary for the completion
of one generation in maize are 616 DG according to Hilal
[61] and 730 DG according to López et al. [41]. The number
of generations will also determine the population size of the
pest of the last generation: the population density of the last
generation of S. nonagrioides is usually higher than that of
the previous one because the host crop is available [21, 35].
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Figure 2: Variation in the length of the day, in minutes, from 1 August to 15 September according to latitude. Length of the day in color
indicates the day of the critical photoperiod inducing 50% diapause for this temperature and latitude.
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Figure 3: Maximum and minimum temperatures of six cities in the area of distribution of Sesamia nonagrioides. The curves, from bottom
to top, show the record minimum temperatures, the mean minimum temperatures, the mean maximum temperatures, and the record
maximum temperatures. Days with mean maximum temperatures higher than 27◦C are colored in red, days with mean minimum
temperatures higher than 10◦C are colored in green, and days with temperatures below −1◦C are colored in blue.
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Consequently, like many multivoltine species that undergo
a state of diapause, S. nonagrioides may complete as many
generations as temperature and photoperiod conditions will
allow, assuming that there is an available food source.

2.3. Winter Mortality. The overwinter mortality of S. nona-
grioides in the Mediterranean is not only determined by the
number of freezing days in winter but may also be associated
with the percentage of the larval population that “escape”
the critical photoperiod in autumn. If the weather remains
warm, it is likely that many larvae will avoid diapause because
of the high temperatures. Therefore, a further generation
will lay eggs on a suitable green crop if it is available,
and the neonate larvae will successfully develop only in
those regions where relatively mild autumn temperatures
can occur. However, the young larvae that are subsequently
exposed to the later winter temperatures are destined to die.
Therefore, the higher the percentage of larvae that escape
from diapause during autumn, the higher the mortality of
the next generation of young larvae.

3. Summary

Field populations of S. nonagrioides in the Mediterranean
region display winter diapause. Voltinism in this species is
a seasonally plastic trait dependent on early emergence of
adults of the overwintering generation. The abundance of
the species in a given region depends on the number of
freezing days of the winter and the heat units accumulated
from diapause termination until the arrival of the critical
photoperiod for diapause induction in late summer. The
species relies on latitudinal gradients in temperature and
photoperiod for the induction of diapause, and the effect
of environmental cues on diapause and adaptation to local
environmental conditions is, therefore, variable.
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